
 Notes On Setting Up, Using, And Understanding
Random Forests

Version 2 of random forests has been restructured to be faster on
large data sets then v.1 plus it contasins more options. I apologize in
advance for all bugs and would like to hear about them. To find out
how this program works, read my paper "Random Forests-Random
Features" Its available as a technical report if you go back to my
department home page (www.stat.berkeley.edu) and click on
technical reports. It will be published soon in Machine Learning.
More abbreviated information is in the notes folloowing the set up
instruct ions.

The program is written in extended Fortran 77 making use of a
number of VAX extensions. It runs on SUN workstations f77 and on
Absoft Fortran 77 (available for Windows) but may have hang ups
on other f77 compilers.

Random forests does
 classification

variable importance (in a number of ways)
computes proximity measures between cases
computes densities
gives a measure of outlyingness for each case

The last two are done for the unsupervised case i.e. no class labels.
The density estimation is experimental and has not been thoroughly
tested, so treat it with caution. I have used proximities to cluster
data and they seem to do a reasonable job.

The first part of these notes contains instructions on how to set up
a run of random forests. The second part contains the notes of a
talk I gave on the features of random forests and how they worked.

I. Setting Parameters

The first five lines following the parameter statement need to be
filled in by the user.

Line 1 Describing The Data

m d i m 0 =number of variables
nsample0=number of cases (examples or instances) in the data
nclass=number of classes

maxcat=the largest number of values assumed by a categorical
variable in the data

ntest=the number of cases in the test set. NOTE: Put ntest=1 if
there is no test set. Putting ntest=0 may cause compiler
complaints .

labelts=0 if the test set has no class labels, 1 if the test set has class
labels.

mult=1 if you are not doing density estimation or outliers

If their are no categorical variables in the data set maxcat=1. If
there are categorical variables, the number of categories assumed
by each categorical variable has to be specified in an integer vector
called cat, i.e. setting cat(5)=7 implies that the 5th variable is a
categorical with 7 values. If maxcat=1, the values of cat are
automatically set equal to one. If not, the user must fill in the
values of cat in the early lines of code.

For a J-class problem, random forests expects the classes to be
numbered 1,2, ...,J. For an L valued categorical, it expects the
values to be numbered 1,2, ... ,L. At prezent, L must be less than or
equal to 32.

A test set can have two puposes--first: to check the accuracy of RF
on a test set. The error rate given by the internal estimate will be
very close to the test set error unless the test set is drawn from a
different distribution. Second: to get predicted classes for a set of
data with unknown class labels. In both cases the test set must
have the same format as the training set. If there is no class label
for the test set, assign each case in the test set labeled classs #1, i.e.
put cl(n)=1, and set labelts=0. Else set labelts=1.

Line 2 Setting Up The Run

mtry=number of variables randomly selected at each node
jbt=number of trees to grow
look=how often you want to check the prediction error
ipi=set priors
iaddq=add quadratic terms

m t r y :
this is the only parameter that requires some judgment to set, but
forests isn't too sensitive to its value as long as it's in the right ball
park. I have found that setting mtry equal to the square root of

mdim gives generally near optimum results. My advice is to begin
with this value and try a value twice as high and half as low
monitoring the results by setting look=1 and checking the test set
error for a small number of trees. With many noise variables
present, mtry has to be set higher.

jb t :
this is the number of trees to be grown in the run. Don't be
stingy--random forests produces trees very rapidly, and it does not
hurt to put in a large number of trees. If you want auxiliary
information like variable importance or proximities grow
a lot of trees--say a 1000 or more. Sometimes, I run out to 5000
trees if there are many variables and I want the variables
importances to be stable.

l o o k :
random forests carries along an internal estimate of the test set
error as the trees are being grown. This estimate is outputted to
the screen every look trees. Setting look=10, for example, gives the
internal error every tenth tree added. If there is a labeled test set, it
also gives the test set error. Setting look=jbt+1 eliminates the
output. Do not be dismayed to see the error rates fluttering around
slightly as more trees are added. Their behavior is analagous to the
sequence of averages of the number of heads in tossing a coin.

