NONLINEAR DISCRIMIMANT ANALYSIS
VIA SCALING ANC ACE

BY

LEO BREIMAN
ROSS IHAKA

TECHNICAL REPORT NOG. 40
DECEMBER 1984

RESEARCH PARTIALLY SUPPORTED BY
OFFICE OF NAVAL RESEARCH N0O014-84-K-0273

DEPARTMENT OF STATISTICS
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA



NONLINEAR DISCRIMINANT ANALYSIS VIA SCALING AND ACE

Leo Breiman
Ross [haka
Statistics Department

University of California
Berkeley, California 94720

Abstract
Ina J class classification problem with data of the form
(Jn,ﬁn), n=1,...,N where j e f1,...,J1 and X = (X]n""’an)’
linear discriminant analysis produces discriminant functions linear in
XysonnsXpye We study a procedure which constructs discriminant functions

of the form } wm(xm), where the ¢ are nonparametric functions derived
m

from an jterative smoothing technique. Judging from a variety of data

sets, the method offers promise of being a significant improvement on

Tinear discrimination.
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1. INTRODUCTION.

)s

case, jne {1,...,3}

In a classification problem, the data is of the form
th

(jn’iﬂ
n=1,...,N where jn is the class label of the n
and L3 is the vector of measured variables on the case. Given a
measurement space X such that X € X, n=1,...,N, what is desired is
a “goecd" classifier, i.e. a function on X - {1,...,J} that in some
sense minimizes the misclassification rate.

In classical linear discrimination the assumption is made that the
cases are independently sampled from (Y,x],...,XM) = (Y,X) where
Ye {1,...,J} and the distribution of X given Y =73 s N(Ejsf)-
Assuming that the P(Y=3j) = 1/J, then the classification rule for this

problem having minimum misclassification probability is: assign x to

class j if

() ' (xe) - min{x-y

-1
; 3 i D0 {x-ug) .

i

In practice, T 1is estimated by the pooled with-in class sample

covariance matrix T_ and the classifier used has the form: assign x

p
to that class which minimizes (5;gj)tf;7(5:gj). Transforming the space
by putting x'= f;%i, the rule is: assign x' to class j if J
minimizes HE-Q}HZ, where |l-ll denotes ordinary distance in Euclidean
M-space, E(M).

Assume, w.1.0.9., that § By = 0, and take ay,...,ay ; to be
orthonormal vectors in E(M) spanning the linear space generated by
{Ei""’ﬁj}‘ Then the minimum distance rule above is seen to be
equivalent to classifying x' as that j which minimizes

J-1
.z][(gi,g)-(gi ,}13}]2. Defining a J - 1 dimensional vector function
1:




y(x) = ({25 {2y yox'))

(M) {9-1)

then y 1is a linear map from E to the "class space" E and the

classification rule is given by: classify x as that j which minimizes
Iy () -y (0.

The Ays-- sy selected can be specified as sequentially "most
spreading out the classes". That is LX) is taken as the unit vector
which maximizes the variance of the J numbers (gq,ﬁj). Then a,
is taken as that unit vector perpendicular to a, which maximizes the
variance of the numbers (Ez’ﬁ&” j=1,...,J, etc. For this set of
344042035 7> the J - 1 Tinear functions (2,,X) are called the camonical
coordinatee.

The essentials of this procedure (for us} are that there is a map

(3-1) such that

y(g) from the measurement space X into class space E
if Xd’ j=1,...,0 1is the "center" of class j, then the classification
rule is: put x into that class for which Hy(ﬁ)-xjnz is a minimum.

A serious difficulty in discriminant analysis is that the maps
y(x)} are restrained to be linear. Thus, they cannot wrap around
appropriately to separate the classes in situations where the data
distribution does not fit the classical assumptions.

This restriction can be lifted by including, along with the

s Xy various functions of them, i.e. use the 2i

variables x],...,xM,x%,...,xﬁ. However, this still imposes a specific

variables x],...

functional form on y{x), i.e. quadratic in Xx.
This paper gives a method for finding "good" transformations of the

form




¥olx) = mg] N
The Y Aare not restricted to be of any fixed functional form, but are
produced by iterative smoothings in repeatedly applications of the ACE
algorithm (Breiman and Friedman, 1984). The measurement variables
XqsennoXy May be any mixture of numerical and categoricals. In
particular, then, this gives a natural method of constructing a classifier
when all measured variables are categorical.

