
1

TECHNICAL REPORT 460
April 1996

STATISTICS DEPARTMENT

             UNIVERSITY OF CALIFORNIA

       Berkeley, CA. 94720

       BIAS, VARIANCE , AND ARCING  CLASSIFIERS

             Leo Breiman*
Statistics Department

                University of California
   Berkeley, CA 94720

 leo@stat.berkeley.edu

ABSTRACT

Recent work has shown that combining multiple versions of
unstable classifiers such as trees or neural nets results in reduced
test set error.   To study this, the concepts of bias and variance of
a classifier are defined. Unstable classifiers can have
universally low bias. Their problem is high variance.
Combining multiple versions is a variance reducing device.  One
of the most effective is bagging (Breiman [1996a] )  Here,
modified training sets are formed  by resampling from the
original training set, classifiers constructed using these training
sets and then combined by  voting .  Freund and Schapire
[1995,1996] propose an algorithm the basis of which is to
adaptively resample and combine (hence the acronym--arcing)
so that the weights in the resampling are increased for those
cases most often missclassified and the combining is done by
weighted voting.    Arcing  is more successful than bagging in
variance reduction. We explore two arcing algorithms, compare
them to each other and to bagging, and try to understand how
arcing works.
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1.  Introduction

Some classification and regression methods are unstable in the sense that small perturbations in
their training sets or in construction may result in large changes in the constructed predictor.
Subset selection methods in regression, decision trees in regression and classification, and neural
nets are unstable (Breiman [1996b]).

Unstable methods can have their accuracy improved by perturbing and combining.   That is--by
generating multiple versions of the predictor by perturbing the training set or construction
method and then combining these versions into a single predictor.   For instance Ali [1995]
generates multiple classification trees by choosing randomly from among the best splits at a
node and combines trees using maximum likelihood.  Breiman [1996b] adds noise to the response
variable  in regression to generate multiple subset regressions and then averages these.   We use
the generic of P&C  (perturb and combine) to designate this group of methods.

One of the more effective of the P&C methods is bagging (Breiman [1996a]).  Bagging perturbs
the training set repeatedly to generate multiple predictors and combines these by simple voting
(classification) or averaging (regression).  Let the training set  T  consist of N cases (instances)
labeled by n = 1, 2, ..., N.  Put equal probabilities p(n) = 1/N  on each case, and using these
probabilities, sample with replacement (bootstrap) N times from the training set T forming the

resampled training set T(B) .  Some cases in T may not appear in T(B) ,  some may appear more

than once.  Now use T(B)  to construct the predictor, repeat the procedure and combine.   Bagging
applied to CART gave dramatic decreases in test set errors.

Freund and Schapire recently [1995], [1996] proposed a P&C algorithm which was designed to
drive the training set error rapidly to zero.   But if their algorithm is run far past the  point at
which the training set error is zero, it gives better performance than bagging  on  a number of
real data sets.   The crux of their idea is this:  start with p(n) = 1/N and resample from T to form

the first training set T(1) .   As the sequence of classifiers and training sets is being built,
increase p(n) for those cases that have been most frequently missclassifed.  At termination,
combine classifiers by weighted or simple voting.   We will refer to algorithms of this type as
Adaptive Resampling  and Combining, or arcing algorithms.  In honor of Freund and Schapire's
discovery, we denote their specific algorithm by arc-fs, and discuss their  theoretical  efforts to
relate training set to test set error in  Appendix 2.

To better understand stability and instability, and  what bagging and arcing do,  in Section 2 we
define the concepts of bias and variance for classifiers (Appendix 1 discusses some althernative
definitions).  The difference between the test set missclassification error for the classifier and
the minimum error achievable is the sum of the bias and variance.  Unstable classifiers such as
trees characteristically have high variance and low bias.  Stable classifers like linear
discriminant analysis have low  variance, but can have high bias.   This is illustrated on
several excamples of artificial data.   Section 3 looks at the effects of arcing and bagging trees
on bias and variance.

The main effect of both bagging and arcing  is to reduce variance.  Arcing seems to usually do
better at  this than bagging .    Arc-fs does complex things and its behavior is puzzling.   But the
variance reduction comes from the adaptive resampling and not the specific form of arc-fs.  To
show this, we define a simpler arc algorithm denoted by arc-x4 whose accuracy is comparable
to arc-fs.  The two appear to be at opposite poles of the arc spectrum .  Arc-x4  was ad hoc
concocted to demonstrate that arcing works not because of the specific form of the arc-fs
algorithm, but because of the adaptive resampling.
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Freund and Schapire [1996] compare arc-fs to bagging on 27 data sets and conclude that arc-fs
has a small edge in test set error rates.   We tested arc-fs, arc-x4 and bagging  on the 10 real data
sets used in our bagging  paper and get results more favorable to arcing.  These are given in
Section 4.  Arc-fs and arc-x4 finish in a dead heat.   On a few data sets one or the other is a little
better, but both are almost always significantly better than bagging.   We also look at arcing
and bagging applied to the US Postal Service digit data base.

The overall results of arcing are exciting--it turns a good but not great classifier (CART)  into a
procedure that seems to always get close to the lowest achievable test set error rates.
Furthermore, the arc-classifier is off-the-shelf.  Its performance does not depend on any tuning
or settings for particular problems.  Just read in the data and press the start button.  It is also, by
neural net standards, blazingly fast to construct.

Section 5  gives the results of some experiments aimed at understanding how arc-fs and arc-x4
work.   Each algorithm has distinctive and different signatures.  Generally, arc-fs uses a
smaller number of distinct cases in the resampled training sets and the successive values of p(n)
are highly variable.  The successive training sets in arc-fs rock back and forth and there is no
convergence to a final set of {p(n)}.  The back and forth rocking is more subdued in arc-x4 , but
there is still no convergence to a final {p(n)}.   This variability may be an essential ingredient of
successful arcing algorithms.

Instability is an essential ingredient for bagging or arcing to improve accuracy.  Nearest
neighbors are stable and Breiman[1996a]  noted that bagging does not improve nearest neighbor
classification.  Linear discriminant analysis is also relatively relatively stable (low variance)
and in Section 6 our experiments show that neither bagging nor arcing has any effect on linear
discriminant error rates.