ipi: pi is an real-valued vector of length nclass which sets prior
probabilities for classes. ipi=1 sets these priors equal to the class
proportions. If the class proportions are very unbalanced, you may
want to put larger priors on the smaller classes. If different
weightings are desired, set ipi=0 and specify the values of the {pi(j)}
early in the code. These values are later normalized, so setting
pi(1)=1, pi(2)=2 implies that the probability of seeing a class 2
instance is twice as large as that of seeing a class 1 instance.

iaddq: iaddq=0 does nothing. iaddq=1 adds quadratic interaction
variables to the set of predictor variables . It first centers x(m) at
its mean, and then enters additional variables of the form x(k)*x(m)
for all k,m with k not equal to m. For some data sets accuracy is
improved with the use of these additional variables.

Line 3 Options

im p =1 turns on the variable importances method described below.

iprox=1 turns on the computation of the intrinsic proximity
measures between any two cases .

iden=1,2 computes the density of labelless data with respect to a
set of synthetic data having a known distribution. If iden=1, the
synthetic data is sampled independently from the marginals. For
iden=2, the synthetic data is sampled from a product of uniforms
the mth of which stretches from the minimum of the mth variable in
the data to its maximum.

The sample size of the synthetic data is (mult-1)*nsample0, so mult
needs to be set to any integer larger than 1. If mult>2, then the
sample sizes can be equalized by setting pi(1)=pi(2). Whether
taking mult>2 increases accuracy is unknown.

noutlier=1 computes an outlingness measure for labelless data. If
this is on, then iprox must also be switched to one, iden set equal to
1 or 2, and mult>1.

Line 4 Output Controls

Note: user must supply file names for all output listed below
or send it to the screen.

nsumout=1 writes out summary data to the screen. This includes
errors rates and the confusion matrix

infout=1 prints the following columns to a file
i) case number
ii) 1 if predicted class differs from true class, 0 else
iii) true class label
iv) predicted class label
v) margin=true class prob. minus the max of the other class prob.
vi)-vi+nclass) class probabilities

ntestout=1 prints the follwing coumns to a file
i) case number in test set
ii) true class (true class=1 if data is unlabeled)
iii) predicted class
iv-iv+nclass) class probabilities

imp=1 prints the following columns to a file
i) variuable number
variables importances computed as:

ii) The % rise in error over the baseline error.
iii) 100* the change in the margins averaged over all cases
iv) The proportion of cases for which the margin is decreased minus
the number of increases.

impsetout=1 prints out for each case the following columns:
i) case number
ii) margin for the case
iii - iii+mdim) altered margin due to noising up mth variable.

iproxout=1 prints to file
i) case #1 number
ii) case #2 number
iii) proximity between case #1 and case #2

idenout=1 prints the following columns to a file
i) case number
ii) class#1 probability
iii) class#2 probability
iv) density estimate

noutlier=1 prints the follwing columns to a file
i) case number
ii) measure of outlyingness

LINE 5 Automatic

USER WORK:

The user has to construct the read-in the data code of which I have
left an example. This needs to be done after the dimensioning of
arrays. If maxcat >0 then the categorical values need to be filled in.
If ipi=0, the user needs to specify the relative probabilities of the
classes.

REMARKS:

The proximities can be used in the clustering program of your
choice. Their advantage is that they are intrinsic rather than an ad
hoc measure. I have used them in some standard and home-brew
clustering programs and gotten reasonable results. The proximities
between class 1 cases in the unsupervised situation can be used to
cluster .

I have not played with the density estimate p(1| x)/p(2| x) very
much. So be carefull in interpreting these. If RF has a high error
rate in discriminating between class#1 and the synthetic class #2 the
density estimation is not reliable. If iden=1 is used and the error
rate is close to 50% or higher, there is low dependence between
variables. Similarly the measure of outlyingness has not been well
tested. If users try the density estimation and outlyingness measure,
I would appreciate comments.