In the 1imited range of about 10 examples of both real and simulated
data we have worked with, our method either does about as well as linear
discriminant analysis (when either the classical assumptions hold or the
classes are well separated to begin with) or significantly to spectacularly
better.

To whet the appetite we give three examples. The first is a two
class problem. The class 1 data consists of 100 samples from a normal

N(O,F}) distribution and the class 2 data consists of 100 samples from a

N(O,Fz) distribution with

9 0 10
Vo 1/ T2 \o o

In this example, the linear discriminant procedure attempts to separate the
classes by a line approximately through the origin, with direction
determined by random fluctuations in the data. It gives a misclassification
rate of about .5.

The best theoretical rule is given by gquadratic discrimination: put
X into whatever class minimizes %log lrjl + (E'Bj)trg1(5'Ej)‘ This is
implemented in practice by replacing TI’ r2 by f], fz and the

Hys U by sample means. When used on the data set it produces a pair of



parabolic boundaries (see Figure 1) and & misclassification rate of .21
on test set of size 2000.

Qur procedure gives the boundaries graphed on Figure 1, and a
misclassification rate of .20 on the same independent test set.

The second example also consists of 100 samptes from a N(O,T]) and

100 from a N(O,FZ), but both T, and I, are circular

(10) 9 0
'13%0 1) F27\0 9/

Again, the linear procedure produces lines through the origin with
misclassification rates of about .5. The data version of the optimal
quadratic procedure, produces a nearly circular boundary to separate the
classes (See Figure 2), with a .13 misclassification rate of 2000 test cases.

Our procedure produces a similar boundary (graphed in Figure 2}
with a test case misclassification rate of .17.

The data for the third example is the famous 3 class Iris data.
Figure 3 shows the data mapped into class space using the Tinear canonical
coordinates, while Figure 4 gives the results of the nonlinear mapping.
The improvement in class separation is clear. The linear misclassification
rate is .02, and the nonlinear (misclassifying 1 more point) gives a
a rate of .03 . When an effort was made to get more unbiased estimates by
using 20 bootstrap repetitions, the estimated rate for Tinear discrimination
rose to .03, as compared to a rate of .04 for the nonlinear method.

The layout of this paper is as follows: since ACE is a predictive
regression algorithm, we first need to put classical discriminant analysis
into a linear regression context. This is done using "optimal scaling".

That is, classical discriminant analysis is shown to be eguivalent, in an
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appropriate sense, to getting best least squares predictors based on

X of certain real-valued functions 6(j), defined on the class

Ja-es¥y
labels j.

This translation is carried out in Section 2 and puts Tinear
discriminant analysis into a regression context. In particular, we show
that there are J - 1 scalings, or real valued functions
8,(3)s e {1s.00d}s 4= 15,000 -1 such that if (b,,x) 1s the best

least squares linear predictor of 82, and if we define

J-1
2, . - 2,2
D%(x.3) = I [6,(3) - (b »x)]eg
£2=1
where ei is the mean squared error in predicting 61 from (QQ,EJ

then the rule: classify x into that class for which Dz(g,j) is a
minimum is equivalent (modulo constants) to the linear discriminant rule.
Thus, this context suggests that the mapping into class space be
defined by %45) = (l_)_z,z_)/e2 and the class centers by Vo5 = al(j)/el.
This mapping is not equivalent to that given by the canonical coordinates,
but classification is again based on the minimum of the distances
ly(x) -1j||.

In Section 3, we lay the foundations for replacing the linear
predictors (Qﬂ,§) by predictors of the form ? wlm(xm) produced
by the ACE algorithm, thus getting nonlinear magﬁlngs y(x) of the
measurement space into E(J'1). In Section 4 an efficient form of the
algorithm is constructed for estimating y(x) and the centers Y from
the data.

Section 5 gives further examples. In Section 6, an extension of the
method for unequal class priors is discussed. Section 7 gives a criterion

for stepwise inclusion of variables and an exampie of its use. The final




10

Section 8 has some remarks about estimating class probabilities, and overall

conclusions.
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2. A REGRESSION FRAMEWORK FOR CLASSICAL

LINEAR DISCRIMINANT ANALYSIS VIA OPTIMAL SCALING.