Section 7 contains remarks--mainly aimed at understanding how bagging and arcing work.  The
reason that bagging reduces error  is fairly transparent.  But it is not at all clear yet, in other
than general terms, how arcing  works.  Two dissimilar arcing algorithms, arc-fs and arc-x4,
give comparable accuracy.   It's possible  that other arcing algorithms intermediate between
acrc-fs and arc-x4 will give even better performance.  The experiments here, in Freund-Shapire
[1995] and in Drucker-Cortes[1995], and in Quinlan[1996] indicate that  arcing  decision trees
may lead to fast and universally accurate classification methods and indicate that additional
research aimed at  understanding  the workings of this class of algorithms will have a high
pay-off.

2.  The Bias and Variance of a Classifier

In order to understand how the methods studied in this article function, its helpful to define the
bias and variance of a classifier.   Since these terms originate in predicting numerical outputs,
we first look at how they are defined in regression.

2.1 Bias and Variance in Regression

The terms bias and variance  in regression come from a well-known decomposition of prediction
error.  Given a  training set  T = { (yn,xn)  n=1, ... ,N} where  the yn are numerical outputs and the

xn are multidimensional input vectors,  some method (neural nets, regression trees, linear

regression, etc.) is applied to this data set to construct a predictor  f(x,T) of future y-values.
Assume that the training set T consists of iid samples from the distribution of Y,X and that
future samples will be drawn from the same distribution.   Define the squared error of f as

PE( f( ,T)) = EX,Y (Y - f(X,T))2
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where the subscripts indicate expectation with respect to  X,Y holding T fixed.  Let PE(f) be the
expectation of PE( f( ,T)) over T.   We can always decompose Y as:

Y  =  f*(X)  +  ε

where E(ε |X)=0.    Let  fA(x) = ETf(x,T).   Define the bias and variance as:

Bias(f) =  EX(f*(X)  -  fA(X))2

Var(f) = ET,X(f(X,T)  - fA(X))2

Then we get the Fundamental Decomposition

PE(f)  =  Eε2  +  Bias(f)  + Var(f)

At each point  x   the  contribution to the error at x  from bias is  (f*(x)  -  fA(x))2  and that from

variance is ET(f(x,T)  - fA(x))2 .  At some points bias predominates, at others the variance.  But

generally, at each point x  both contributions are positive.

This decomposition is useful in understanding the properties of predictors.  Usually some family

ℑ of functions is defined and f is selected as the function in ℑ having minimum squared error

over the training set.    If ℑ is small, for instance, if ℑ is the set of linear functions, and f* is
fairly  nonlinear, then the bias will be large.  But because we are only selecting from a small set

of functions, i.e. estimating a small number of parameters, the variance will be low.  But if ℑ is
a large family of functions, i.e. the set of functions represented by a large neural net or by binary
decision trees,  then the bias is usually small, but the variance large.  An illuminating
discussion of this problem in the context of neural networks is given in Geman, Bienenstock, and
Doursat[1992].

The cure for  bias is known to every linear regression practitioner--enlarge the size of the

family ℑ.  Add quadratic and interaction terms, maybe some cubics, etc.  But in doing this,
while the bias is decreased, the variance goes up.  But there may be some partial cures for high
variance.  Consider the aggregated predictor  fA(x).    By definition, fA(x) has the same bias as

f(x) but has zero variance.    If we could approximate fA(x), then we get a predictor with

reduced variance.  As we will see, this simple idea carries over into classification.

2.2  Bias and Variance in Classification

In classification, the output variable y ε {1, ... ,J} is a class label.  The training set T is of the
form T = { (yn,xn)  n=1, ... ,N} where the yn are class labels.   Given T, some method is used to

construct a classifier C(x,T)  for predicting future  y-values.   Assume that the data in the
training set consists of iid selections from the distribution of Y,X.  The missclassification error is
defined as:

      PE(C( ,T)) = EX,Y( C(X,T) ≠ Y),

and we denote by PE(C) the expectation of PE(C( ,T)) over T.  Denote:

P( j|x)  =  P( Y = j| X = x)
           P( dx )  =  P( X ε dx)
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The minimum missclassification rate is given by the "Bayes classifier C*" where

C*(x)  =  argmaxj P( j|x)

with missclassification rate

PE(C*)  =  1  -  ∫maxj ( P( j|x)) P( dx ).

In defining bias and variance in regression, the key ingredient was the definition of the
aggregated predictor  fA(X).  A different definition is useful in classification.    Let

Q( j |x)  = PT( C(x,T) = j ),

and define the aggregated classifier as:

CA(x)  =  argmaxj Q(j |x).

This is aggregation by voting.  Consider many independent replicas T1, T2, ...  ; construct the

classifiers  C(x,T1), C(x,T2), ...  ; and at each x determine the classification CA(x) by having

these multiple classifiers vote for the most popular class.

Definition 2.1

C(x,T) is unbiased at x  if    CA(x)  =  C*(x) .

That is,  C(x,T) is unbiased at x  if, over the replications of T,  C(x,T) picks the right class more
often than any other class.  A classifier that is unbiased at x is not necessarily an accurate
classifier.  For instance, suppose that in a two class problem  P(1|x) = .9, P(2|x) = .1,  and  Q(1|x)
= .6,  Q(2|x) = .4.  Then C is unbiased at x but the probabablilty of correct classification by C is
.6 x .9 + .4  x .1 = .58.  But the Bayes predictor C* has probability .9 of correct classification.

If C is unbiased at x  then CA(x) is optimal.  Let U  be the set of all x  at which C is unbiased.

The complement of U is called the bias set and denoted by B.  Define

Definition 2.2

The bias of a classifier  C is

Bias(C)= PX,Y(C*(X)  = Y, X  ε B) -  ETPX,Y(C(X,T) = Y, X  ε B) �

and its variance is

Var(C)= PX,Y(C*(X)  = Y, X  ε U) -  ETPX,Y(C(X,T) = Y, X  ε U)

This leads to the Fundamental Decomposition

PE(C) = PE(C*) + Bias(C) + Var(C)

Note that aggregating  a classifier and replacing C with CA reduces the variance to zero, but

there is no guarantee that it will reduce the bias.  In fact, it is easy to give examples where the
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bias will be increased. Thus, if the bias set B has large probability, PE(CA ) may be

significantly larger than PE(C).   As defined,  bias and variance  have these properties:

a)   Bias and variance are always non-negative.
b)   The variance of CA is zero.

c)   If C is deterministic, i.e, does not depend on T, then its variance is zero.
d)  The bias of C* is zero.

The proofs of a)-d) are immediate from the definitions.  The variance of C can be expressed as

              Var(C) =  ∫
U 

 [max j  P( j|x) -  ∑
 j Q (j|x) P(j|x) ]  P(dx) .

