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The Data Avalanches and the Genesis 
of Smart Algorithms

Its hard to construct a terabyte data 
base if each item has to be
entered by hand.

The avalanche was started by the
advent of high speed computing
and electronic entering of data.

Aided and assisted by technology
growth such as

high resolution and more band 
width in satellite pictures.

more weather stations gathering  more 
detailed information.

centralized data warehousing for 
commercial firms.
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   The Data Avalanche--A Small Example

San Francisco Chronicle-
October 24,2002

Since Neurome was founded  three years 
ago, its appetite for powerful computers and
more data storage has grown so rapidly that 
it now uses over 100 gigabytes a week.

"And that's just taking it easy"  said Warren 
Young, a co-founder of the biotech company
that processes data from digital images of the
brain for pharmaceutical research firms.  
"otherwise we'll run out of space"
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Current Avalanches and Problems

Multi-terabyte data bases are becoming common.
The interesting data bases are ones used to
answer significant questions.

Astronomy  data base of one billion stellar objects-
soon to be two billion.

what kinds of objects are there in this data base?
dwarf stars, quasars...?  find objects dissimilar to
anything seen before.

NSA data bases of millions of documents.

which of these are relevant to terrorism in
Macedonia?

Merck  data base of molecular bond structure of
millions of chemicals.

which of these are biologically active?

Satellite Photos   terabyte data base

has anything changed since the last fly over--of
what nature

El Nino  data base of hundreds of gigabytes over
30-40 years.

how accurately can El Nino activity be predicted?



5

Smart Algorithms

Trying to get answers to interesting
questions from a large data base cannot be done
by human inspection.

It requires algorithms initially trained by humans.

They have to be fast and accurate.
Mistakes are often costly.

In document recognition, if the algorithm does not
recognize a relevant documents, important
information may be missed.
 

In drug searches, incorrectly labeling too many
compounds as being potentially active leads to
high laboratory costs.
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How Algorithms are Constructed

Algorithms don't start off being smart.  Then have
to be trained, by human judgment.

The human has to offer the algorithm
examples of what the algorithm needs to
distinguish between.

Astronomers have to offer examples of novas,
dwarf stars, sun-like stars, etc.

To distinguish between relevant and irrelevant
documents, the algorithm has to be shown
examples of both as judged by human readers.

In the language of machine learning,
a training set has to offered to the algorithm.
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Training Sets and Prediction

The most common situation is that there is a single
response variable y to be predicted, i.e.

relevant, non relevant
dwarf star, super nova, etc.

The training set consists of a number of examples,
each assigned a y-value by human judgment ,
plus a set of m measurements on each example
denoted x 1( ), x(2), ... , x(M).

For instance, in document recognition, the
measurements are  the word counts in the
document of a specified list of words.

Each stellar object recorded in the sky has
measurements on its spectrum, shape, extent, etc.

The algorithm then proceeds to make
predictions for the objects it has not seen using
only the measurements x on the object to form a
predicted y.

Its error rate on the  objects  whose identity (y) is
unknown is called: the generalization error (use error
for short)

The lower the generalization error, the smarter the
algorithm
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Two-eyed Data Algorithms

Two algorithm currently give the most 
accurate predictions in classification and 
regression

1.  Support Vector Machines

2.  Random Forests

They have their eye on accurate prediction.

Think of nature as a black box:

xy nature 
   

In prediction the eye is not concerned with the
inside of the black box.

Given an input x the goal of the algorithm is to
produce a prediction ŷ as close as  possible to the
y that "nature" produces.

"nature"= nature +humans that classify what
nature produces.
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The Second Eye

In most scientific applications it is not enough to have
accurate predictions--more information is necessary.

Essential information are answers to:

What's going on inside the black box?

xy nature 
   

For Instance

In analyzing microarray data having thousands of
variables and sample size usually less that 100,
it is often put as a classification problem.

But the goal in the analysis is to find the genes
that are important in discriminating between the
classes.
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A Statistical Principle and Quandary

Inferring a mechanism for the black box is a highly
risky and ambiguous venture.  Nature's mechanisms
are  generally complex and cannot summarized by a
relatively simple stochastic model, even as a first
approximation.