It has been common knowledge that in the 2-class problem, the Fisher
discriminant function could be computed by converting the probiem into
an ordinary least squares regression problem (see Hand, 1981).
Since ACE was conceived of as a regression tool, the guestion arose
of how to handle the general J-class problem in a regression framework.
A natural resolution is through the concept of optimal scaling of the classes.
Assume the data is of the form {(jn,gn)}, n=1,...,N where

jne {1,...,J}, and X, is an M-dimensional measurement vector

(xln""’an) of ordered variables. We use the notation:
Nj = number of cases in class
p(j) = Nj/N
T = sample covariance matrix
fp = pooled with-in class sample covariance matrix
By = the M-vector of means of the class j measurement vectors .

Assume also, to simplify matters, that
w=fupd) 0.
J

Now, a scating {e(j)}, J - 1,...,d is a mapping of the classes

into real numbers. We will consider only scalings such that

(1) Toe(ieli) =0, T eX5w3) =1 .

J J

For any fixed scaling 8, consider the regression problem of



minimizing

MRSS(6,b) ]E .ln))2 (2)
n

over the regression coefficients b = (b1,...,bM). This is an ordinary
least squares problem, and the solution is

B() = § o(3)p(3)F (3)
3

The optimal scaling problem is now to minimize MRSS(G,E}G)) over

all scalings 6 satisfying (1). Substituting (3) into (2), we get

MRSS(6.b(8)) = 1 - | (u§§'1uj)e(i)e(j)p(i)p(j) : (4)
1,]

Thus, the optimal scaling problem leads to the eigenvalue problem
) = S5y e i) (5)
3

This has J solutions which we order by A, > 2, >...> Ay = 0. Naote

that

. s _ At""],\
Mj,i) = HaT by

is of rank J-1 generally, since § M(j,i}p(i) = 0, all j. The
i
eigenfunction corresponding to Ay 0 s BJ(j) = 1. One can convert

(5) into the form
) /T3 = I /PT3T M(3,1) RTEY e, (1) vp(i] . (6)
i

Then since M{j,i) /p(3Ip(i) is symmetric nonnegative definite, the

0, (3} = egﬁj) /p(3) can be taken as orthonormal, leading to
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b6, (300, (3)p(3) = s(r.n)
: (7)
T e ipi) =0, n<d.
J

Therefore, each el(j), 2 =1,...,d-1 1is a scaling. Furthermore, from

(4) we have that
MRSS(8,,0(6.)) = 1= A,y £ = 1,01 (8)

The scalings 6],...,6

can be interpreted as follows: define ez(e) = MRSS(G,E(S)), then Oy
P
(

Denote this mean residual sum of squares by e%. J-1

is the scaling minimizing e“(8), 82 is the minimizer of ez(e) among

all scalings orthogonal to 9, in the sense that 2 ez(j)e](j)p(j) = 0.

Then 83 is the minimizing scaling orthogonal to both 8] and 62, etc.

The J - 1 scalings 8],...,8J_] assign a point

a(j) = (81(j),...,6J‘1(j)) in J - 1 dimensional space to each class.

For each measurement vector x a natural distance from x to 8{(j) is
0%(x.4) = ng(eg(j)-ﬁﬁi) “ed) (9)

=1
where §£ = ﬁﬂez). Thus, Dz(éjj) is the sum of the squared distance

be tween Bg(j) and the best QLS predictor of 6_, divided by MRSS(BR,EIGQ)).

,Q,’
The crux of the matter is the following theorem:

Theorem A .

0%(x.3) = (e )0 (xely) # oy - XN (10)

The proof of this theorem is straightforward, but lengthy, and is given
in the Appendix.

The relevance of this theorem to discriminant analysis is that, defining,
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Fj(X) = {x-U

where T(j) are the prior class Jj probabilities, the linear discriminant

classification rule is: assign class j to x if

F.(x) = min F1(5) .
i

Therefore, the classification rule: assign x to class Jj if

0(x,3) - 5757 - 2 Tog M3) = min(02(x,1) - 57y - 209 1(i)) , (1)

i
is the same as the rule produced by linear discriminant analysis.

But the framework is considerably different--focusing on finding
scalings 8{j) and predictors (b,x) to minimize the sum-of-squares
Z(e(jn)—(ngn))z. It is this shift of framework that allows the nenlinear
genera1ization given in the following sections.

In keeping with this revised cantext, we redefine the mappings into

class space to be

yo (%) = {by.x)/e,

L

and take the group centers to be

ij

= 8,(3)/e, -
Then the rule given in (11) becomes based on Hy(ﬁ)—yjﬂz instead of
0%(3.x)-

We show in the appendix that y,(x) = (gi,E)/AE where ({a ,x) are
the usual canonical coordinates and that Yei ~ yg(gj)/kg. Thus the class
centers are not the mappings of the gj into class space, nor is y{(x)

a constant multiple of the linear discriminant mapping into class space.