The bias of C is a similar integral over B.   Clearly, both bias and variance are non-negative.
Since CA = C*  on U,  its variance is zero.   If C is deterministic,  then on U,  C = C*, so C has zero

variance.  Finally, its clear that  C* has zero bias.

In distinction to the defintion of bias and variance for regression, in classification each point  x
is either in the bias set or in the variance set.  If it is in the bias set, then the variance at x  is
zero.  Converseley, if it is in the variance set, the bias at x is zero.  This reflects the difference
between classification and regression.  In classification, you either get it right or wrong.  In
regression. the error is continuous. See the Appendix for further remarks about the definition of
bias and variance.

2.3 Instability, Bias, and Variance

Breiman [1996a] pointed out that some prediction methods were unstable in that small changes
in the training set could cause large changes in the resulting predictors.  I listed trees and neural
nets as unstable, nearest neighbors as stable.  Linear discriminant analysis (LDA) is also stable.
Unstable classifiers are characterized by high variance.  As T changes, the classifiers C(x,T)
can differ markedly from each other and from the aggregated classifier CA(x).   Stable

classifiers do not change much over replicates of T, so C(x,T) and CA(x)  will tend to be the same

and the variance will be small.

Procedures like trees have high variance, but they are "on average, right", that is, they are
largely unbiased-- the optimal class is usually the winner of the popularity vote.  Stable
methods, like LDA, achieve their stability by having a very limited set of models to fit to the
data.  The result is low variance.  But if the data cannot be adequately represented in the
available set of models, large bias can result.

2.3 Examples

To illustrate, we compute bias and variance of CART for a few examples.  These all consist of

artificially generated data,, since otherwise C* cannot be computed nor T replicated.   In each

example, the classes have equal probability and the training sets have 300 cases.

i)  waveform:    This is 21 dimension, 3 class data.  It is described in the CART book (Breiman
et.al [1984]) and code for generating the data is in the UCI repository.  PE(C*) = 13.2%
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ii)  twonorm:   This is 20 dimension, 2 class data.  Each class is drawn from a multivariate
normal distribution with unit covariance matrix.  Class #1 has mean (a,a, ... ,a) and class #2 has
mean (-a,-a, ... ,-a).  PE(C*) = 2.3%.  a=2/(20)1/2

iii)  threenorm:  This is 20 dimension, 2 class data.  Class #1 is drawn with equal probability
from a unit multivariate normal with mean (a,a, ... ,a) and from a unit multivariate normal
with mean  (-a,-a, ... ,-a).  Class #2 is drawn from a unit multivariate normal with mean at
(a,-a,a,-a, ... .a).  PE(C*) = 10.5%.  a=2/(20)1/2

iv)  ringnorm:   This is 20 dimension, 2 class data  Class #1 is multivariate normal with mean
zero and covariance matrix 4 times the identity.  Class #2 has unit covariance matrix and mean
(a,a, ...,a).  PE(C*) = 1.3%.   a=1/(20)1/2

Monte Carlo techniques were used to compute bias and variance.  The results are in Table 1.

Table 1  Bias, Variance  and Error of CART (%)

Data Set                               Bias                    Variance                Error 

waveform 1.7 14.1 29.0
twonorm .1 19.6 22.1
threenorm 1.4 20.9 32.8
ringnorm 1.5 18.5 21.4

These problems are difficult for CART.  For instance, in twonorm the optimal separating surface
is an oblique plane.  This is hard to approximate by the multidimensional rectangles used in
CART.  In ringnorm, the separating surface is a sphere, again difficult for a rectangular
approximation.  Threenorm is the most difficult, with the separating surface formed by the
continuous join of two oblique hyperplanes.   Yet in all examples CART has low bias.  The
problem is its variance.

We will explore, in the following sections, methods for reducing  variance by combining CART
classifiers trained on perturbed versions of the training set.  In all of the trees that are grown,
only the default options in CART are used.  No special parameters are set,  nor is anything done
to  optimize the peformance of CART on these data sets.

3.  Bias and Variance for Arcing and Bagging

Given the ubiquitous low bias of tree classifiers, if their variances can be reduced accurate
classifiers may result.   The general direction toward reducing variance is indicated by the

classifier CA(x).  This classifier has zero variance and low bias.  Specifically, on the four
problems above its bias is 2.9, .4, 2.6, 3.4.  Thus,it is nearly optimal.  Recall that it is based on

generating independent replicates of T, constructing multiple classifiers using these replicate

training sets, and then letting these classifiers vote for the most popular class.   It is not

possible, given real data, to generate independent replicates of the training set.  But imitations

are possible and do work.

3.1 Bagging
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The simplest implementation of the idea of generating quasi-replicate training sets is bagging
(Breiman[1996a]).  Define the probability of the nth case in the training set to be p(n)=1/N.
Now sample N times from the distribution {p(n)}.  Equivalently, sample from T with
replacement.    This forms a resampled training set T'.  Cases in T may not appear in T' or may
appear more than once.  T' is more familiarly called a bootstrap sample from T.

Denote the distribution on T given by {p(n)} as P(B).    T' is iid from P(B).   Repeat this sampling
procedure, getting a sequence of independent bootstrap training sets.  Form classifiers based on
these training sets and have them vote for the classes.   Now CA(x) really depends on the

underlying probability P that the training sets are drawn from i.e. CA(x) = CA(x, P).  The

bagged classifier is CA(x, P(B)).  The hope is that this is a good enough approximation to

CA(x, P) that considerable variance reduction will result.

 3.2  Arcing

Arcing is a more complex procedure.  Again, multiple classifiers are constructed and vote for
classes.  But the construction is sequential, with the construction of the (k+1)st classifier
depending on the performance of the k previously constructed classifiers.   We give a brief
description of the Freund-Schapire arc-fs algorithm.  Details are contained in Section 4.

At the start of each construction, there is a probability distribution {p(n)} on the cases in the
training set.  A training set T' is constructed by sampling N times from this distribution.  Then
the probabilities are updated depending on how the cases in T are classified by C(x,T'). A
factor β >1 is defined which depends on the missclassification rate--the smaller it is, the
larger β  is.   If the nth case in T is missclassified by C(x,T'),  then put weight βp(n) on that case.
Otherwise define the weight to be p(n).  Now divide each weight by the sum of the weights to
get the updated probabilities for the next round of sampling.  After a fixed number of classifiers
have been constructed, they do a weighted voting for the class.

The intuitive idea of arcing is that the points most likely to be selected for the replicate data
sets are those most likely to be missclassified.   Since these are the troublesome points, focusing
on them using the adaptive resampling scheme of arc-fs may do better than the neutral bagging
approach.

