
1

RANDOMIZING OUTPUTS TO INCREASE PREDICTION ACCURACY

 Leo Breiman
 Statistics Department
 University of California
 Berkeley, CA. 94720
 leo@stat.berkeley.edu

Technical Report 518, May 1, 1998

 abstract

Bagging and boosting reduce error by changing both
the inputs and outputs to form perturbed training
sets, grow predictors on these perturbed training sets
and combine them. A question that has been
frequently asked is whether it is possible to get
comparable performance by perturbing the outputs
alone. Two methods of randomizing outputs are
experimented with. One is called output smearing
and the other output flipping. Both are shown to
consistently do better than bagging.

1. Introduct ion

In recent research in combining predictors, it has been recognized that the
critical thing to success in combining low-bias predictors such as trees and
neural nets has been through methods that reduce the variability in the
predictor due to training set variability. Assume that the training set consists
of N independent draws from the same underlying distribution.
Conceptually, training sets of size N can be drawn repeatedly and the same
algorithm used to construct a predictor on each training set. These predictors
will vary, and the extent of the variability is a dominant factor in the
generalization prediction error.

2

Given a training set {(yn ,xn),n=1,...N} where the y's are either class labels or
numerical values, the most common way of reducing variability is by
perturbing the training set to produce alternative training sets, growing a
predictor on each perturbed training set, and either averaging the outcomes
(regression) or letting them vote for the most popular class (classification).
Examples are bagging (Breiman[1996b]) and arcing-boosting (Freud and
Schapire[1995], [1996], Breiman [1998]).

However, in work (Breiman[1996b]) on subset selection in linear regression, I
found the somewhat surprising result that adding noise to the y's while
leaving the input x-vectors unchanged worked just as well as bagging. This
paper extends those earlier results to non-linear contexts in both regression
and classification and also tries to understand why perturbing outputs only
works well. Although we use trees in the experimental results, the ideas
have more general validity.

In Section 2, we set up the general expressions for prediction error i n
regression and classification. In these expressions, we try to isolate a
component that measures the contribution due to the y-variability only
holding the inputs constant, and another component that measures the
residual effect of input-variability. This can be done in a straightforward way
in regression, but more implicitly in classification.

In Section 2 synthetic data is used in a manner that gives Monte Carlo
estimates of the variability in decision trees (CART, Breiman et.al.[1984])
caused by the separate input and output components. The conclusions are
that the output variability dominates the input variability in regression but
not in classification. However, introducing extra artificial variability into the
outputs reduces the error in classification considerably.

This suggests that if extra random variation is put into the outputs (given a
single training set), leaving the inputs fixed, producing a sequence of
perturbed training sets., that then the predictors grown on these, averaged or
voted, may be comparable in accuracy to methods that perturb both inputs
and outputs.

Section 3 discusses possible methods for perturbing outputs. In regression,
the situation is pretty clear. Adding Gaussian noise to the outputs works
fairly well. Formulating a J-class classification problem in terms of J multiple
outputs, where the jth output is one if the output label is j, and the other
outputs are zero, puts it into a regression-like multiple output context. Now
Gaussian noise can be added to each output independently of the others. W e
refer to the adding of Gaussian noise to the outputs as Output Smearing.

The most obvious way of perturbing the output in classification is to alter
some of the class labels. In this procedure, we have found that it important to

3

keep the class compositions relatively invariant. Then the extent of the
change is measured by a real parameter called the flip rate and we call the
procedure Output Flipping .

Section 4 gives the results of our experimental work with output smearing on
a variety of data sets. Generally, output smearing works better than bagging
but not as well as the Adaboost algorithm (Freud and Schapire[1995], [1996]).
Section 5 gives the experimental results on flipping. It’s error rates are
comparable to output smearing. But unlike smearing where “one size fits
all”, it is sensitive to the size of the flip rate. Finally Section 6 contains some
conclusions and remarks.

