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The Data Avalanche

The ability to gather and store data has
resulted in an avalanche of scientific data over
the last 25 years.  Who is trying to analyze
this data and extract answers from it?

There are small groups of academic
statisticians, machine learning specialists in
academia or at high end places like
IBM, Microsoft, NEC, ETC.

More numerous are the workers in many
diverse projects trying to extract significant
information from data.

Question (US Forestry Service).  "We have
lots of satellite data over our forests.  We
want to use this data to figure out what is
going on"

Question (LA County)  "We have many years
of information about incoming prisoners and
whether they turned violent.  We want to use
this data to screen incoming prisoners for
potential violent behavior."
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Tools Needed

Where are the tools coming from?

SAS $$$

S+ $$$

SPSS $$$

R 000  (free open source)

Other scattered packages

The most prevalent of these tools are two
generations old--

General and non-parametric

CARTlike (binary decision trees)

Clustering

Neural Nets
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What Kind Of Tools Are Needed to
Analyze Data ?

An example--CART

The most successful tool (with lookalikes) of
the last 20 years. Why?

1) Universally applicable to classification and
regression problems with no assumptions on
the data structure.

2)  The picture of the tree structure gives
valuable insights into which variables were
important and where.

3) Terminal nodes gave a natural clustering of
the data into homogenous groups.

4) Handles missing data  and categorical
variables efficiently.

4) Can handle large data sets--computational
requirements are order of MNlogN where N
is number of cases and M is number of
variables
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Drawbacks

accuracy:  current methods such as SVMs
and ensembles average 30% lower error rates
than CART.

instability:  change the data a little and you
get a different tree picture.  So the
interpretation of what goes on is built on
shifting sands.

In 2003 we can do better

What would we want in a tool to be a useful to
the sciences.
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Tool Specifications For Science

The Minimum

1)  Universally applicable in classification and
     regression.

2)   Unexcelled accuracy

3)  Capable of handling large data sets

4)  Handles missing values effectively

Much More

think of CART tree picture.

5)  which variables are important?

6)  how do variables interact?

7)  what is the shape of the data--how     
    does it cluster?

8)  how does the multivariate action of 
the variables separate classes?

9)   find novel cases and outliers
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Toolmakers

Adele Cutler & Leo Breiman

free open source written in f77

www.stat.berkeley.edu/users/breiman/
RFtools

The generic names of our tools is random
forests (RF).

Characteristics as a classification machine:

1)  Unexcelled accuracy-about the same as
SVMs

2)  Scales up to large data sets.

Unusually Rich

In the wealth of scientifically important
insights it gives into the data  It is a general
purpose tool, not designed for any specific
application
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Outline of Part One (Leo Breiman)

I  The Basic Paradigm

a.  error, bias and variance

b.  randomizing "weak" predictors

c.  two dimensional illustrations

d.  unbiasedness in higher dimensions

II.  Definition of Random Forests

a)  the randomization used

b)  properties as a classification machine

c)  two valuable by-products
oob data and proximities
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III  Using Oob Data and Proximities

a) using oob data to estimate error

b) using oob data to find important 
variables

c) using proximities to compute 
prototypes

d) using proximities to get 2-d data 
pictures

 e) using proximities to replace missing 
values

 f) using proximiites to find outliers

 g) using proximities to find mislabeled 
data

IV  Other Capabilities
a) balancing error
b) unsupervised learning
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I.  The Fundamental Paradigm

Given a training set of data

T= (yn ,xn ) n =1, ... , N}

where the yn  are the response vectors and
the  xn are vectors of predictor variables:

Problem: Find a function f on the space of
prediction vectors with values in the
response space such that the prediction error
is small.

If the (yn ,xn )  are i.i.d from the distribution
(Y,X) and given a  function L(y,y')  that
measures the loss between  y and the
prediction y': the prediction  error  is

  PE( f ,T) = EY,XL(Y, f (X,T))

Usually y is one dimensional.