There three measures of variable importance: They complement
each other. They are based on the test sets left out on each tree
construction. On a microarray data with 5000 variables and less
than 100 cases, the different measures single out much the same
variables (see outline below). But I have found one synthetic data
set where the third measure was more sensitive than the first two

Random forests does not overfit. You can run as many trees as you
want. Also, It is fast. Running on a 250mhz machine, the current
version using a training set with 800 cases, 8 variables, and mtry=1,
contructs each tree in .1 seconds. On a training set with 2200
cases, 11 variables, and mtry=3, each tree is constructed in .2
seconds. It takes 6 seconds per tree on a training set with 15000
cases and 16 variables with mtry=4, while also making computations
for a 5000 member test set.

The present version of random forests does not handle missing
values. The next version will. So it is up to the user to decided how
to deal with these. My current preferred method is to replace each
missing value by the median of its column.

 Outline Of How Random Forests Works

 Usual Tree Construction--Cart

Node=subset of data. The root node contains all data.

At each node, search through all variables to find
best split into two children nodes.

Split all the way down and then prune tree up to

get minimal test set error.

 Random Forests Construction

Root node contains a bootstrap sample of data of same size as
original data. A different bootstrap sample for each tree to be
grown.

An integer K is fixed, K<<number of variables. K is the only
parameter that needs to be specified. Default is the square root of
number of variables.

At each node, K of the variables are selected at random. Only these
variables are searched through for the best split. The largest tree
possible is grown and is not pruned.

The forest consists of N trees. To classify a new object having
coordinates x , put x down each of the N trees. Each tree gives a
classification for x .

The forest chooses that classification having the most out of N
votes.

Random Forests Tools

A lot of information can be obtained in a single run of Random
Forests. This information comes from using the "out-of-bag" cases
in the training set that have been left out of the bootstrapped
training set.

The information includes:

a) Test set error rate.

b) Variable importance

c) Intrinsic proximities between cases

d) Density estimation

e) Outlier detection

I will explain how these function and give applications.

Test Set Error Rate

In random forests, there is no need for cross-validation or a
separate test set to get an unbiased estimate of the test set error. It
is gotten internally, during the run, as follows:

 Each tree is constructed using a different bootstrap sample from
the original data. About one-third of the cases are left out of the
bootstrap sample and not used in the construction of the kth tree.

Test Set Error Rate

Put each case left out in the construction of the kth tree down the
kth tree to get a classification.

In this way, a test set classification is gotten for each case in about
one-third of the trees. Let the final test set classification of the
forest be the class having the most votes.

Comparing this classification with the class label present in the data
gives an estimate of the test set error.

Variable Importance.

Because of the need to know which variables are important in the
classification, random forests has three different ways of looking at
variable importance.

Measure 1

To estimated the importance of the mth variable. In the left out
cases for the kth tree, randomly permute all values of the mth
variable Put these new covariate values down the tree and get
classifications.

Proceed as though computing a new internal error rate. The amount
by which this new error exceeds the original test set error is defined
as the importance of the mth variable.

Measures 2 and 3

For the nth case in the data, its margin at the end of a run is the
probability of its true class minus the maximum of the probabilities
of the other classes. The 2nd measure of importance of the mth
variable is the average lowering of the margin across all cases when
the mth variable is randomly permuted as in method 1.

The third measure is the count of how many margins are lowered
minus the number of margins raised.

Additional Case-Wise Information.

For the mth variable, the values of all of the margins in the training
set with the mth variable noised up is computed. When the graph of
these values is compared to the graph of the original margins,
interesting information about individual cases often emerges.

An Example--Hepatitis Data

Data: survival or non survival of 155 hepatitis patients with 19
covariates. Analyzed by Diaconis and Efron in 1983 Scientific
American. The original Stanford Medical School analysis concluded
that the important variables were numbers 6, 12, 14, 19.

Efron and Diaconis drew 500 bootstrap samples from the original
data set and used a similar procedure, including logistic regression,
to isolate the important variables in each bootstrapped data set.