3.3 Results

Bagging and arc-fs were run on the artificial data set described above.  The results are given in
Table 2 and compared with the CART results.

                      Table 2.  Bias and Variance (%)

                    Data Set                    CART        Bagging                    Arcing

                 waveform

bias 1.7 1.4 1.0

var 14.1 5.3 3.6

                 twonorm

bias 0.1 0.1 1.2

var 19.6 5.0 1.3

                 threenorm

bias 1.4 1.3 1.4

var 20.9 8.6 6.9

                  ringnorm
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bias 1.5 1.4 1.1

var 18.5 8.3 4.5

Although both bagging and arcing reduce bias a bit, their major contribution to accuracy is in the
large reduction of variance.  Arcing does better than bagging because it does better at variance
reduction.

3.4  The effect of combining  more classifiers.

The experiments with bagging and arcing  above used combinations of 50 tree classifiers.  A
natural question is what happens if more classifiers are combined.  To explore this, we ran arc-
fs and bagging on the waveform and twonorm data using combinations of 50, 100, 250 and 500
trees.   Each run consisted of 100 repetitions.  In each run,  a training set of 300 and a test set of
1500 were generated,  the prescribed number of trees constructed and combined and the test set
error computed.  These errors were averaged over 100 repetitions to give the results shown in
Table 4.   Standard errors average about 0.1%

Table  3    Test Set Error(%) for  50, 100, 250, 500 Combinations

Data Set   50 100 250 500
waveform
           arc-fs 17.8 17.3 16.6 16.8
          bagging 19.8 19.5 19.2 19.2
twonorm
         arc-fs 4.9 4.1 3.8 3.7
          bagging 6.9 6.9 7.0 6.6

Arc-fs error rates  decrease significantly out to 250 combination, reaching rates close to the
Bayes minimums (13.2% for waveform and 2.3% for twonorm).  Bagging error rates do not
decrease markedly.  One standard of comparison is linear discriminant analysis, which should
be almost optimal for twonorm.  It has an error rate of 2.8%, averaged over 100 repetitions.

4.  Arcing Algorithms

This section specifies the two arc algorithms and looks at their performance over a number of
data sets.

4.1. Definitions of the arc algorithms.

Both algorithms proceed in sequential steps with a user defined limit of how many steps until
termination.   Initialize probabilities {p(n)} to be equal. At each step, the new training set is
selected by sampling from the original training set using probabilities {p(n)}.  After the
classifier based on this resampled training set is constructed, the {p(n)} are updated depending
on the missclassifications up to the present step.    On termination the classifiers are combined
using weighted (arc-fs) or unweighted (arc-x4) voting.   The arc-fs algorithm is based on a
boosting theorem given in Freund and Schapire [1995].  Arc-x4 is an ad hoc invention.

arc-fs specifics:

i)  At the kth step, using the current probabilities{p(n)}, sample  with replacement from

T  to get  the training set T(k) and construct classifier Ck using   T(k).



10

ii)  Run T down the classifier Ck and let d(n)=1 if the nth case is  classified incorrectly, 

otherwise zero.

iii)  Define

εk   =     Σn p(n)d(n) ,     βk  =  (1  -  εk )/εk

and the updated (k+1)st step probabilities by

p(n)  =  p(n)βk
d(n)/ Σp(n)βk

d(n)

After K steps, the C1, ... ,CK are combined using  weighted voting  with Ck having  weight

log(βk ).  Two revisions to this algorithm are necessary.  If  εk   becomes equal to or great  than

1/2, then the original Feund and Schapire algorithm exits from the construction loop.  We found
that better results were gotten by setting all {p(n)} equal and restarting.  This happened

frequently on the soybean data set.   If εk  to equals zero, making the subsequent step undefined,

we again set the probabilities equal and restart.

arc-x4 specifics:

i) Same as for arc-fs

ii)  Run T down the classifier Ck and let m(n) be the number of missclassifications of 

the  nth case by  C1, ... ,Ck.

iii)  The updated k+1 step probabilities are defined by

p(n)  =  (1+ m(n)4)/ Σ(1+ m(n)4)

After K steps the C1, ... ,CK  are combined by unweighted voting.

After a training set T' is selected by sampling from T with probabilities {p(n)}, another set T'' is
generated the same way.  T' is used for tree construction, T'' is used as a test set for pruning.  By
eliminating the need for cross-validation pruning, 50 classification trees can be grown and
pruned in about the same cpu time as it takes for 5 trees grown and pruned using 10-fold cross-
validation.  This is also true for bagging.  Thus, both  arcing and bagging, applied to decision
trees, grow classifiers relatively fast.   Parallel bagging can be easily implemented but arc is
essentially sequential.

Here is how arc-x4 was devised.  After testing arc-fs I suspected that its success lay not in its
specific form but in its adaptive resampling  property, where increasing weight was placed on
those cases more frequently missclassified.  To check on this, I tried three simple update

schemes for the probabilities {p(n)}.  In each, the update was of the form 1 + m(n)h, and h=1,2,4
was tested on the waveform data.   The last one did the best and became arc-x4.   Higher values
of h were not tested so further improvement is possible.

4.2  Experiments on data sets.

Our experiments used the 6  moderate sized data sets and 4  larger ones used in the  bagging
paper (Breiman [1996a] plus a handwritten digit data set. The data sets are summarized in
Table 4.
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        Table 4  Data Set Summary

Data Set #Training             #Test                 #Variables          #Classes

heart 1395   140 16 2
breast cancer      699 70 9 2
ionosphere 351 35 34 2
diabetes 768 77 8 2
glass 214 21 9 6
soybean 683 68 35 19
------------------------------------------------------------------------------------------
letters 15,000 5000 16 26
satellite 4,435 2000 36 6
shuttle 43,500 14,500 9 7
DNA  2,000 1,186 60 3
digit 7,291 2,007 256 10

 Of the first six  data sets, all but the heart data are in the UCI repository.  Brief descritpions
are in Breiman[1996a].   The procedure used on these data sets sets consisted of 100 iterations of
the following steps:

i)  Select at random 10% of the training set and set it aside as a test set.

ii)  Run arc-fs and arc-x4 on the remaining 90% of the data,  generating 50 classifiers 
with each.

iii)  Combine the 50 classifiers and get error rates on the 10% test set.

 The error rates computed in iii) are averaged over the 100 iterations to get the final numbers
shown in Table 5.