If numerical, the problem is regression.
the loss is squared error.

If unordered labels,  it is classification.
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Bias and Variance in Regression

For a specific predictor the bias measures its
"systematic error".

The variance measures how much it
"bounces around"

the Bias-Variance Decomposition

A random variable Y  related to a random
vector X can be expressed as

(1)       Y = f *(X)+ε

where

f *(X) = E(Y|X), E(ε |X)=0

This decomposes Y  into its structural
part f *(X)  which can be predicted in
terms of X ,  and the unpredictable noise
component.
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Mean-squared generalization error

of  a predictor f (x,T ) is

 (2)    PE( f (• ,T))= EY,X(Y − f (X,T))2

where the subscripts indicate expectation
with respect to Y ,X  holding T fixed.

Take the expectation of (2)  over all
training sets of the same size drawn from
the same distribution .

This is the mean-squared generalization
error PE*( f ).

Let f (x) be the average over training sets
of the predicted value at x.   That is;

(3) f (x) = ET( f (x,T)).
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The bias-variance decomposition

(4)  
PE*( f )= Eε2+EX( f *(X)− f (X))2

+EX,T ( f (X,T)− f (X))2
  

the first term is the noise variance,

the second is the bias squared

the third is the variance.
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Weak Learners

Definition:  a weak learner is a prediction
function that has low bias.

Generally, low bias comes at the cost of high
variance.

A weak learner is usually not an accurate
predictor because of high variance.

two dimensional example

The 100 case training set is generated by
taking:

x(n) =100 uniformly spaced points on [0,1]
y(n)=sin(2*pi*x(n))+N(0,1)

The weak learner f (x,T) is defined by:

If  x(n)≤x<x(n+1) then y(n),y(n+1) is linearly
interpolated between y(n),y(n+1)

i.e. the weak learner is join the data dots by
straight line segments.
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               Bias

1000 training sets are generated in the same
way and the 1000 weak learners averaged.
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The averages approximate the underlying
function sin(2*pi*x).

The weak learner is almost unbiased but with
large variance. But 1000 replicate training
sets are rarely available.

Making Silk Purses out of Weak Learners

Here are some examples of our fundamental
paradigm applied to a single training set
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using the same "connect-the -dots" weak
learner.
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T he Paradigm--
IID Randomization of Weak Learners

The predictions shown above are the averages of
1000 weak learners.  Here is how the weak
learners are formed:
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FORMING THE WEAK LEARNER

Subsets of the training set consisting of two-
thirds of the cases is selected at random.  All the
(y,x) points in the subset are connected by lines.

Repeat 1000 times and average the 1000 weak
learners prediction.
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The Paradigm-Continued

The kth weak learner is of the form:

f k (x,T) = f (x,T,Θk )

where Θk   is the random vector that selects
the points to be in the weak learner.

The Θk   are i.i.d.

If there are N cases in the training set, each
Θk  selects, at random, 2N/3 integers from
among the integers 1,...,N.

The values of y(n),x(n) for the selected n are
deleted from the training set.

The ensemble  predictor is:

 F(x,T) = 1
K

f (x,T,Θk )
k
∑
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Algebra and the LLN leads to:

Var(F) =
EX,Θ,Θ' [ρT( f (x,T,Θ) f (x,T,Θ' ))VarT( f (x,T,Θ)

 where Θ,Θ'  are independent.  Applying the
 mean value theorem--

Var(F) = ρVar( f )
and

Bias2(F) = EY,X(Y − ET,Θ f (x,T,Θ))2

   
≤EY ,X,Θ(Y−ET f (x,T,Θ))2

=EΘbias2 f (x,T,Θ)+Eε2

Using the iid randomization of predictors leaves
the bias approximately unchanged while reducing
variance by a factor of ρ
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  The Message

A big win is possible with using iid
randomization of weak learners as long as
their correlation and bias are low.