 Their conclusion , "Of the four variables originally selected not one
was selected in more than 60 percent of the samples. Hence the
variables identified in the original analysis cannot be taken too
seriously."

Logistic Regression Analysis

 Error rate for logistic regression is 17.4%.

Variables importance is based on absolute values of the coefficients
of the variables divided by their standard deviations.

- . 5

.5

1.5

2.5

3.5

st
an

da
rd

iz
ed

 c
oe

ffi
ci

en
ts

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0
variables

FIGURE 1 STANDARDIZED COEFFICIENTS-LOGISTIC REGRESSION

The conclusion is that variables 7 and 11 are the most important
covariates. When logistic regression is run using only these two
variables, the cross-validated error rate rises to 22.9% .

 Analysis Using Random Forests

The error rate is 12.3%--30% reduction from the logistic regression
error. Variable importances (measure 1) are graphed below:

- 1 0

0

1 0

2 0

3 0

4 0

5 0
pe

rc
en

t i
nc

re
se

 in
 e

rr
or

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

variables

FIRURE 2 VARIABLE IMPORTANCE-RANDOM FOREST

Two variables are singled out--the 12th and the 17th The test set
error rates running 12 and 17 alone were 14.3% each. Running
both together did no better. Virtually all of the predictive capability
is provided by a single variable, either 12 or 17. (they are highly
cor re la ted)

The standard procedure when fitting data models such as logistic
regression is to delete variables; Diaconis and Efron (1983) state ,
"...statistical experience suggests that it is unwise to fit a model that
depends on 19 variables with only 155 data points available."

Newer methods in Machine Learning thrive on variables--the more
the better. There is no need for variable selection ,On a sonar data
set with 208 cases and 60 variables, Random Forests error rate is
14%. Logistic Regression has a 50% error rate.

Microarray Analysis

Random forests was run on a microarray lymphoma data set with
three classes, sample size of 81 and 4682 variables (genes) without
any variable selection. The error rate was low (1.2%) using
mtry=150.

What was also interesting from a scientific viewpoint was an
estimate of the importance of each of the 4682 genes.

The graphs below were produced by a run of random forests.

- 1 0

1 0

3 0

5 0

7 0

9 0

110
Im

po
rt

an
ce

0 1000 2000 3000 4000 5000

Variable

 VARIABLE IMPORTANCE-MEASURE 1

- 2 5

1 5

5 5

9 5

135

175

215

Im
po

rt
an

ce

0 1000 2000 3000 4000 5000
Variable

 Variable Importance Measure 2

- 2 0

0

2 0

4 0

6 0

8 0

100

120
Im

po
rt

an
ce

0 1000 2000 3000 4000 5000
Variable

 Variable Importance Measure 3

The graphs show that measure 1 has the last sensitivity, showing
only one significant variable. Measure 2 has more, showing not only
the activity around the gene singled out by measure 1 but also a
socondary burst of activity higher up. Measure 3 has too mcu
sensitivity, fingering too many variables.

 Class probabil it ies

At run's end, for each case there is an out-of-bag estimate of the
probability that it is in each one of the J classes. For each member
of a test set (with or without class labels), these probabilities are
also estimated.

 An Astronomical Example:

Bob Becker allowed the use of his quasar data set of 2000
astronomical objects of which about half have been verified as
quasars .

Verification is expensive, but there are some variables that are
cheap to measure.

Using these cheap variables the data set was run through
random forests and for each case a probability PQ(n) outputted that
was a probability that the nth case was a quasar.

There is also an unverified test set which we ran through

that assigned a probability PQ(n) to the nth case in the test set.

Telescope time is valuable--the question is: Given an estimate of PQ
for a stellar object, should verification be undertaken.

0

.2

.4

.6

.8

1

pr
op

or
tio

ns

0 . 1 .2 .3 .4 .5 .6 .7 .8 .9 1

probability threshold

proportion of quasars
proportion of objects examined

An answer is provided by the training set. For instance,
if all objects with PQ> .9 are verified, then about 95% of
them will be quasars.