The five larger data sets came with separate test and training sets.  Again, each of the arcing
algorithms was used to generate 50 classifiers  (100 in the digit data) which were then
combined into the final classifier.  The test set errors are also shown in Table 2.

Table 5  Test Set Error (%)

Data Set    arc-fs   arc-x4      bagging   CART

heart 1.1 1.0 2.8 4.9
breast cancer 3.2 3.3 3.7 5.9
ionosphere 6.4 6.3 7.9 11.2
diabetes 26.6 25.0 23.9 25.3
glass 22.0 21.6 23.2 30.4
soybean 5.8 5.7 6.8 8.6
---------------------------------------------------------------------------------------------------
letters 3.4 4.0 6.4 12.4
satellite 8.8 9.0 10.3 14.8
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shuttle .007 .021 .014 .062
DNA 4.2 4.8  5.0 6.2
digit 6.2 7.5 10.5 27.1

The first four of the larger data sets were used in the Statlog Project (Michie et.al. 1994) which
compared 22 classification methods.  Based on their results arc-fs ranks best on three of the four
and is barely edged out of first place on DNA.  Arc-x4 is close behind.

The digit data set is the famous US Postal Service data set as preprocessed by Le Cun et. al
[1990] to result in 16x16 grey-scale images.   This data set has been used as a test bed for many
adventures in classification at AT&T Bell Laboratories.   The best two layer neural net gets
5.9% error rate.  A five layer network gets down to 5.1%.   Hastie and Tibshirani used
deformable prototypes [1994] and get to 5.5% error.  Using a very smart metric and nearest
neighbors gives the lowest error rate to date--2.7% (P. Simard et. al [1993]).  All of these
classifiers were specifically tailored for this data.

The interesting SV machines described by Vapnik [1995] are off-the-shelf, but require
specification of some parameters and functions.  Their lowest error rates are slightly over 4%.
Use of the arcing algorithms and CART requires nothing other than reading in the training set,
yet arc-fs gives accuracy competitive with the hand-crafted classifiers.   It is also relatively
fast.  The 100 trees constructed in arc-fs took about 4 hours of CPU time on a Sparc 20.   Some
uncomplicated reprogramming would get this down to about one hour of CPU time.

Looking over the test set error results, there is little to choose between arc-fs and arc-x4.  Arc-x4
has a slight edge on the smaller data sets, while arc-fs does a little better on the larger ones.

5.  Properties of the arc algorithms

Experiments were carried out on the six smaller sized data sets listed in table 1 plus the
artificial waveform data.   Arc-fs and arc-x4 were each given lengthy runs on each data set--
generating sequences of 1000 trees.   In each run, information on various characteristics was
gathered.   We used this information to better understand the algorithms, their similarities
and differences.  Arc-fs and arc-x4 probably stand at opposite extremes of effective arcing
algorithms.  In arc-fs the constructed trees change considerably from one construction to the next.
In arc-x4 the changes are more gradual.

5.1  Preliminary Results

Resampling with equal probabilities from a training set, about  37% of the cases do not appear
in the resampled data set--put another way, only about  63% of the data is used.  With
adaptive resampling, more weight is given to some of the cases and less of the data is used.
Table 3 gives the average percent of the data used by the arc algorithms in constructing each
classifier in a sequence of 100.   The third column is the average value of beta used by the arc-fs
algorithm in constructing its sequence.

Table 6  Percent of data Used

Data Set                        arc-x4          arc-fs        av. beta
waveform 60 51 5
heart 49 30 52
breast cancer 35 13 103
ionosphere 43 25 34
diabetes 53 36 13
glass 53 38 11
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soybean 38 39 17

Arc-x4 data use ranges from 35% to 60%. Arc-fs uses considerably smaller fractions of the data--
ranging down to 13% on the breast cancer data set--about 90 cases per tree.  The average values
of beta are surprisingly large.  For instance, for the breast cancer data set, a missclassification
of a training set case lead to amplification of its (unnormalized) weight  by a factor of 103.   The
shuttle data (unlisted) leads to more extreme results.  On average, only 3.4% of the data is used
in constructing each arc-fs tree in the sequence of 50 and the average value of beta is 145,000.

5.2  A variability  signature

Variability is a characteristic that differed significantly  between the algorithms.  One
signature was derived as follows:  In each run, we kept track of the average value of N*p(n)
over the run for each n.  If the {p(n)} were equal, as in bagging, these average values would be
about 1.0.  The standard deviation of N*p(n) for each n was also computed.  Figure 1 gives plots
of the standard deviations vs. the averages for six the data sets and for each algorithm. The
upper point cloud in each graph corresponds to the arc-fs values;  the lower to the arc-x4 values.
The graph for the soybean data set is not shown because the frequent restarting causes the arc-fs
values to be anomalous.

Figure 1

For arc-fs the standard deviations of p(n) is generally larger than its average, and increase
linearly with the average.  The larger p(n), the more volatile it is.   In contrast, the standard
deviations for arc-x4 are quit small and only increase slowly with average p(n).  Further, the
range of p(n) for arc-fs is 2-3 times larger than for arc-x4.  Note that, modulo scaling,  the
shapes of the point sets are similar between data sets.

5.3  A mysterious signature

In each run of 1000, we also kept track of the number of times the nth case appeared in a training
set and the number of times it was missclassified.   For both algorithms, the more frequently a
point is missclassified, the more its probability increases, and the more fequently it will be
used in a training set.  This seems intuitively obvious, so we were mystified by the graphs of
figure 2.

Figure 2

For each data set, number of times missclassified was plotted vs. number of times in a training
set.   The plots for arc-x4  behave as expected.  Not so for arc-fs.  Their plots rise sharply to a
plateau.  On this plateau, there is almost no change in missclassification rate vs. rate in
training set.  Fortunately, this mysterious behavior has a rational explanation in terms of the
structure of the arc-fs algorithm.

Assume that there are K iterations and that  βk  is constant equal to β (in our experiments, the

values of  βk  had moderate sd/mean values for K large).    For each n, let r(n) be the proportion

of times that the nth case  was missclassified.  Then

p(n)   ≅    β 
Kr(n)/ Σ β 

Kr(n)

Let r* = maxnr(n),  L  the set of indices such that r(n) > r* - ε    and |L| the cardinality of L .    If

|L|  is too small,  then there will  be an increasing numbers of missclassifications for those cases
not in L that are not accurately classified by training sets drawn from L.  Thus, their
missclassification rates will increase until they get close to r*.    To illustrate this,  Figure 3
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shows the missclassification rates as a function of the number of iterations for two cases in the
twonorm data discussed in the next subsection.  The top curve is for a case with consistently
large p(n).  The lower curve is for a case with p(n) almost vanishingly small.