To quide the stepwise selection of variables, it seems natural at

any stage to enter that variable which most reduces the value of
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b L1, )= Byx D7
2<d n

As shown in the appendix, this expression equals

which can be quickly computed. In fact, using branch and bound techniques,
it is possible to construct an efficient best subsets algorithm based on

this criterion.
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3. NONLINEAR DISCRIMINANT ANALYSIS

Now that discriminant analysis has been put into a regression
framework, the ACE methodology (Breiman and Friedman, 1984) can be used
to give a nonlinear generalization. If we ask: given variables
having an arbitrary joint distribution, Ye {1,...,d1,

Yo XiseiankX

1 M
what are the functions 8{Y), {¢m(xm)} such that all means are zero,

E eZ(Y) = 1 and the expected squared error

(X 31°

e2(5,0) = ElB(Y)-} v (X

M
is minimized, then it is known from the above paper that minimizing
6%, {@%} exist, and that the ACE algorithm converges (under weak conditions)
to a minimizing set of functions. Furthermore, it is known that 6% (3)

is the solution of an integral eguation
* _ ¥
2 (Y} = PP 8 (Y) (12)

where Px(') is the projection onto the subspace of all L2 functions
M
of the form } ¢m(xm) and P, 1is the projection onto all L2 functions

¥)).

In fact ©8*(Y) is the solution of (12} corresponding to the second

Y
of the form 6&{Y) (more simply PY(») = E(-

highest eigenvalue. The highest eigenvalue is X =1 corresponding to

g =1. If the J -1 solutions to (12) other than this constant solution

are numbered in order of decreasing eigenvalues, i.e.

8,(Y) (13)

28, (Y) = PyP8y

with 2 > hg Zeea2 Ay and A is set equal to one, then
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M
i 2
e, = min Elo (Y)-)e (X )" =1-2, (14)
‘p]s-—-,*pM 1

and since PYPX is self-adjoint and nonnegative definite,

E eg(v)el.(v) = Spgn

The 8, can be interpreted in a way exactly analagous to the linear

2
case. Define a scaling 6&(Y) to be any real-valued function defined on
{1,...,d} satisfying E6(Y) = 0, E€2(Y) = 0, and also define
ez(e) = min ez(e,g). Then e] is the scaling minimizing e2(e), 92

P
is the minimizer of ez(e) among all scalings orthogonal to 8] in

the sense ES](Y)GZ(Y) = 0 and so on.
For each &, et [wﬁm} be the minimizing functions in (14}. Then
the analogy pointed out in the paragraph above suggests the classification

rule: let

then assign J to x if (11) hoids. Furthermore, taking

— 1=

yﬁ(éj = ] oon(x)/eg

to define the mapping into class space and Yei ” ei(j)/el as defining
the class centers, then the classification rule is transformed into
minimum Euclidean distance in class space.

Since estimates for 6 {wﬁm} can be gotten via the ACE algorithm
operating on data, we get a nonlinear methed for the construction of

classifiers.
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4. IMPLEMENTING ACE DISCRIMINANT ANALYSIS.

To implement our procedure we start with (13) and write it as
Vo) = T HIEI0,(0R(57)
J
We know that H{j,j') 1is seif-adjoint with respect to p{j}. It is
quickly seen that this implies that H(j,i') = H(j',j). Furthermore, it
is nonnegative definite.

Define ¢2(j) = el(j) /p(3) . Then
o (3) = JZ|W H(3,3" e, (3") (15)
The matrix
Q(d,3") = /p{ITeTITY H{F.3")

is nonnegative definite and symmetric, and the wz(j) are a set of J
orthonormal functions.

If we knew Q(j,j'), then (15) could be solved for all wg(j) and
consequently for all ei(j) at one stroke. So the problem becomes the

estimation of Q(j,j'). Recall that

¥ OH(G.3")e(i)pli") = PyPy9 -
j 1
Take functions fg(j), 2 =1,...,d to be an orthonormal basis in

the sense that
(Fgafye) = T F (0P, (3PL3) = 8y -

J
A convenient set of such functions is fJ(j) =1, and for & < J,
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0, <t
-BE’ J > 4

where

B, = - RLE r
Ll e - (et

Zg,.,.]p(j) ]%
[p(2) - Iyp(3)