2 Output Variability and Prediction Error

Denote a training set T={(yn,xn),n=1,...N}. Assume the (yn,xn) are

independently drawn from the same underlying probability distribution P
and let (Y,X) be a random vector having the distribution P and independent
of the instances in training set. Given a training set, we assume that we have
an algorithm that will operate on the training set producing a function f (x,T)
whose value is the predicted output for input vector x.

 2.1 Regression.

Take the mean-squared prediction error to be defined as

PE(f (• ,T))=EY,X (Y − f (X,T))2 (1)

where the subscripts Y,X denote expectation with respect to Y,X holding
everything else fixed. To briefly review the work in Geman et.al [1992] and
Breiman [1996a], we can always decompose Y as

Y = f *(X) + ε (2)

where we refer to f *(X) as the structural part of Y and ε , the noise
component, has the property that E(ε |X)≡0 . Substituting (2) into (1) gives

PE(f (• ,T))=Eε2 + EX (f *(X)− f (X,T))2

We are interested in the average performance of the algorithm over
replicated training sets of size N. Define

PE(f)=ET PE(f (• ,T))

4

and

f (x)=ET f (x,T)

Then some algebra results in:

ET ,X (f *(X)− f (X,T))2 =EX (f *(X)− f (X))2 +ET,X (f (X,T)− f (X))2
 (3)

The first term is a bias term denoted by B2(f). It measures how much the
average of f (x,T) over learning sets differs from the structural part of y given

by f *(x). The second is the variance term V(f) which is a measure of the

fluctuation of f (x,T) around its average f (x) . So (3) gives the
decomposition

PE(f)=σ2 +B2 (f)+V (f) (4)

Now, denote the training set by (
(
Y,
(
X) where

(
Y is the N-long vector of

outputs, and
(
X the N-long array of input vectors, and denote

 f(E f(),) , ()x x Y, XX
Y

(
(

((
= (5)

That is, f (x,
(
X) is gotten by holding the inputs constant and integrating over

the output distribution. In the identity

V (f)=ET,X (f (X,T)− f (X,

(
X))2 +E

X,
(
X

(f (X,
(
X)− f (X))2

(6)

we identify the first term as the variability due to the outputs and the 2nd as
the residual variance due to the inputs and write

V (f)=VO (f)+V I (f). (7)

The output variability term can be thought of this way: fix the inputs
(
X and

compute the variation around the mean as the outputs
(
Y vary over their

conditional distribution given
(
X . Then average this variation over the

distribution of
(
X .

2.2 Classification

The prediction error is defined as the misclassification rate:

5

PE(f (• ,T))=PY,X (Y ≠ f (X,T)) (8)

The right hand side of (8) can be written as

EXPY (Y ≠ f (X,T)|X) (9)

Writing

PY (Y = f (X,T)|X=x)= P(Y = j|x)I(f (x,T)= j)j∑ (10)

where I(•) is the 0-1 indicator function and taking expectation of (10) with
respect to T gives

PT,Y (Y = f (X,T)|X=x)= P(Y = j|x)PT (f (x,T)= j)j∑ . (11)

To simplify notation, write

P(j|x)=P(Y = j|x), PT (f (x,T)= j)=P(j| f ,x)

and let j*(x)=argmax P(j|x) . Then

PT,Y (Y ≠ f (X,T)|X=x)=1−P(j*|x)+ (j∑ P(j*|x)−P(j|x))P(j| f ,x) (12)

leading to:

 PE(f)=PE*+EX ((j∑ P(j*|X)−P(j|X))P(j| f ,X)) (13)

where PE* is the Bayes rate and the second term, which is non-negative, is
the excess over the Bayes rate resulting from the use of the non-optimal

classifier f . Let ĵ(x)=argmax P(j| f ,x). That is, if the classifiers based on a
large set of replicate training sets voted, the plurality of votes at input x would

go to ĵ(x) . Then, the second term in (13) can be written as the sum of

EX (P(j*|X)−P(ĵ |X))P(ĵ | f ,X)) (14)

and

EX ((j≠ ĵ∑ P(j*|X)−P(j|X))P(j| f ,X))) (15)

The first term (14) we call the bias. (B) . If j*≠ ĵ then the class that got the
most votes at x is not the optimal choice. Thus, at x the classifier is
systematically wrong. The second term we call the spread(S) rather than

6

variance, since it does not have the properties usually associated with the
variance in regression.