Figure 3

There are also a number of cases  that are more accurately classified by training sets drawn from
L.     These are characterized by lower values of the missclassification rate, and by small p(n).
That is, they are the cases that cluster on the y-axes of figure 2.  More insight is provided by
Figure 4.  This is a percentile plot of the proportion of the training sets that the 300 cases of the
twonorm data are in (10,000 iterations).  About 40% of the cases are in a very small number of
the train sets.  The rest have a uniform distribution across the proportion of training sets.

Figure 4

5.4  Do hard-to classify points get more weight?

To explore this question,  we used the twonorm data.  The ratio of the probability densities of
the two classes at the point  x  depends only on the value of  |(x,1)| where 1 is the vector whose
coordinates are all one.   The smaller   |(x,1)| is, the closer the ratio of the two densities to one,
and the more difficult the point x is to classify.    If the idea underlying the arc algorithms is
valid, then the probabilities of inclusion in the resampled training sets should increase as
|(x,1)| decreases.  Figure 5 plots the average of p(n) over 1000 iterations vs. |(x(n),1)| for both
arc algorithms.

Figure 5

While av(p(n)) generally  increases with decreasing  |(x(n),1)| the relation is noisy.  It is
confounded by other factors  that I have not yet been able to pinpoint.

6.  Linear Discriminant Analysis Isn't Improved by Bagging or Arcing.

Linear discriminant analysis (LDA) is fairly stable with low variance and it should come as no
surprise that its test set error is not significantly reduced by use of bagging or arcing.   Here our
test bed was four of the first six  data sets of Table 1.  Ionosphere and soybean were eliminated
because the within class covariance matrix was singular, either for the full training set
(ionosphere) or for  some of the bagging or arc-fs training sets (soybean).

The experimental set-up was similar to that used in Section 2.   Using a leave-out-10% as a test
set, 100 repetitions were run using linear discriminant analysis alone and the test set errors
averaged. Then this was repeated, but in every repetition, 25 combinations of linear
discriminants were built using bagging or arc-fs.  The test set errors of these combined classifiers
were also averaged.  The results are listed in Table 4.

Table 7 Linear Discriminant Test Set Error(%).

Data Set                             LDA LDA: bag                  LDA: arc            Restart Freq.
heart 25.8 25.8 26.6 1/9
breast cancer 3.9 3.9 3.8 1/8
diabetes 23.6 23.5 23.9 1/9
glass 42.2 41.5 40..6 1/5

Recall that for arc-fs, if εk  ≥ .5, then the construction was restarted with equal {p(n)}.  The last

column of Table 4 indicates how often restarting occurred.  For instance, in the heart data, on the
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average, it occurred about once every 9 times.  In contrast, in the runs combining trees restarting
was encountered only on the soybean data. The frequency of restarting was also a consequence of
the stability of linear disciminant analysis.  If the procedure is stable, the same cases tend to be
missclassified even with the changing training sets.   Then their weights increase and so does
the weighted training set error.

These results illustrate that linear discriminant analysis is generally a low variance
procedure.  It fits a simple parametric normal model that does not change much with replicate
training sets.    The problem is bias--when it is wrong, it is consistently wrong, and with a
simple model there is no hope of generally low bias.

7.  Remarks

7.1 Bagging

The aggregate classifier depends on the distribution P that the samples are selected from and
the number N selected.  Letting the dependence on N be implicit, denote CA = CA(x,P).   As
mentioned in 3.1, bagging replaces CA (x ,P) by CA (x ,P (B)) with the hope that this
approximation is good enough to produce variance reduction.    Now  P(B), at best, is a discrete
estimate for a distribution P that is usually smoother and more spread out than P(B) . An
interesting question is what a better approximation  to P might produce.

To  check this possibility, we used the four simulated data sets described in section 3.  Once a
training set was drawn from one of these distributions, we replaced each xn by a  spherical
normal distribution centered at  xn.  The bootstrap training set T(B) is iid drawn from this
smoothed distribution.    Two or three values were tried for the sd of the normal smoothing and
the best one adopted.  The results are given in Table  9.

Table 9 Smoothed P-Estimate  Bagging--Test Set Errors(%)

Data Set                                     Bagging        Bagging (smoothed)   Arcing

waveform 19.8 18.4 17.8
twonorm 7.4 5.5 4.8
threenorm 20.4 18.6 18.8
ringnorm 11.0 8.7 6.9

The PE values for the smoothed P-estimates  show that the better the approximation to P, the
lower the variance.   But there are limits to how well we can estimate the unknown underlying
distribution from the training set.  The aggregated classifiers based on the smoothed
approximations had variances significantly above zero, and we doubt that efforts to refine the
P estimates will push them much lower.   But note that even with the better P approximation
bagging does not do as well as arcing.

7.2  Arcing

Arcing is much less transparent than bagging.  Freund and Schapire [1995] designed arc-fs to
drive training set error rapidly to zero, and it does remarkably  well at this.  But the context in
which arc-fs was designed gives no clues as to its ability to reduce test set error.   For instance
suppose  we run arc-fs but exit the construction loop when the training set error becomes zero.
The test set errors and average number of combinations to exit the loop are given in Table 10 and
compared to the stop at k=50 results from Table 2.    We  also ran bagging on the first six data
sets in Table 5, exiting the loop when the training error was zero, and kept track of the average
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number of combinations to exit and the test set error.  These numbers are given in Table 10
(soybean was not used because of restarting problems).

    Table 10  Test Error(%) and Exit Times for Arc-fs

Data Set                                          stop: k=50            stop: error=0          exit time
heart 1.1 5.3 3
breast cancer 3.2 4.9 3
ionosphere 6.4 9.1 3
diabetes 26.6 28.6 5
glass 22.0 28.1 5
--------------------------------------------------------------------------------------
letters 3.4 7.9 5
satellite 8.8 12.6 5
shuttle .007 .014 3
DNA 4.2  6.4 5

Table 11 Test Error(%)and Exit Times for Bagging

Data Set                                              stop: error=0             exit time
heart 3.0 15
breast cancer 4.1 55
ionosphere 9.2 38
diabetes  24.7 45
glass 25.0 22

These results delineate the differences between efficient reduction in training set error and test
set accuracy.   Arc-fs reaches zero training set error very quickly, after an average of 5 tree
constructions (at most). But the accompanying test set error is higher than that of bagging,
which takes longer to reach zero training set error.   To produce optimum reductions in test set
error, arc-fs must be run  far past the point of zero training set error.