%y

Starting with each fR(j), ¢ > J, as the dependent variable, run
the ACE inner loop until convergence, getting an estimate of Pxfi'
Then smooth P f, on j, getting functions @Q(j), which are estimates

of PyP,f,. Define g (i) = 1, and set

¥ J
9,(3) = T H@L,3f,(p5")
jl
or
BT3Y 5,03) = 1 (3,306, BT .
JI
Put

C(3'.2) = F,(3") AT
6(3,2) = /(30 §,(J)

so (16) can be written as
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and solving

§=occ!.
But
ACHDEREENY
J
t~ _ =1 _ At A _ t .
so that CC=1, C ' =¢C", and Q= GC". More explicitly

Q(353') = RIIIPAT I §,(3)F, (")
L

Due to data randomness, the estimated 6 may not be exactly symmetric,
S0 we use as our estimate the symmetrized version of ﬁ, and stretch
notation by also denoting it as Q.
Now that we have the estimate ﬁ, estimates of eg(j) are gotten
by solving the eigenvalue equation
12 (3) = T QG300 (17)

J
and setting §Q(j) = GQ(j)//ETET-
The next step is: for fixed &, 2 =1,...,d-1, run the ACE inner
Toop until convergence using the eg(jn) as the values of the dependent
variable. This results in estimates 31,...,$M of those functions
wz1,...,¢zM that minimize E[ég(y)-.mgl (X )]2_ The mean squared

computed at convergence of the loop is = 1 - Age

m

2
error e,

Our estimated distance function 1is

02(x,d) = T B9 - L &ontiall /e




the mapping into class space 1is

21
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5, OTHER EXAMPLES.

The first example is taken from the book by Breiman, Friedman,
Olshen and Stone (1984). It is a three class problem based on the
waveforms graphed in Figure 5. To quote the cited reference.

Each class consists of a random convex combination of two of
these waveforms sampled at the integers with noise added. More
specifically, the measurement vectors are 21 dimensional:

X = (X;s...3X,,). To generate a class 1 vector x, independently
generate a uniform random number u and 21 random numbers
E£y5..228,, Novmally distributed with mean zero and variance 1.
Then set

L

X

. uh, (m) + (I-u)hz(m) e, m=1ly...,21 .

m

To generate a class 2 Qector, repeat the preceding and set

1]

uh, (m) + (F-u)h {m) +e , m=1,...,21.

% m

m

Ctass 23 vectors are generated by

x_ = uh,(m} + (1-u)h (m) + €pe W 1,...,2]

m
Three hundred measurement vectors were generated using prior

probabilities of (3,5 ,+), so there were approximately 100 per
class.

The class space is two-dimensional. Figures 6 and 7 show the linear and

nonlinear mappings of the data into class space with the class centers

outlined by octagons. The resubstitution misclassification rates were

checked by using a 5000 case test set generated from the same distribution.

This experiment was repeated 10 times giving the averaged results in

Table 1,

TABLE 1

Error Rates
Resubstitution Test

Linear Discriminant .14 .20

Nonlinear Discriminant .09 .18
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Figure 5
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Figure 6

Linear discriminant mapping and boundaries for the waveform data.
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Figure 7

Nonlinear mapping and boundaries for the waveform data.

25




26

For the given data structure the lowest theoretical misctassification
rate achievable by any rule is .14. Thus, the nonlinear method is getting
close to optimal.

The disparity between the resubstitution and test set misclassification
rates is disturbing in terms of getting honest estimates for actual data.
Because of this, we did 20 bootstrap repetitions on the data set having
the largest difference between the two misclassification rates. The

results were

resubstitution rate .07
test rate .18

bootstrap estimate .13

The next example is taken from the Andrews and Herzberg (1980)
data collection and was contributed by V. E. Kane (1976). It consists
of 12 measurements on each of 127 groundwater samples. The samples are
divided into 5 classes depending on the presence or absence of anomalous
amounts of uranium and other elements. In the analysis equal priors were

used. The misclassification rates were

resubstitution bootstrap (20}
linear discriminant .14 .20

nonlinear discriminant .04 13

Figures 8 and 9 show plots of the first three linear discriminant
coordinates and Figures 10 and 11 show plots of the first three nonlinear
discriminant coordinates. The improved separation of classes achieved

by the nonlinear technique is apparent.