In sin curve example, base predictor is
connect all points in order of x(n).

bias2=.000
variance=.166

For the ensemble

bias2 = .042
variance =.0001

Random forests is an example of iid
randomization applied to binary classifiction
trees (CART-like)
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What is  Random Forests

A random forest (RF) is a collection of tree
predictors

f (x,T,Θk ), k =1,2,..., K )

where the Θk are i.i.d random vectors.

In classification, the forest prediction is the
unweighted plurality of class votes

The Law of Large Numbers insures
convergence  as k→∞

The test set error rates (modulo a little noise)
are monotonically decreasing and converge to
a limit.

That is:  there is no overfitting as the number of
trees increases
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Bias and Correlation

The key to accuracy is low correlation and
bias.

To keep bias low, trees are grown to
maximum depth.

To keep correlation low, the current version
uses this randomization.

i)  Each tree is grown on a bootstrap sample
of the training set.

ii)  A number m is specified much smaller than
the total number of variables M.

iii) At each node, m variables are selected at
random out of the M.

iv) The split used is the best split on these m
variables

The only adjustable parameter in RF is m.
User setting of m will be discussed later.
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Properties as a classification machine.

a)  excellent accuracy

in tests on collections of data 
sets, has better accuracy than 
Adaboost and Support Vector 
Machines

b)  is fast
with 100 variables, 100 trees in
a forest can be grown in the 
same computing time as 3 
single CART  trees

c)  handles
 thousands of variables

        many valued categoricals
 extensive missing values
 badly unbalanced data sets

d)  gives
internal unbiased estimate 
of test set error as trees are 
added to ensemble

e) cannot overfit
(already discussed)
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        Two Key Byproducts

The out-of-bag test set

For every tree grown, about one-third of the
cases are out-of-bag (out of the bootstrap
sample).  Abbreviated  oob.

The oob samples can serve as a test set for
the tree grown on the non-oob data.

This is used to:

i) Form unbiased estimates of the forest test
set error as the trees are added.

ii) Form estimates of variable importance.
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The Oob Error Estimate

oob is short for  out-of-bag  meaning not in
the bootstrap training sample.

the bootstrap training sample leaves out
about a third of the cases.

each time a case is oob, it is put down the
corresponding tree and given a predicted
classification.

for each case. as the forest is grown, the
plurality of these predictions give a forest
class prediction for that case.

this is compared to the true class, to give the
oob error rate.

Il lustrat ion-satel l i te  data
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This data set has 4435 cases, 35 variables and a
test set of 2000 cases.  If the output to the
monitor is graphed for a run of 100 trees, this is
how it appears:

The oob error rate is larger at the beginning
because each case is oob in only about a third of
the trees.

The oob error ate is used to select m (c a l l e d
mtry in the code) by starting with  m = M ,
running about 25 trees, recording the oob error
rate.  Then increasing and decreasing m u n t i l
the minimum oob error is found.
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Using Oob for Variable Importance

to assess the importance of the mth variable,
after growing the kth tree randomly permute
the values of the mth variable among all oob
cases.

put the oob cases down the tree.

compute the decrease in the number of votes
for the correct class due to permuting the mth
variable.

average this over the forest.

also compute the standard deviation of the
decreases and the standard error.

dividing the average by the se gives a z-
score.

assuming normality, convert to a
significance value.

the importance of all variables is assessed in a
single run



3 2
Illustration-breast cancer data

699 cases, 9 variables, two classes.
initial error rate is 3.3%.

 added 10,000 independent unit normal
variables to each case.

did a run to generate a list 10,009 long of
variable importances and ordered them by z-
score

here are the first 12 entries

   variable #        raw score    z-score       significance

    6     3 .274 0.936 0.175
    3     3.521     0.910    0 .181
   2     3.484     0.902    0 .183
    1     2.369     0.898     0 .185
    7     2.811     0.879     0 .190
    8     2.266     0.847     0 .199
    5     2.164     0.829     0 .204
    4     1.853     0.814     0 .208
    9     0.825     0.700    0 .242
 8104     0.016     0.204     0 .419
  430    0.005     0.155     0 .438
 5128     0.004     0.147     0 .441