The arcing classifier is not expressible  as aggregated classifier based on some approximation to
P.    The distributions from which the successive training sets are drawn change constantly as
the procedure continues.   For the arc-fs algorithm, the successive {p(n)} form a multivariate
Markov chain and probably have a stationary distribution π (dp).  Let Q(j|x,p) = PT(C(x,T)=j),

where the probability PT is over all training sets drawn from the original training set using the
distribution p over the cases.   Then, in steady-state with unweighted voting, class j gets vote
∫Q(j|x,p) π (dp).

It is not clear how this steady-state probability structure relates to the error-reduction
properties of arcing.  But its importance is suggested by our experiments.   The results in Table 3
show that arcing takes longer to reach its minimum error rate than bagging.  If the error
reduction properties of arcing come from its steady-state behavior,  then  this longer reduction
time may reflect the  fact that the dependent Markov property of the arc-fs algorithm takes
longer to reach steady-state than bagging in which there is independence between the
successive bootstrap training sets and the Law of Large Numbers sets in quickly.   But how the
steady-state behavior of arcing algorithms relates to their abilty to drive the training set error
to zero in a few iterations is unknown.

What we do know is that arcing derives most of its power from the ability of adaptive
resampling to reduce variance.  This is illustrated by arc-x4--a simple algorithm made up
expressly to show that the thing that makes arcing work is not the explicit form of arc-fs but
the general idea of adaptive resampling--the really nice idea of focusing on those cases that
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are  harder to classify.    When arc-fs does better than bagging, its because its votes are right
more often.   We surmise that this is because it votes the right way on some of the hard-to-
classify points that bagging  votes the wrong  way on.

Another complex aspect of arcing  is illustrated in the experiments done to date.  In the diabetes
data set it gives higher error rate than a single run of CART.   The Freund-Schapire[1996] and
Quinlan[1996] experiments used C4.5, a tree-structured program similar to CART and compared
C4.5 to the arc-fs and bagging classifiers based on C4.5.   In 5 of the 39 data sets examined in the
two experiments, the arc-fs test set error was over 20% larger than that of C4.5.  This did not
occur with bagging.    Its not understood why arc-fs causes this infrequent degeneration in test set
error, usually  with smaller data sets.    One conjecture is that this may be caused by outliers in
the data.   An outlier will be consistently missclssified, so that its probability of being sampled
will continue to increase az the arcing continues.  It will then start appearing  multiple times in
the resampled data sets.  In small data sets, this may be enough to warp the classifers.

7.3  Future Work

Arc-fs and other arcing algorithms function to reduce test set error  on a wide variety of data
sets and to improve the classification accuracy of methods like CART to the point where they
are the best available off-the-shelf classifiers.  The Freund-Schapire discovery of adaptive
resampling  as embodied in arc-fs is a creative idea which should lead to interesting research
and better understanding of how classification works.   The arcing algorithms have a rich
probabilistic structure and it is a challenging problem to connect this structure to their variance
reduction properties.   It is not clear what an optimum arcing algorithm would look like.  Arc-fs
was devised in a different context and arc-x4 is ad-hoc.   Better understanding of how arcing
functions  will lead to further improvements.

8.  Acknowledgments

I am indebted to Yoav Freund for giving me the draft papers referred to in this article and to
both Yoav Freund and Robert Schapire for informative email interchanges and help in
understanding the boosting context:  To Trevor Hastie for making available the preprocessed US
Postal Service data: to  Harris Drucker who responded generously to my questioning at NIPS95
and whose subsequent work on comparing arc-fs to bagging convinced me that arcing needed
looking into: to Tom Dietterich for his comments on the first draft of this paper; and to David
Wolpert for helpful discussions  about boosting .

References

Because much of the work in this area is recent, some of the relevant papers are not yet
published.   Addresses are given where they can be obtained electronically.

Ali, K. [1995]  Learning Probablistic Relational Concept Descriptions,  Thesis, Computer 
Science, University of California, Irvine

Breiman, L. [1996a] Bagging predictors, in press, Machine Learning, 
ftp  stat.berkeley.edu/users/pub/breiman

Breiman, L. [1996b] The heuristics of instability in model selection, in press, Annals of 
Statistics, ftp stat.berkeley.edu/users/pub/breiman

Breiman, L., Friedman, J., Olshen, R., and Stone, C. [1984] Classification and Regression Trees,  
Chapman and Hall



18

Dietterich, T.G. and Kong, E. B[1995] Error-Correcting Output Coding Corrects Bias and 
Variance, Proceedings of the 12th International Conference on Machine Learning
pp. 313-321 Morgan Kaufmann. ftp://ftp.cs.orst.edu/~tgd/papers/ml95-why.ps.gz

Drucker, H. and Cortes, C. [1995]   Boosting decision trees, to appear, Neural Information 
Processing 8, Morgan-Kaufmann, 1996 ,  ftp ftp.monmouth.edu /pub/drucker/nips-
paper.ps.Z

Freund, Y. and Schapire, R. [1995]  A decision-theoretic generalization of on-line learning 

and an application to boosting.  http://www.research.att.com/orgs/ssr/people/yoav

or http://www.research.att.com/orgs/ssr/people/schapire

Freund, Y. and Schapire, R. [1996]  Experiments with a new boosting  algorithm, to appear 
"Machine Learning: Proceedings of the Thirteenth International Conference," July, 
1996.

Friedman, J. H. [1996] On Bias, Variance, 0/1-loss, and the Curse of Dimensionality

Geman, S., Bienenstock, E., and Doursat, R.[1992] Neural networks and the bias/variance 
dilemma.  Neural Computations 4, 1-58

Hastie, T. and Tibshirani, R. [1994] Handwritten digit recognition via deformable 
prototypes, ftp stat.stanford.edu/pub/hastie/zip.ps.Z

Kearns, M. and Valiant, L.G.[1988] Learning Boolean Formulae or Finite Automata is as Hard 
as Factoring, Technical Report TR-14-88, Harvard University Aiken Computation 
Laboratory

Kearns, M. and Valiant, L.G.[1989]  Cryptograohic Limitations on Learning Boolean Formulae 
and Finite Automata.  Proceedings of the Twenty-First Annual ACM Symposium on 
Theory of Computing , ACM Press, 433-444.