An important principle

The better the model fits the data, the more sound
the inferences about the black box are.

Suppose there is an algorithm f (x)that outputs an
estimate ŷ of the true y for each value of x .

Then a measure of how well f fits the data is
given by how close ŷ is to y.  i.e. by the size of
the prediction error (PE)

The lower the PE, the better the fit to the data

Quandary:  The most accurate prediction
algorithms are also the most complex and
inscrutable.

i.e. compare trying to understand 100 trees in an
ensemble as compared to a single tree structure
as in CART.
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Two Eyed RF/tools

I am developing a class of algorithms called
RF/tools that have both:

1.  Excellent accuracy--the best currently available.

2.  Gives good insights into the inside of the box.

There is a:

 classification version (RF/cl)

 regression version (RF/rg)

Soon to be joined by a multiple dependent output
version (RF/my)

These tools are free open source (f77) and
available at:

www.stat.berkeley.edu/RFtools

with manuals for their use and interfaces to R and
S+.

We estimate that there have been almost 3000
downloads since the algorithms were put on the
web site.
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 Outline of Where I'm Going

What is RF?

A) The Right Eye ( classification machine)

i)  excellent accuracy

ii) scales up

iii) handles
 thousands of variables

        many valued categoricals
 extensive missing values
 badly unbalanced data sets

iv)  gives internal unbiased estimate of
test set error as trees are added to 
ensemble

      
v) cannot overfit



1 3

B)  The Left Eye (inside the black box)

i) variable importance

ii) outlier detection

iii) data views via scaling

From Supervised to Unsupervised

How about data with no class labels,
or regression y-values.

Outliers?
Clustering?
Missing values replacement?

By a slick device RF/cl can be turned
into an algorithm for analyzing unsupervised
data.
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What is RF?= Random Forests

A random forest (RF) is a collection of tree predictors

f (x,T,Θk ), k =1,2,..., K )

where the Θk are i.i.d random vectors.

The forest prediction is the unweighted plurality
of class votes

The Law of Large Numbers insures convergence
as k→∞

The test set error rates (modulo a little noise) are
monotonically decreasing and converge to a limit.

That is:  there is no overfitting as the number of trees
increases

The key to accuracy is low correlation and bias.

To keep bias low, trees are grown to maximum
depth.
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Randomization for Low Correlation

To keep correlation low, the current version uses
this randomization.

i)  Each tree is grown on a bootstrap sample of
the training set.

ii)  A number m is specified much smaller than
the total number of variables M.

iii) At each node, m variables are selected at
random out of the M.

iv) The split used is the best split on these m
variables

The only adjustable parameter in RF is m.

The default value for m is M .

But RF is not sensitive to the value of m over a
wide range.
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Two Key Byproducts

The out-of-bag test set

For every tree grown, about one-third of the
cases are out-of-bag (out of the bootstrap
sample).  A

bbreviated  oob.

The oob samples can serve as a test set for the
tree grown on the non-oob data.

This is used to:

i) Form unbiased estimates of the forest test set
error as the trees are added.

ii) Form estimates of variable importance.
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The node proximities

Since the trees are grown to maximum depth, the
terminal nodes are small.

For each tree grown, pour all the data down the
tree.

If two data points xn and xk  occupy the same
terminal node,

increase prox(xn ,xk ) by one.

At the end of forest growing, these proximities,
form an intrinsic similarity measure between pairs
of data vectors.

This is used to:

i)  Estimate missing values.

ii)  Give informative data views via metric scaling.

iii)  Locate outliers.
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Properties as a classification machine.

a)  excellent accuracy

b)  scales up
\

c)  handles
 thousands of variables

        many valued categoricals
 extensive missing values
 badly unbalanced data sets

d)  gives internal unbiased estimate of
test set error as trees are added to 
ensemble

e) cannot overfit (already discussed)
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Accuracy

My paper:  Random Forests , Machine
Learning(2001)  45  5-320 gives comparisons:

The test set accuracy of RF is compared to
Adaboost on a number of benchmark data sets.
RF is slightly better.