An intrinsic proximity measure

Since an individual tree is unpruned, the terminal nodes will contain
only a small number of instances.

Run the out-of-bag cases down the tree.

If out-of-bag case i lands in a terminal node occupied the training
set case j, then increase the proximity between i and j by one.

In a run that consists of growing J trees, each case will have added
about J/3 marks to its proximities.

At the end of the run, the proximities are symmetrized and divided
by the number of trees in the run.

To cluster-use the above proximity measures.

Example-Bupa Liver Disorders

This is a two-class biomedical data set consisting of the covariates

1. mcv mean corpuscular volume
2. alkphos alkaline phosphotase
3. sgpt alamine aminotransferase
4. sgot aspartate aminotransferase
5. gammagt gamma-glutamyl transpeptidase
6. drinks number of half-pint equivalents of

alcoholic beverage drunk per day

The first five attributes are the results of blood tests thought to be
related to liver functioning. The 345 patients are classified into two
classes by the severity of their liver disorders.

The misclassification error rate is 28% in a Random Forests run.

What can we learn about this data?

A) Variable Importance (method 1)

- 1 0

0

1 0

2 0

3 0

4 0

pe
rc

en
t i

nc
re

as
e

0 1 2 3 4 5 6 7
variables

FIGURE 2 VARIABLE IMPORTANCE-BUPA LIVER

Blood tests 3 and 5 are the most important, followed by test 4.

B) Clus te r ing

Using the proximity measure outputted by Random Forests to
cluster, there are two class #2 clusters.

In each of these clusters, the average of each variable is computed
and plotted:

FIGURE 3 CLUSTER VARIABLE AVERAGES

S omething interesting emerges. The class two subjects consist of
two distinct groups: Those that have high scores on blood tests 3, 4,
and 5 Those that have low scores on those tests.

Density Estimation

Assume data of the form {xn, n=1,...,N}. i.e. no response variable
and M-dimensional data vectors.

Procedure:

i . Compute all sample univariate distribution functions, F1(x),
F2(x), ... ,FM (x).

ii Construct a new data set of size N by sampling
x1 at random from F1(x), x2 from F2(x), etc. and
repeating N times.

Label the original data set class#1. Label the synthetic data set class
#2. Now that we have two-class data . run random forests.

The ratio R(xn)=P(1|xn)/P(2|xn) computed from output of RF is an
estimate of the density at xn of the data in class #1 with respect to
the distribution of class #2 .

Note: density estimation has not been tested. We hope to see how
accurate it is in higher dimensions using synthetic data where the
density is known.

Outlier Location

Assume data of the form {xn, n=1,...,N}. with no class labels and M-
dimensional data vectors. Set up class #2 data as above and run
random forests. Between every pair of points xn,xk in the original
data random forests outputs a proximity measure

PX(xn,xk).

For each xn in the original data compute

O(xn)=1/ PX2(xn,xk)
k≠n
∑

If xn has small proximities to the rest of the cases in the original
data, then O(xn) will be large.

An Aplication to Chemical Spectra

This is data supplied by Merck. It consists of the first 468 spectral
intensities in the spectrums of 764 compounds. The challenge
presented by Merck was to find the outliers in this data.

The above procedure was applied to the data. There is a 6%
misclassification rate between the two classes, indicating a strong
dependence structure in the original data.

The graph below is the graph of O(xn) vs. n for the 764 compounds.

0

2

4

6

8

10

12

14
O

(n
)

0 100 200 300 400 500 600 700 800

Compound Number

PLOT OF O(N) VS. N

 Outliers in the Quasar Data

Procedure--the values of O(xn) were normalized by subtracting the
median and dividing by the average absolute deviation from the
median

4

6

8

1 0

1 2

1 4

1 6

A
bs

ol
ut

e
D

ev
ia

tio
ns

 a
bo

ve
 M

ed
ia

n

0 100 200 300 400 500 600 700 800 900

Quasar Number

OUTLIERS IN QUASAR DATA

Note: two quasars are more than 10 absolute deviations above
the median.