Kohavi, R. and Wolpert, D.H.[1996] Bias Plus Variance Decomposition for Zero-One Loss 
Functions, ftp starry.stanford.edu/pub/ronnyk/biasVar.ps

Le Cun, Y. Boser, B., Denker, J., Henderson, D., Howard, R.,Hubbard, W. and Jackel, L. [1990], 
Handwritten digit recognition with a back-propagation  network, in D. 
Touretzky, ed. Advances in Neural Information  Processing Systems, Vol.2, Morgan 
Kaufman

Michie, D., Spiegelhalter, D. and Taylor, C. [1994]  Machine Learning, Neural and 
Statistical Classification,   Ellis Horwood, London

Quinlan, J.R.[1996]  Bagging, Boosting, and C4.5, to appear in the Proceedings of AAAI'96 
National Conference, on Artificial Intelligence, http://www.cs.su.oz.au/~quinlan

Schapire, R.[1990] The Strength of Weak Learnability, Machine Learning, 5,197-227

Simard, P., Le Cun, Y., and Denker, J., [1993] Efficient pattern recognition  using a new 
transformation distance, in Advances in Neural Information Processing Systems, 
Morgan Kaufman



19

Tibshirani, R [1996] Bias, Variance, and Prediction Error for Classification Rules, 
ftp  utstat.toronto.edu/pub/tibs/biasvar.ps

Vapnik, V. [1995]  The Nature of Statistical Learning Theory,  Springer

      Appendix on  1  Bias and Variance Definitions

In the latter part of 1995 and early 1996 there was a flurry of activity concerned with
definitions of bias and variance for classifiers, some of it stimulated by the circulation of the
first draft of this paper.  That draft used a different  definition of bias and variance which I
call Definition 0.

Definitionn 0:

The bias of a classifier  C is

Bias (C) = PE(CA)  -  PE(C*)

and its variance is

Var (C)  =   PE(C)  -  PE(CA)

The same  definition  of variance was proposed earlier by Dietterich and Kong  [1995].   They
defined Bias(C) as PE(CA), thus arriving at a different decomposition of PE(C) than the one I

work with.  Their paper notes that the variance, as defined, could be negative.   Kohavi and
Wolpert [1996] criticized Definition 0, not only for the possibility that the variance could be
negative, but also on the grounds that it did not assign zero variance to deterministic classifiers.
They give a different definition of bias and variance.  But in their definition, the bias of C* is
generally positive.   Tibshirani [1996] defined bias the same way as definition 0  but defined
variance as P(C ≠ CA) and explored methods for estimation of the bias and variance terms.

After considering the various suggestions and criticisms and exploring the cases in which the
variance, as defined in Definition 0, was negative, I formulated the definition in Section 2. It
gives the correct intuitive meaning to bias and variance and does not have the drawback of
negative variance.  Some additional support for it comes from Friedman[1996].  This ms.
contains a thoughtful analysis of the meaning of bias and variance in two class problems.   Using
some simplifying assumptions  a definition of "boundary bias"  at a point x  is given and it is
shown that at points of negative boundary bias, classification error can be reduced by reducing
variance in the class probability estimates.  If the boundary bias is not negative, decreasing the
estimate variance may increase the classification error   The points of negative boundary bias
are exactly the points that I have defined as the variance set.

Appendix 2  The Boosting Context of Arc-fs

Freund and Schapire  [1995} designed arc-fs to drive the training error rapidly to zero.  They
connected this training set property  with the test set behavior in two ways.  The first was
based on structural risk minimization (see Vapnik[1995]).   The idea here is that bounds on the
test set error can be given in terms of the training set error where these bounds depend on the
VC-dimension of the class of functions used to construct the classifiers.   If the bound is tight this
approach has a contradictory consequence.  Since stopping as soon as the training error is zero
gives the least complex classifier with the lowest VC dimension, then the test set error
corresponding to this stopping rule should be lower than if we continue to combine  classifiers.
Table 10 shows that this does not hold.



20

The second connection is through the concept of boosting.  Freund and Schapire  [1995] devised
arc-fs in the context of boosting theory  (see Schapire[1990]) and named it Adaboost.  We follow
Freund[1995] in setting out the definitions:  Assume that there is an input space of vectors x and
an unknown function Co(x) ∈ {0,1} defined on the space of input vectors x that assigns a class
label to each input vector.   The problem is to "learn" Co.

A classifying  method is called a weaklearner if there exist ε >0, δ >0 and integer N such that
given a training set T consisting of  x1,x2,...xN drawn at random from any distribution P(dx) on
input space together with the corresponding  jn=Co(xn), n=1, ... ,N and the classifier C(x,T)

constructed, then the probability of a T such that P(C(X,T) ≠ Co(X)|T)<.5- ε  is greater than δ ,
where X  is a random  vector having distribution P(dx).

A classifying  method is called a stronglearner if for any ε >0, δ >0 there is an integer N  such
that  if it is given a training set T consisting of  x1,x2,...xN  drawn at random from any
distribution P(dx) on input space together with the corresponding  jn=Co(xn), n=1, ... ,N,  and the

classifier C(x,T) constructed, then the probability of a T such that P(C(X,T) ≠ Co(X)|T) > ε  is

less than δ , where X is a random vector having distribution P(dx).

Note that a stronglearner has low error over the whole input space, not just the training set--
i.e. it has small test set error.  The concept of weak learning was introduced by Kearns and
Valiant[1988], [1989], who left open the question of whether weak and strong learnabilty are
equivalent.  The question was termed the  boosting problem   since equivalence requires the
method to boost the low accuracy of a weaklearner to the high accuracy of a stronglearner.
Schapire[1990] proved that boosting is possible.  A boosting algorithm is a method that takes a
weaklearner and converts it into a stronglearner.  Freund [1995] proved that an algorithm
similar to arc-fs is boosting.   Freud and Schapire [1995] apply the results in Freund[1995] and
conclude that Adaboost is boosting.

The boosting assumptions  are restrictive.  For instance, if there is any overlap between classes
(if the Bayes error rate is positive) then there are no weak or strong learners. Even if there is no
overlap between classes, it is easy to give examples of input spaces and Co such that there are
no weak learners.   The boosting theorems really say "if there is a weak learner, then..."  but in
virtually all of the real data situations in which arcing or bagging is used, there is overlap
between classes and no weak learners exist.  Thus  the  Freund{1995} boosting theorem is  not
applicable.    In particular, it is not applicable in all of the examples of simulated data used in
this paper and most, if not all,  of the examples of real data sets used in this paper, in Freund
and Schapire[1996] , and in Quinlan[1996].

While there may be a connection between the ability of arcing algorithms to rapidly drive
training set error to zer o and their steady-state test set reduction, it is not rooted in the boosting
context.
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