Now classifiers like neural nets and decision trees that have a large range of
models to fit to the data usually have small bias. Their error comes from the

spread. That is, at an input x , while j*= ĵ , there are too many votes for

classes other than ĵ . Thus, for low bias classifiers, the key to increasing
accuracy is in reducing the spread while keeping the bias low.

The idea behind reducing the spread is this--consider the classifier f (x)=
)
j (x).

That is, we assume we can generate endless replicate training sets of size N
and define f (x) to be the class getting the plurality vote at x. Then f (x) has

zero spread, and its bias increases to EX (P(j*|X)−P(ĵ |X)) . But if j*= ĵ for

most x, than the bias term remains small. So if we could generate a large
number of replicate training sets, then we could drive the spread to zero.

But generating a large number of replicate data sets is difficult. Bagging tries
to imitate this, but the bootstrapped training sets are a rough approximation.
Suppose that instead, the inputs are held fixed and replicate sets of outputs
are generated. The resulting classifier is

j̃ (x,

(
X)=arg max j P(

Y
(f (x,(

(
Y,
(
X))= j). (16)

Using this classifier will cut down on the spread, although not as much as

using
)
j (x). Denote by ∆PE the decrease in PE gotten by using

)
j (x) instead

of the original classifier, by B the bias of this predictor, by ∆oPE the reduction

using j̃ (x,
(
X), and let the residual change due to input variability be

∆ I PE=∆PE−∆oPE . Therefore, we have the decomposition:

PE=PE*+B+∆oPE+∆ I PE (17)

where ∆oPE and ∆ I PE are measures of the relative importance of the

output and input variability.

3. Output variability in synthetic data

The contribution of output variability to the prediction error is difficult to
measure unless the underlying structure of the data is known With synthetic
data many replications, both of the training set or of the outputs are possible.
We define and use synthetic data to give estimates of the output and input
contributions and use unpruned CART as our prediction algorithm.

7

3.1 Regression

Three synthetic data sets were used in this experiment. The structure of
these three data sets was introduced in Friedman[1991]. They are also used
and described in Breiman[1996a] and referred to as Friedman #1, #2,#3.. All
use 200 instances in the training set. Friedman #1 has 10 inputs. The other
two have 4.

From section 2, we have

PE Ee B VO VI= 2 2+ + +

In the Monte Carlo experiments, a 15000 member evaluation set was
generated to estimate the Y,X expectations. The training sets are of size 200
and 50 of them were generated and averaged over in the computations for
each data set. Table 1 gives the percentage of the contributions to the total
prediction error.

 Table 1. Contributions to PE (%)

 Data Set Noise Var. Bias Output Var. Input Var.

Friedman#1 8.3 25.3 47.8 18.7
Friedman#2 48.0 0.0 51.2 0.5
Friedman#3 24.4 10.7 49.1 15.5

In the first and third data sets, the output variance was about 75% of the total
variance. In the second its 99%.

3.2 Classification

Recall that

PE=PE*+B+∆oPE+∆ I PE

Using three synthetic two-class data sets defined in Breiman [1998] and called
twonorm, threenorm, and ringnorm, a Monte Carlo experiment was carried
out on each of these data sets to evaluate the components of the prediction
error.

Each of these data sets was used to produce 100 training sets of 300 with equal
probability of each class. An evaluation set of 15,000 was generated to
estimate the components. Table 2 gives these components as percentages of
PE−PE*.

8

 Table 2 Components of PE−PE* (%)

 Data Set Bias ∆oPE ∆ I PE

twonorm 4.9 35.9 59.2
threenorm 8.4 59.4 32.2
ringnorm 9.3 20.4 70.3

The input variability dominates in the 1st and 3rd data sets. To understand
why, note that the Bayes rates PE* for the three data sets as a percent of the
corresponding PE are 9.5, 31.9. and 6.1 respectively. The 2nd data set has
more overlap than the other two, increasing its minimum error rate.