2003 NIPS competition  on feature selection in
data sets with thousands of variables

over 1600 entries from some of the most
prominent people in Machine Learning.

the top 2nd and 3rd entry used RF for feature
selection.
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Il lustrat ion-Microarray Data

81 cases, three classes, 4682 variables

  This data set was run without variable deletion
 The error rate is 1.25% --one case misclassified.

Importance of all variables is computed in a
single run of 1000 trees.
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The Proximities

Since the trees are grown to maximum depth,
the terminal nodes are small.

For each tree grown, pour all the data down
the tree.

If two data points xn and xk  occupy the same
terminal node,

increase prox(xn ,xk ) by one.

At the end of forest growing, these
proximities are normalized by division by the
number of trees.

They form an intrinsic similarity measure
between pairs of data vectors.

These are used to:

i)  Replace missing values.

ii)  Give informative data views via metric
scaling.

iii)  Understanding how variables separate    
classes--prototypes

iv)  Locate outliers and novel cases
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  Replacing Missing Values using Proximities

RF has two ways of replacing missing values.

The Cheap Way

Replace every missing value in the mth
coordinate by the median of the non-missing
values of that coordinate or by the most
frequent value if it is categorical.

The Expensive  Way

This is an iterative process.  If the mth
coordinate in instance xn is missing then it is
estimated by a weighted average over the
instances xk  with non-missing mth coordinate
where the weight is prox(xn ,xk ).

The replaced values are used in the next
iteration of the forest which computes new
proximities.

The process it automatically stopped when no
more improvement is possible or when five
iterations are reached.

Tested on data sets , this replacement method
turned out to be remarkably effective.
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Illustration-DNA Splice Data

the DNA splice data set has 60 variables, all four
valued categorical,  three classes, 2000 cases in
the training set and 1186 in the test set.

interesting as a case study because the
categorical nature of variables makes many
other methods, such as nearest neighbor,
difficult to apply.

runs were done  deleting 10%, 20%,30%, 40%,
and 50%. at random and both methods used to
replace.

forests were constructed using the replaced
values and the test set accuracy of the forests
c o m p u t e d ,
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It is remarkable how effective the proximity-
based replacement process is.  Similar results
have been gotten on other data sets.
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Using Proximites to Picture the Data

Clustering=getting a picture of the data.

To cluster, you have to have a distance,
a dissimilarity, or a similarity between pairs of
instances.

Challenge:  find an appropriate distance
measure between pairs of instances in  4691
dimensions. Euclidean? Euclidean normalized?

The values (1-proximity(k,j) ) are distances
squared in a high-dimensional Euclidean
space.

They can be projected down onto a low
dimensional space using metric scaling.

Metric scaling derives scaling coordinates
which are related to the eigenvectors of a
modified version of the proximity'
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An Illustration:  Microarray Data

81 cases, 4691 variables, 3 classes (lymphoma)

error rate (CV) 1.2%--no variable deletion

Others do as well, but only with extensive
variable deletion.

So have a few algorithms that can give
accurate classification.

But this is not the goal, more is needed for
the science.

1)  What does the data look like? how does it
cluster?

2) Which genes are active in the
discrimination?

3)  What multivariate levels of gene
expressions discriminate between classes.

2) can be answered by using variable
importance in RF.

now we work on 1) and 3)
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Picturing the Microarray Data

The graph below is a plot of the 2nd scaling
coordinate vs. the first:
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consider the possiblilities of getting a picture
by standard clustering methods.

i.e. find an appropriate distance measure
between 4691 variables!
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Using Proximites to Get Prototypes

Prototypes are a way of getting a picture of how
the variables relate to the classification.