Adaboost is very sensitive to noise in the labels.
RF is not.

Compared to SVMs:

RF is not as accurate as SVMs on pixel image
data.

It is superior in document classification.

On benchmark data sets commonly used in
Machine Learning the SVMs have error rates
comparable to RF.

Based on my present knowledge, RF is
competitive in accuracy with the best classification
algorithms that are out there now.

Ditto regression
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Scaling up to Large Data Sets

The analysis of RF shows that it's compute time is

cNT M N log(N)

NT  = number of trees
M   = number of variables
N    = number of instances

The constant was estimated with a run on a data
set with 15,000 instances and 16 variables.

Using this value leads to the estimate that to
grow a forest of 100 trees for a data set with
100,000 instances and 1000 variables
would take three hours on my 800Mhz machine.

Parallelizing is Trivial

Each tree is grown independently of the
outcomes of the other trees grown.  If each of J
processors is given the job of growing K trees,
there is no need for interprocessor
communication until all have finished their runs
and the results are aggregated.
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Number of Variables

Unlike other algorithms  where variable selection
has to be used if there are more than a few
hundred variables, RF thrives on variables, the
more the merrier.

RF has been run on genetic data with thousands
of variables and no variable selection and given
excellent results.

But there are limits.  If the number of noisy
variables becomes too large, variable selection will
have to be used.

But the threshold for RF is much higher than for
non-ensemble methods.
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Handling Categorical Variables

Handling categorical values has always been
difficult in many classification algorithms.

For instance, given a categorical variable with
20,000 values, how is it to be dealt with? A
customary way is to code it into 20000 0-1,
variables, a nasty procedure which substitutes
20,000 variables for one.

This occurs in practice--in document
classification, one of the variables may be a list of
20,000 words.

In two class problems, RF handles categoricals in
the efficient way that CART does--with a fast
O(N) algorithm to find the best split of the
categoricals at each node.

If there are more than two classes, a fast iterative
algorithm is used.
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T

Replacing Missing Values

RF has two ways of replacing missing values.

The Cheap Way

Replace every missing value in the mth
coordinate by the median of the non-missing
values of that coordinate or by the most frequent
value if it is categorical.

The Right Way

This is an iterative process.  If the mth coordinate
in instance xn is missing then it is estimated by a
weighted average over the instances xk  with
non-missing mth coordinate where the weight is
prox(xn ,xk ).

The replaced values are used in the next iteration
of the forest which computes new proximities.

The process it automatically stopped when no
more improvement is possible or when five
iterations are reached.
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An Example

The training set for the satellite data has 4434
instances, 36 variables and 6 classes.  A test set is
available with 2000 instances.

With 200 trees in the forest, the test set error is
9.8%

Then 20%, 40%, 60% and 80% of the data were
deleted as missing (randomly).

Both the cheap fix and the right fix were applied,
and the test error computed.

Test Set Error (%)

Missing %  20%       40% 60% 80%

cheap  11.8 13.4 15.7 20.7
right  10.7 11.3 12.5 13.5

It's surprising that with 80% missing data the
error rate only rises from 9.8% to 13.5%

I've gotten similar results on other data sets.



2 5
   Class Weights

A data set is unbalanced if one or more classes--
often the classes of interest, are severely
underrepresented.

These will tend to have higher misclassification
rates than the larger classes.

In some data sets, even though the data set is
not badly unbalanced, some classes may have a
larger error rate than the others.

In RF it is possible to set class weights that act
"as if" they are increasing the size of a class that
gets weight larger that one.

The result is that the class weights can be set to
get any desired distribution of errors among the
classes.
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The OOB Test Set Error  Estimate

For every tree grown, about one-third of the
cases are oob (out-of-bag --out of the bootstrap
sample).

Put these oob cases down the corresponding tree
and get a predicted classification for them.