To get the predictor based on voting only over the outputs, for each input
vector x in the training set, the probability p(x) of class #1 was computed. In
the iterations with that training set, each time a coin was flipped with
probability p(x) of heads. If it came up heads, class label #1 was assigned,
otherwise class label #2. Then after 100 iterations with a training set, holding
the inputs fixed, a vote was taken and the most popular class assigned as the
predictor.

In the 1st and 3rd data sets, this procedure produced very little variability.
The percent of instances in the training set such that min(p(x),1-p(x))<th was
computed for each data set for th=.1,.01,.001 and given in Table 3 (averaged
over 10 training sets).

 Table 3 Percent of Probabili ties Less than T h

 Data Sets h=.1 th=.01 th=.001

twonorm 92.5 79.3 60.3
threenorm 64.4 33.8 7.3
ringnorm 96.0 86.2 64.9

The large percentages of small values of min(p(x),1-p(x)) in the 1st and 3rd
data sets of reduces the variability. For instance, the outputs such that
min(p(x),1-p(x))<.01 will rarely get changed in 100 iterations . Only the
instances not in the first column will have appreciable variability. In
ringnorm this is only 4% of the instances.

To push the point to the extreme, its possible to have data sets where the
classes are perfectly separated so that the Bayes rate is zero. Then output
variability will be zero. But, surprisingly, this does not have the
consequence that randomizing outputs will not significantly reduce
prediction error. To illustrate, instead of flipping outputs on the basis of the
true probability, they are flipped with a constant probability 1/4 irrespective

9

of the input value. Table 4 is a replay of table 2 using this new flipping
scheme.

 Table 4 Components of PE−PE* (New Flipping Scheme)

 Data Set Bias ∆oPE ∆ I PE

twonorm 4.9 75.2 20.2
threenorm 8.4 59.3 32.3
ringnorm 9.3 79.0 11.7

The results for the 2nd data set are virtually unchanged. For the 1st and 3rd
there is a dramatic shift with the voting over the output variability now
providing the larger part of the reduction in prediction error.

Thus, putting in a considerably larger output variability than is given by the
natural structure of the problem, produces, as we will see in the following
sections, as large or larger reduction in error rate than is given by bagging,
which works on both inputs and outputs.

 4. Experimental Results from Output Smearing

We ran output smearing on a variety of data sets, both regression and
classification. In both situations, a simple method was used to provide extra
output variability. Yet the results were generally better than bagging.

4.1 Regression

The procedure used here was to first compute the sample standard deviation
of the outputs in the data set. This was robustified by doing a second pass
which rejected from the standard deviation computation any output more
that 2.5 original standard deviations from the original mean. Then new
outputs were generated as:

yn
' =yn +zn • sd , n=1,....,N

where sd is the standard deviation estimate and the {zn} are independent

unit normals. A maximal tree is grown using the new set of outputs. This
is repeated 100 times. Then, for any test instance the predicted output is given
by the average over the predictions of these 100 trees. The data sets we used
in the experiment are briefly described in table 5.

10

 Table 5 Data Set Summaries

 Data Set Size No. Inputs

Ozone 330 8
Housing 506 12
Servo 167 4
Robotarm 15000 12
Friedman #1 200 10
Friedman #2 200 4
Friedman #3 200 4

For the first three data sets, we estimated generalization error by leaving out a
randomly selected 10% of the instances, constructing the 100 trees on the
remaining 90% and using the left-out 10% as a test set. This was repeated 100
times and the test set mean-squared errors averaged.

The robotarm data (supplied by Michael Jordan) has a separate test set of 5000
instances. The 100 trees were constructed on the 15000 member training set
and the error estimated using the test set. For the last three synthetic data
sets, in each run a 200 instance training set and 2000 instance test set were
generated. The 100 trees were built on the training set and evaluated using
the test set. This was repeated 50 times and the results averaged. The error
estimates are given in table 6 and compared with the of use of bagging using
the same procedures for error estimation and 100 bagged trees per run.