The final example of this section revolves around the question: if
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Figure 8a
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Groundwater data plot: ISt and 2" Tinear discriminant coordinates.
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Groundwater data plot:

1

st

Figure &b

and 3rd

linear discriminant coordinates.
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Figure Sa

Groundwater data plot: 1St and 2nd

nonlinear coordinates.
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Figure 9b

Groundwater data plot: |1

st and 3rd

nonlinear coordinates.
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The final example of this section revolves around the question: if
the data distribution satisfies the 1ienar model assumptions, does the
nonlinear method reduce to the linear one. The thecretical answer is no,
but our simulation results indicate that the nonlinear boundaries give
a very good approximation to the linear discriminant boundaries.

To illustrate, let class 1 consist of 100 2-dimensional vectors

selected from N({0,0),T) and class 2 of another 100 selected from

-

The boundaries of both procedures are plotted in Figure 10. The

N{{2,2),T) with

—
]

misclassification rates on 5000 test cases are .078 for the linear me thad
and .078 for the nonlinear.
These examples were run cn a Ridge 32 computer with power intermediate

between a VAX 750 and VAX 780. The CPU times for a single run of each

example were

Linear Nonlinear
Example 1 2.7 sec. 24 min.
Example 2 1.0 sec. 8 min.
Example 3 0.7 sec. 14 sec.

As a crude approximation, the CPU time required goes up as the product of

sample size,number of measurement variables, and number of classes minus

ane.
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Figure 10

——== linear discriminant boundaries

nonlinear discriminant boundaries
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6. ADJUSTING FOR PRICRS AND SAMPLE SIZES.

In the linear model, suppose we again use the optimal scaling and
linear regression approach, but with a new twist. Given a set of prior
class probabilities {I(j)}, make the proportion of class j cases in the
data set equal to I(j) by giving the weighting Ti(j)/p(j) to each
class j case. Then p(j) becomes replaced by T™(i) in all Section 2
equations and the regressions become replaced by weighted regressions. For

the distance function Dz(gjj) given by this procedure, Theorem A becomes

(_)is\]) = (E-HJ)t?p(-&-E—J) + ﬁ(lﬂ

where fp is a weighted pooled within class covariance estimate. The

1inear discriminant rule is based on

(x5 ¥ (xesg) - 2 Tog 1(3) -

a

Assuming that the two estimates fp, rp are nearly equal, then the
difference in the two rules is in the different values of the additive
constants. These constants, as functions of II(j), behave similarly,
increasing monotonically as T{j) decreases.

This indicates that unless the class priors are quite unequal, the
rule based on minimizing Dz(gjj), adjusted for priors as above, will be
almost the same as the linear discriminant rule.

The same approach was adopted in the nonlinear case, so the distance
function Dz(ﬁjj) produced by the program is based on a weighting of

the data set, and m(3j) replaces p(j) 1in all the Section 3 and 4

equations.

However, there was still the possibility that better classification




34

rules could be gotten in some cases by shifting the boundaries through
the use of additive constants. 50, in the next stage of research, we
looked at classification rules of the type: minimize Dz{gjj) + Dj,
where D],...,DJ were fixed real numbers. Then an exhaustive search
algorithm was used to find the set {DT,...,DH} yielding the minimum
resubstitution misclassification rate.

To our surprise, in runs over a number of two and three class simulated
data sets, the optimizing procedure did no better, and sometimes worse, on the
test set data than the rule: minimize D2{§,j). This was true even, say,
in two class data with T(1)}/I(2) = 9. We attribute this failure to two
factors. First, the optimizing approach tends to overfit the data.

Second, if the classes are reasonably separated by the y(x) transformation,
then the misclassification rate is not too sensitive to minor shifts of
the boundaries.

For example, in the three class waveform data using priors of
.}, .3, .6, and a test set of 5000, the minimize Dz(g,j) rule gave a
test set misclassification rate of .11 . The optimizing procedure gave
a test set rate of .13 . Then we optimized the procedure by selecting
additive constants to minimize the test set rate. The result was a test
set rate of .11.

Faced with these results, we decided to stick with the simple

classification rule: minimize DZ(EJJ).
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9. VARIABLE SELECTION.

In many problems, some sort of variable selection mechanism is
desired. It is eminently reasonable in the above discriminant analysis

framework to select those variables for which
2 2
ey et ey
is as small as possibie. Since
2
> oep = 1(1-2,).
’ )

this is equivalent to chosing those variables for which | Ay s as

large as possible. But ), equals the trace of Q, i.e.