For each case n, pluralize the predicted
classification over all the trees that n was oob to
get a test set estimate ŷn for yn.

Averaging the loss over all n give the oob test set
estimate of prediction error.

Runs on many data sets have shown it to be
unbiased with error on the order of using a test
set of the same size as the training set.

It is computed at user set intervals in the forest
construction process and outputted to the
monitor.
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Accuracy vs Interpretability

Nature forms the outputs y from the inputs x by
means of a black box with complex and unknown
interior.

                    y   x              nature

Current most accurate prediction methods are also
complex black boxes.

              y     x
    neural nets
    forests
    support vectors

Two black boxes, of which ours seems only slightly
less inscrutable than nature's.

My biostatisticians friends tell me, "Doctors can
interpret logistic regression."

There is no way they can interpret a black box
containing fifty trees hooked together.

In a choice between accuracy and interpretability,
they'll go for interpretability. "
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Accuracy vs. Interpretability

A False Canard

Framing the question as the choice between
accuracy and interpretability is an incorrect
interpretation of what the goal of a statistical
analysis is.

The point of a model is to get useful information
about the relation between the response and
predictor variables as well as other information
about the data structure.

Interpretability is a way of getting information.

But a model does not have to be simple to
provide reliable information about the relation
between predictor and response variables.

• The goal is not interpretability, but accurate 
     information

RF can supply more and better information about
the inside of the black box than any current
"interpretable" models.
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The Left Eye-
Tools for Black Box Inspection

i)  Estimating variable importance

i.e. which variables are instrumental in the 
      classification.

i)   Data views via proximities and metric scaling.

iii)  Outlier detection via proximities

iv)  A device for doing similar analyses on 
unsupervised data
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Variable Importance.

For the nth case in the data, its margin at the end
of a run is the proportion of votes for its true
class minus the maximum of the proportion of
votes for each of the other classes.

To estimated the importance of the mth variable:

 i)  In the oob cases for the kth tree, randomly
permute all values of the mth variable

ii) Put these new variable values down the kth
tree and get classifications.

iii)  Compute the margin.

The measure of importance of the mth variable is
the average lowering of the margin across all
cases when the mth variable is randomly
permuted.
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An Example--Hepatitis Data

Data:   Survival (123) or non-survival (32) of 155
hepatitis patients with 19 covariates.

Analyzed by  Diaconis and Efron in 1983 Scientific
American.

The original Stanford Medical School analysis
concluded that the important variables were
numbers 6, 12, 14, 19.

Error rate for logistic regression  is 17.4%.

Efron and Diaconis drew 500 bootstrap samples
from the original data set and looked for the
important variables in each bootstrapped data
set.

 Their conclusion , "Of the four variables
originally selected not one was selected in more
than 60 percent of the samples.  Hence the
variables identified in the original analysis cannot
be taken too seriously."
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Analysis Using RF

The overall error rate is 14.2%.  There is a 53%
error in class 1, and 4% in class 2.  The variable
importances are graphed below:
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The three most important variables are 11,12,17.

Since the class of interest is non-survival which,
with equal weights, has a high error rate, the
classweight  of class 1 was increased to 3.

The run gave an overall error rate of 22%, ,with
class 1 error 19% and 23% for class 2.

The variable importances for this run are graphed
below:
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Variable 11 is the most important variable in
separating non-survival from survival.

The standard procedure when fitting data models
such as logistic regression  is to delete variables;

Diaconis and Efron (1983) state , ".statistical
experience suggests that it is unwise to fit a
model that depends on 19 variables with only 155
data points available."

Newer methods in Machine Learning thrive on
variables--the more the better.  The next example
is an illustration.
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Microarray Analysis

Random forests was run on a microarray
lymphoma data set with three classes,

sample size of 81 and 4682 variables (genes)
without any variable selection.

The error rate was  low (1.2%).

What was also interesting from a scientific
viewpoint  was an estimate of the importance of
each of the 4682 genes.

The graph below were produced by a run of
random forests.
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An Intrinsic Proximity Measure and  Clustering

Since an individual tree is unpruned, the terminal
nodes will contain only a small number of instances.