 Table 6 Mean-Square Error Estimates

 Data Set Bagging Smearing

Ozone 18.1 17.4
Housing 10.6 10.3
Servo 98.3 89.7
Robotarm 4.72 4.64
Friedman #1 6.23 5.01
Friedman #2 21.4e3 22.2e3
Friedman #3 25.1e-3 23.3e-3

Except for one synthetic data set, smearing produces lower error rates than
bagging. The reduction is not spectacular, but consistent.

4.2 Classification

To emulate output variability in classification, classification was turned into a
multiple output regression problem. If there were J classes, there are J
outputs. If the class of the nth instance was j, then the jth output is one with

11

zeroes in the other outputs. The splits were based on minimizing the total
sum-of-squares. For class label 0-1 outputs this reduces to the Gini criterion.

Given J-class data, a standard deviation measure is computed for each class. If
p j is the proportion of the instances in class j, then define

sd j =2 p j (1−p j) .

The new outputs are given by

y j,n
' =y j,n +z j,n • sd j j=1,...,J n=1,...,N

where the {z j,n} are independent unit normals. The predictions of the trees

built using smeared outputs are no longer 0-1. A class prediction is made
based on which output is the largest.

As in regression, 100 trees are built based on 100 sets of smeared outputs.
Given a new test instance, these trees vote and the predicted class is the one
having the plurality of the votes. The following data sets were used in the
experiment:

 Table 7 Data Set Summar ies

 Data Set Size No. Inputs No. Classes Test Set

sonar 208 60 2 10%
glass 214 9 6 10%
breast(Wis) 699 9 2 10%
ionosphere 351 34 2 10%
soybean 683 35 19 10%
vehicle 846 18 4 10%
vowel 990 10 11 10%
letters 15000 16 26 5000
dna 2000 60 3 1186
satellite 4435 36 6 2000
digit 7291 256 10 2007
wave 300 21 3 3000
twonorm 300 20 2 3000
threenorm 300 20 2 3000
ringnorm 300 20 2 3000

For the first 8 data sets, 10% was left out in each run generating 100 trees and
used as a test set. The results were averaged over 100 runs. For the next 4

12

data sets, there was only one run generating 100 trees. The test set was then
used to get the error estimate. The last four data sets are synthetic, with equal
probabilities of each class. For these, a training set of 300 and test set of 3000
were newly generated for each run. The error was averaged over 50 runs.

The results are given in Table 8 and compared with bagging whose error
estimates are derived using the same procedure as for smearing.

 Table 8 Misclassification Error (%)

 Data Set Bagging Smearing

sonar 20.1 16.3
glass 23.2 22.6
breast(Wis) 4.1 3.4
ionosphere 7.9 6.9
soybean 6.8 5.6
vehicle 15.4 15.8
vowel 8.0 4.4
letters 6.4 5.2
dna 5.1 5.1
satellite 10.0 9.2
digit 10.5 9.9
waveform 19.5 18.6
twonorm 6.9 5.2
threenorm 19.5 18.1
ringnorm 9.9 7.0

Smearing is consistently better than bagging--sometimes significantly better.

5 .Experimental Resiults from Flipping Outputs

Flipping outputs refers to changing the class label of an input. In our
experiments, it was found that flipping outputs needed to be done so that, on
the average, the class proportions remained the same. That is, if class j
outputs had a certain probability of being changed, then the changes of the
other class outputs into class j would keep the proportion of class j instances
in the training set about equal to the original proportion of class j instances.

To do this, the following random flipping regime was used: let c(k) be the
proportion of class k labels in the training set, and denote by p(j|k)the
probability that if the class label of an instance is k, we will flip it into label j .
Then set the value of a parameter w and let

p(j|k)=w*c(j), j≠k
p(k|k)=1−w(1−c(k)).

13

If the flip rate fr is define to be the proportion of instances that have their
output flipped, then

w= fr /(1−sq)

where

sq= c(j)2
j∑ .