 For each class j, it searches for that case n1 such
that weighted class j cases is  among its K nearest
neighbors in proximity measure is largest.

Among these K cases the median, 25th
percentile, and 75th percentile is computed for
each variable.  The medians are the prototype
for class j and the quartiles give an estimate of is
stability.

For the second class j prototype, a search is
made for that case n2 which is not a member of
the K neighbors to n1 having the largest
weighted number of class j among its K nearest
neighbors.

This is repeated until all the desired prototypes
for class j have been computed.  Similarly for
the other classes.
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Il lustrat ion-Microarray Data

In the microarray data, the class sizes were  29
43  9.  K is set equal to 20, and a single prototype
is computed for each class  using only the 15
most important variables.

0

.25

.5

.75

1

va
ri

a
b

le
s 

va
lu

e
s

0 2 4 6 8 10 12 14 16
variables

class 3

class 2

class 1

PROTOTYPES FOR MICROARRAY DATA

It is easy to see from this graph how the
separaration into classes works.  For instance,
cl;ass 1 is low on variables 1,2-high on 3, low on
4, etc.
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Prototype Variabil i ty

In the same run the 25th and 75th percentiles 
are computed for each variable.  Here is the
graph of the prototype for class 2 together with
percent i les
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The prototypes show how complex the
classification process may be, involving the
need to look at multivariate values of the
variables.
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    Using Proximities to Find Outliers

Qutliers can be found using proximities  An
outlier is a case whose proximities to all
other cases is small.

Based on this concept, a measure of
outlyingness is computed for each case in
the training sample.

The measure for case x(n) is 1/(sum of
squares of prox(x(n),x(k)) , k not equal to n

Our rule of thumb that if the measure is
greater than 10, the case should be carefully
inspected.
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Outlyingness for the Microarray Data
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Illustration-- Pima Indian Data

As second example, we plot the outlyingness
for the Pima Indians hepatitis data.  This data
set has 768 cases, 8 variables and 2 classes.

It has been used often as an example in
Machine Learning research and is suspected
of containing a number of outliers.
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           If 10 is used as a cutoff point, there are 12
    cases suspected of being outliers.
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Mislabeled Data as Outliers

Often, the instances in the training set are
labeled by human hand.  The results are
often either ambiguous or downright
incorrect.

Our experiment--change 100 labels at
random in the DNA data.  Maybe these will
turn up as outliers.
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Learning from Unbalanced Data Sets

Increasingly often, data sets are occurring
where the class of interest has a population
that is a small fraction of the total population.

In document classification, the number of
relevant documents may be 1-2% of the total
number.

In drug searches, the number of active drugs
in the sample may be similarly small.

In such unbalanced data, the classifier will
achieve great accuracy by classifying almost
all cases as the majority case, thus--

completely misclassifying the class of interest.
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Example--Small Class In Satellite Data

Class 4 in the satellite data has 415 cases.  The
other classes total  4020 cases.

objectives--considered as a two class problem
(class 4 relabelled class 2) from the rest(class1)

1)  equalize the error rates between the
classes.

2) find wich variables are important in
separating the two classes

1st run:  no attention to unbalance

overall error rate     5.8%
error rate-class 2  51.0%
error rate-class 1      1.2%

2nd run:  8:1 weight on class 2

overall error rate    12.9%
error rate-class 2   13.1%
error rate-class 1      11.3%
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 Variables Importances
              Unweighted And Weighted

      Here is a graph of both z-scores:
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VARIABLE IMPORTANCE-BALANCED AND UNBALANCED

There are significant differences.  For 
example, variable 18 becomes important.  So 
does variable 23.

In the unbalanced data, because class 2 is
virtually ignored, the variable importances
tend to be more equal.

In the balanced case a small number stand
out.
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Unsupervised Learning Using RF

Unsupervised learning implies that the data
has no class labels to guide the analysis.

The data consists of a set of N x vectors of
the same dimension M.