Run all cases in the training set down the tree. I

If case i  and case j both land in the same terminal
node increase the proximity between i and j by one.

At the end of the run, the proximities are normalized
by dividing by twice the number of trees in the forest.

 

To cluster-use the proximity measures.
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Example-Bupa Liver Disorders

This is a two-class biomedical data set consisting
of the covariates

1. mcv mean corpuscular volume
2. alkphos alkaline phosphotase
3. sgpt alamine aminotransferase
4. sgot aspartate aminotransferase
5. gammagt gamma-glutamyl
transpeptidase
6. drinks number of half-pint equivalents

of alcoholic beverage drunk per
day

The first  five attributes are the results of blood
tests thought to be related to liver functioning.

The 345 patients are classified into two classes by
the severity of their liver disorders.

The class populations are 145 and 200( severe).

The misclassification error rate is 28% in an RF
run.

Class 1 has a 50% error rate with a rate of 12% for
class 2.

Setting the weight of class 2 to 1.4 gives an overall
rates 28% and 31% for classes 1 and 2.
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Variable Importance
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Blood tests 3 and 5 are the most important,
followed by test 4.
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Clustering

Using the proximity measure given by RF to
cluster,  there are two class #2 clusters.

In each of these clusters, the average of each
variable is computed and plotted:

FIGURE 3  CLUSTER VARIABLE AVERAGES

Something interesting emerges.

The class two subjects consist of two distinct
groups:

Those that have high scores on blood tests 3, 4,
and 5

Those that have low scores on those tests.
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Scaling Coordinates

The proximities between cases n and k form a
matrix {prox(n,k)}.

The values 1-prox(n,k) are squared distances
between vectors x(n),x(k)in a Euclidean space of
dimension not greater than the number of cases.

The goal is to project the x(n)} down into a low
dimensional space while preserving the distances
between them to the extent possible.

In metric scaling, the idea is to approximate the
vectors x(n) by the first few scaling coordinates.

These correspond to eigenvectors of a modified
prox matrix.  T

The two dimensional plots of the ith scaling
coordinate vs. the jth often gives useful
information about the data.

The most useful is usually the graph of the 2nd
vs. the 1st.

We illustrate with three examples.   The first is
the graph of 2nd vs. 1st scaling coordinates for
the liver data
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The two arms of the class #2 data in this picture
correspond to the two clusters found and
discussed above.
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Microarray Data.

With 4682 variables, it is difficult to see how to
cluster this data.  Using proximities and the first
two scaling coordinates gives this picture:

- . 2

- . 1

0

.1

.2

.3

.4

.5

.6

2n
d 

S
ca

lin
g 

C
oo

rd
in

at
e

- . 5 - . 4 - . 3 - . 2 - . 1 0 .1 .2 .3 .4
1st Scaling Coordinate

class 3

class 2

class 1

Metric Scaling
Microarray Data

RF misclassifies one case.

This case is represented by the isolated point in the
lower left hand corner of the plot.
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The Glass Data

The third example is glass data with 214 cases, 9
variables and 6 classes.  Here is a plot of the 2nd
vs. the 1st scaling coordinates.:
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None of the analyses to data have picked up this
interesting and revealing structure of the data--
compare the plots in Ripley's book.
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   Outlier Location

Outliers are defined as cases having small
proximities to all other cases.

Since the data in some classes is more spread out
than others, outlyingness is defined only with
respect to other data in the same class as the
given case.

To define a measure of outlyingness,

i)  Compute, for a case n, the sum of the squares
of prox(n,k) for all k in the same class as case n.

ii)Take the inverse of this sum--it will be large if
the proximities prox(n,k) from n to the other
cases k in the same class  are generally small.
Denote this quantity by out(n).

iii) For all n in the same class, compute the median
of the out(n), and then the mean absolute
deviation from the median.

Subtract the median from each out(n) and divide
by the deviation to give a normalized measure of
outlyingness.  The values less than zero are set to
zero.