I ny = 063,d)

L J

8]

P9 (3, (3)e(d) .
ist

Using this evaluation method, for every subset of predictor variables,

Xy s X it takes J-1 convergent inner loops of ACE to compute
1 K

S{x seeoaxy 1= 1 9,(0)F, (3R (3)

1 K i,

Our suggested procedure is stepwise forward. Start with variable X
1
where
S(x ) = max S(x_} .
ing 0 m
Then add x where
"
S{x_ ,%x. ) = max S(xm X ).

1 m

m
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This procedure was tested both on the waveform and groundwater data
(first and third examples of Section 6). The variables entered, and the
resubstitution, test set, and bootstrap estimates of the misclassification
rates for the waveform data are given in Figure 11. Computationally,
stepwise is expensive, with this example taking over a day of rumning time
on the Ridge. For the groundwater data, the variables entered, the

resubstitution, bootstrap, and 10-fold cross validation estimates of the

misclassification rates are given in Figure 12.
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Figure 11

Misclassification rates of stepwise nonlinear
discrimination on the waveform data.
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Figure 12

Misclassification rates of stepwise nonlinear
discrimination on the groundwater data.
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10. REMARKS AND CONCLUSIONS.

One outstanding question in the context of nonlinear discriminant
analysis is how to get estimates of the class probabilities p(j|x),
j=1,...,J. In the lTinear discriminant model, estimates are easily derived
using the normal density assumption. However, in the nonlinear case,
assumptions of any parametric type are contrary to its spirit and utility.

Kernel density estimation could be used on the original data
Xqoee s Xy to get estimates of the class j densities fj(§) and then
p(iix) estimated as

n(4)F(x)
E, n(i)E (x)

However, the measurement space X may be high dimensional, containing
variables on a variety of scales. In such a situvation, choice of metric
becomes somewhat arbitrary and kernel methods do not generally provide
accurate estimates.

The most sensible procedure seems to us to be kernel density
estimation using the points Yyoee-ody in the class space. This space
is generally of lower dimension than X and the scaling by the
transformations makes the Euclidean metric natural and appropriate.
However, we have not tested this approach and therefore cannct comment on
jts accuracy.

Generalizing from the examples we have worked on, our conclusions
are that nonlinear discriminant analysis via scaling and ACE uniformly
dominates both linear and quadratic discriminant analysis. The
resubstitution error rates can be significantly optimistic, and we
recommend that alternative estimates, using bootstrap cross-validation,

ar an independent test set, usually be considered.
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APPENDIX
Using the notation of Section 1,
Theoyen.
o (R) N2 t.-1
- ‘e = =-11. P XK=, + 3 - F - 1 .
_QEJ(BQ(J)b x) (5_33) P(—HJ) Sy AT X

Proof. For T the covariance matrix of the X5 eesXy We have that

b=l T 95, )%,

n n
= 17T 8(i)p(duy)
J
= T o(d)p(3)r s
J
Now
%’%(gg(jn)ﬁg(ﬁ) x)° = %‘f Gi(jn) - %—E s(gn)gﬁﬁ) %

1= 5 el -y
J
1- T etide(@elia@uir

1}

which is equation (4). MWith

we know that

28,03 = L M(3.1)e, (F)p(i)
1

or letting




S
P
—
[
o
I

8,(3) (3}

e (3) = Z A{3,i)e, (1)
1

where
H{j,1) = /p(iTp(3) M(J,1) .
Then the {wg} are orthonormal Teading to

70,0008, (3)p(3) = 8(2,8") . (A1)
J

The eigenvector corresponding to X = 0 s 6(j) =1 and for Az > 0

by (A1}, ¥ 8,(3)p(3) = 0. Now
J
H(1.3) = ) apee(1)e, (3)
2
S0

M(iaj) -

t
~1

1,0, (108, (5)

Put

W ]/]'lg

£
and note that, using -+« to denote inner product,

T oo, 30"y =1 -0, >0

so that W, > (. Write

. 2 _ 2 yn(2)
REJ wg(ei(a)—bm-y = R’EJ Ww,8,(3) - 2 REJ WoB,(J)b7 77 = x
* Z wi(b(g)'ﬁ)z .
2<d



Since

than for any vector u, putting v =T 'u,

u=1.y-= Tp!_+ Z P(J)Ej(gd,y)
so that
Tv=u- f P(J’)y_J(}iJ,g)
J
and
v=rlu - T e(d)p(irs
p - ! p =]
J
where
c(i) = (us,v)