The most common unsupervised effort is to
try and cluster this data to find some
"structure"--a most ambiguous project.

Still, random forests demands labels.  So we
trick it!

Label the original data class 1.  I construct a
synthetic data set of size N which will be
labeled class 2.

 Denote the value of the mth variable in the
nth instance in the class 1 data as x(m,n).

Here is how each class two instance is
constructed.  Select the first coordinate at
random from the N values {x(1,n)}.  Select the
2nd coordinate at random from the N values
{x(2,n)}, and so on.
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Using the Second Class

The distribution of the 2nd class destroys the
dependencies between variables.

It has the distribution of M independent
random variables, the mth of which has the
same univariate distribution as the mth
variable in the original data.

Now we can run the data as a two class
problem.

If the error rate is up near 50%, then RF
cannot distinguish between the two classes.

Class 1 looks like a sampling from M
independent random variables--not a very
interesting distribution.

Bit if the separation is good, then all the tools
in RF can be used on the original data set.

1)  scaling views
2) outlier location
3) missing value replacement
4) prototypes
5) variable importance.
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Unsupervised Clustering

Difficulty with clustering:  no objective figure
of merit.

A proposed test:

take data with class labels.

Erase the labels.

Cluster the data.

Do the clusters correspond to the original
classes?

Why isn't this being used to check out the
avalanche of clustering algorithms?

So here is random forests response to this
test.
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The Microarray Data Again

The labels were erased from the data,
the synthetic 2nd class formed and RF run on
the two class data.

The optimal mtry for the original labelled data
is in the range 150-200.  For the unsupervised
run it is around 50. The error rate is 10%,
Here is the scaling picture:
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The three clusters appear again.
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Illustration-The Cancer Data

The cancer data is another classic machine
learning benchmark data set. It has 699 cases,
9 variables ,and 2 classes.

 Using labels, the scaling projection is:
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The often odd appeasrance of the scaling
plots with arms reaching out is due to the
nature of the proximities--unlike Euclidean
metrics, proximities are locally variable
dependent and tend to pull classes further
apart.
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Erasing labels

        And doing unsupervised scaling gives 
this picture
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The structure of the data is largely retained in
unsupervised mode because of dependencies
between variables.
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         Illustration: satellite data
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Unsupervised clustering: spectral data

Another example uses data supplied by
Merck consists of:

The first 468 spectral intensities in the
spectrums of 764 compounds.

The challenge presented by Merck was to
find small cohesive groups of outlying cases
in this data.

There is excellent separation between the
two classes, with an error rate of 0.5%.

We looked for outliers, and didn't find any.

But outliers must be fairly isolated  to show
up in the outlier display.

To search for outlying groups scaling
coordinates were computed.  The plot of the
2nd vs. the 1st is below:
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The spectra fall into two main clusters.

There is a possibility of a small outlying
group in the upper left hand corner.

To get another picture, the 3rd scaling
coordinate is plotted vs. the 1st.



6 0

-.3

-.25

-.2

-.15

-.1

-.05

0

.05

.1

.15

3
rd

 s
ca

lin
g

 c
o

o
rd

ia
n

te

-.25 -.2 -.15 -.1 -.05 0 .05 .1 .15 .2 .25
1st scaling coordinate

Metrc Scaling
Specta Data

The group in question is now in the lower
left hand corner.

It's separation from the main body of the
spectra has become more apparent.

RF gives an answer to an non-trivial
scientific question.
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Explore with Random Forests

The experiment adding 10,000 variables to a
data set has this point--

You can add almost as many features
(functions of the original variables) as you
want and RF will handle the increased
dimensionality.

Then it will tell you which are the important
features and which are not.

If  quadratic interactions are suspected, add
all terms of the form x(m)*x(k) and see what
falls out.

If domain knowledge is available, use it to
form features that you think might be
significant.

Using RF gives freedom to explore.

END-PART I
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