Unlike smearing outputs where one size fits all (more or less) the success of
flipping outputs depends on the value of the flip rate selected. We tried
values of the flip rate going from .10 to .50 in increments of .05 and report the
lowest error rate over 100 iterations of leave out 10% or test set evaluations.
This is done in Table 9 which also compares the results to smearing and gives
the value of the flip rate used.

 Table Misclassification Error (%)

 Data Set Smearing Flipping Flip Rate

sonar 16.3 17.3 .20
glass 22.6 23.1 .25
breast(Wis) 3.4 3.7 .15
ionosphere 6.9 7.5 .20
soybean 5.6 6.2 .25
vehicle 15.8 15.5 .25
vowel 4.4 4.0 .50
letters 5.2 4.7 .45
dna 5.1 4.9 .40

 satellite 9.2 9.3 .30
digit 9.9 8.9 .40
waveform 18.6 18.5 .30
twonorm 5.2 5.2 .25
threenorm 18.1 18.3 .20
ringnorm 7.0 5.7 .25

It’s pretty much a dead heat between smearing and flipping. But there are
some interesting error decreases with flipping on the vowel, letters, digit, and
ringnorm data sets. But having to choose the optimum value of the flip rate
makes flipping less attractive.

14

6. Remarks

Since the advent of bagging there have been questions as to whether similar
results could be gotten from just randomizing the outputs--in particular, by
flipping the outputs. Freund and Schapire [1998] list this as an interesting
unsolved problem in combining predictors.

I put this off for a while because it seemed that the selection of which outputs
to flip was a difficult problem and I couldn’t see a way around it. I would
have rejected the idea of giving each output a flip probability that depended
only on the class proportions in the training set as being too simplistic to
work well. But using the synthetic data sets, I investigated whether
knowledge of the output probabilities could be combined with the flip
method used in Section 5 to further increase accuracy. I could find no
combination that gave improvement.

The interesting thing here is that while the true output variability may be
small, adding an artificially large output variability gives as large or larger
decrease in error rates as bagging. This emphasizes that the essential problem
in combining classifiers is in growing a suitably diverse ensemble of base
classifiers, and that there are many ways of doing this that work. For instance
Dietterich {1998] found that randomizing split selections in growing trees
gave results often better than bagging.

None of these methods give as small as error as does the Adaboost algorithm
(Freund and Schapire [1995], [1996]) whose reason for working still remains a
bit of a mystery (see Breiman[1997]).

 References

Breiman, L. [1996a] Bagging predictors , Machine Learning 26, No. 2, pp. 123-
140

Breiman, L. [1996b] The heuristics of instability in model selection, Annals of
Statistics, 24, pp. 2350-2383

Breiman, L. [1997] Prediction Games and Arcing Algorithms, Technical
Report 504, Statistics Department, University of California at Berkeley,
available at www.stat.berkeley.edu

Breiman, L.[1998] Arcing Classifiers (with discussion). In press, Annals of
Statistics

15

Breiman, L., Friedman, J., Olshen, R., and Stone, C. [1984] Classification and
Regression Trees, Chapman and Hall

Dietterich, T. [1998] An Experimental Comparison of Three Methods for
Constructing Ensembles of Decision Trees: Bagging, Boosting and
Randomization, Machine Learning 1-22

Freund, Y. and Schapire, R. [1995] A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of Computer and
System Sciences.

Freund, Y. and Schapire, R. [1996] Experiments with a new boosting
algorithm, Machine Learning: Proceedings of the Thirteenth International
Conference, pp. 148-156

Freund, Y. and Schapire, R. [1998] Discussion of “Arcing Classifiers” by L.
Breiman. In press, Annals of Statistics.

Friedman, J. [1991] Multivariate Adasptive Regression Splines (with
discussion) Annals of Statistics 19, 1-141

Geman, S., Bienenstock, E., and Doursat, R.[1992] Neural networks and the
bias/variance dilemma. Neural Computations 4, pp. 1-58