Let u = p,, then {A3) becomes
-1 -1 . -
.= .- N T .
a2 Ty § PLIN T g )Ty
and

-1 t.-1

Fe
—
lﬁ
[}

J

Denote R{k,i) = ptf']u.. Then {A5) becomes

A
Ik

=
—
oy
-
-y
——
1

- R(k!i) - Z p(j)M(isj)R(jsk) .
J

If we let R(k,i) = 7§ ugg.eﬂ(k)ez.(i) and substitute into

- sy BT
welp g - L POEMOT Dy -

(A6)

(A3)

(A4)

(A5)

(A6)



it becomes clear that OUpp is diagonal and

R(k,1) = [ oy, (K)B, (1)
£

Then substituting this into (A5} gives

. -
Now
2, 2,
I owegld) = 2 w6y (3) -1
2<d 2
= (14, )65() - 1
£
2, :
= § 0% + T opet(d) - .
) % ‘
But recall that
2,5y - to-d
E %SE(J) = _jl‘ B;

and writing

gives,

7 82(3) = 1/p(d)
2

Then




A-5

- 2, . t -1 1
L W83 Tty gy - T
2<d
Now for the second term in (A2). Defining QFJ) = 0, then the second
term is
. 2 . . 1=
555 Dy (OB e x = Tuge ()T e (Dp(NxT )
2 2 1
But by (A4)
LT T R L C P E LT
=S g B e R
J
SO
s. = T owe (30, (it
. 278 L Z'p
i,k
-7 (336, (1)p(i)pl3 ML 5" )x r;1u3.
£,1,3"

In the second term in {A7) denote the dummy variable j* by 1 and

conversely, getting the expression

2 % ERAGTRBUEERUCE BFE R
314l

But since E M(d ;] (J Jp(i') = Azeg(i)’ the second term becomes

-1
zéj W p(i)e,(1)8,(J )2t S (P
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But
P oo (i)e,(3) = (p(i)R(3)) %6 (1.0)

S0

t-1
s. = xtr Ny, .
i 2 Y

The third term in (A2) is ) wg(bg-g)z. Let S be the J -1
dimensional space spanned by (Eq,...,gd) and let x = X t X where

X, s perpendicular to S. Then since

by -x =] p(i)eﬁ(i)ﬁtf'lui
1

it follows that by« x = b, - x;. Write x, as Z fjﬁj’ SO

1

box = Foplide,(3)F s uy
1,
=1 f5 I MG,ae,(ie(d)
i 7
j
and
P (b,ox)?= 1 2w f.fe,(ide(d)
g \Pg X A AR LR AT AR ARD
Q} ;] ]
Now
)
2, =32 S -
SRV I B R

Therefore




il

. 2 T r\‘ - - _ - .
E WR(EE i) _,i f-|fj _ D",QBR(.l)e’QJ(J) 1Z f-lfJ g‘ )\RBQ(])SQ(J)

LOfifRGLE) - L FifGELT)

1,1 1,1

) T £ -1
IofifaTony - 8 FifaT oy
1,J 1,]

a7l - atr

Putting all this together

QEJ wg(el(j)-gﬁﬁ)'i) = (EfEd F;I(Eij) + Ef%j__ XT % = 1

which completes the proof of the theorem.

We now show that the b, -x are multiples of the classical canonical

coordinates. The crimcords have the form a, . x where the a, are

solutions of the matrix equation

Ba = vyI_ a
a =y p

t

with B =T - Fp and the a normalized so that a™T 1.

pi:
Write (A7) as Ba = y(r-B)a or (i+y)Ba = yl'a or as

ra = (1Y) Ba
( v ) § p(J)Hj(L_LLj) :

Hence,

T+ TR (28)

a= (=)} p(J)(a,uJ)F B
j




and

(@) = (20 T o3 (g dnit Ly -

This js of the form

(FEIVE) = § ML v(E)R()
J

where v(i) = (a,u;). The solutions are 6,(i), and

=
Ty RR .

Therefore, v {i) = (a,,u;) = ¢;8,(1), and substituting into (A8) gives

-1
ey = ey I ptdde (31,
J
S0
c
R N E) LN E) I ety
N
c
= TR’E(R’) "X
&
and hence
- g pl¥)
a, =db
rs t _ .
To evaluate dg, use the condition E%Fpgﬁ = 1 or equivalently, from
atBa, = v,» v, = A,/1 - A (A7)
=24 2’ b3 L 8
Hence
2 _ (2)gp (%)
d; = v,/b Bb .



A-S

Now
pap*) - L o))
and (y_j,_b_m) = 2,0,(1) so
6 M) a2 1 p(3)el(y) = a2
J
This gives
dg T 1]-)\1
or