Generally, a value above 10 is reason to suspect
the case of being outlying.
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Outlyingness Graph--Microarray Data
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There are two possible outliers--one is the first
case in class 1,  the second is the first case in class
2.
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    Outlyingness Graph-Pima Indians Data.

This hepatitus data set has 768 cases, 8 variables
and 2 classes.  It has been used often as an
example in Machine Learning research but is
suspected of containing a substantial number of
outliers.
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If 10 is used as a cutoff point, there are 12 cases
suspected of being outliers.
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From Supervised to Unsupervised

Unsupervised date consists of N vectors {x(n)} in
M dimensions.

Desire:

i)  Clustering

ii) Outlier detection

iii) Missing value replacement

All this can be done using RF

i)  Give class label 1 to the original data.

ii)  Create a synthetic class 2 by sampling
independently from the one-dimensional marginal
distributions of the original data.
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The Synthetic Second Class

More explicitly:

If the value of the mth coordinate of the original
data  for the nth case is x(m,n), then a case in the
synthetic data is constructed as follows:

i) Its first coordinate is sampled at random from
the N  values x(1,n).

ii) Its second coordinate is sampled at random
from the N values x(2,n), and so on.

The synthetic data set has the distribution of M
independent variables where the distribution of
the mth variable is the same as the univariate
distribution of the mth variable in the original
data.



4 8
The Synthetic Two Class Problem

The are now two classes where the second class
has been constructed by destroying all
dependencies in the original unsupervised data.

When this two class data is run through RF a
high misclassification rate--say over 40%, implies
that there is not much dependence structure in
the original data.

That is, that its structure is largely that of M
independent variables--not a very interesting
distribution.

But if there is a strong dependence structure
between the variables in the original data, the
error rate will be low.

In this situation, the output of RF can be used to
learn something about the structure of the data.
Following are some  examples.
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Clustering the Glass Data

All class labels were removed from the glass data.

Unsupervised data consisting of 214 nine-
dimensional vectors that were labeled class 1.
A second synthetic data set was constructed.

The two class problem was run through RF.
Proximities for class 1 only and metric scaling
projected the class 1 data onto two dimension.

 Here is the outcome:
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This is a good replica of the original starfish-like
projection using the class data..

`
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Application to the Microarray Data

Recall that the scaling plot of the microarray data
showed three clusters--

two larger ones in the lower left hand and right
hand corners and a smaller one in the top middle.

 Again, we erased labels from the data and
projected down an unsupervised view:
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The three clusters are more diffuse but still
apparent.
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Finding Outliers

An Application to Chemical Spectra

Data graciously supplied by Merck consists of
the first 468 spectral intensities in the spectrums
of 764 compounds.

The challenge presented by Merck was to find
small cohesive groups of outlying cases in this
data.

There was excellent separation between the two
classes.

An error rate of 0.5%, indicating strong
dependencies in the original data.

We looked at outliers and generated this plot.
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This plot gives no indication of outliers.

But outliers must be fairly isolated  to show up in
the outlier display.
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Projecting  Down

To search for outlying groups scaling coordinates
were computed.  The plot of the 2nd vs. the 1st is
below:
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The spectra fall into two main clusters.

There is a possibility of a small outlying group in
the upper left hand corner.

To get another picture, the 3rd scaling coordinate
is plotted vs. the 1st.
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The group in question is now in the lower left
hand corner and its separation from the body of
the spectra has become more apparent.
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          RF/tools--An Ongoing Project

RF/tools are continually being upgraded.

My coworker Adele Cutler, is writing some very
illuminating graphic displays for the information
outputted by RF.

The next version of RF/cl will have the ability to
detect interactions between variables--a capability
that the microarray people lobbied for.

Plus other improvements, both major and minor.

RF/rg needs upgrading to the same level as
RF/cl.

A new program RF/my that can use two eyes on
situations with multiple dependent outputs will
be added next month.

CONCLUSION

There is no data miniing program available that
can provide the predictive accuracy and
understanding of the data that RF/tools does.

and its free!!
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