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Abstract

High-dimensional statistical inference deals with models in which the the number of parame-
ters p is comparable to or larger than the sample size n. Since it is usually impossible to obtain
consistent procedures unless p/n→ 0, a line of recent work has studied models with various types
of low-dimensional structure (e.g., sparse vectors; block-structured matrices; low-rank matrices;
Markov assumptions). In such settings, a general approach to estimation is to solve a regu-
larized convex program (known as a regularized M -estimator) which combines a loss function
(measuring how well the model fits the data) with some regularization function that encourages
the assumed structure. This paper provides a unified framework for establishing consistency and
convergence rates for such regularized M -estimators under high-dimensional scaling. We state
one main theorem and show how it can be used to re-derive some existing results, and also to
obtain a number of new results on consistency and convergence rates. Our analysis also identifies
two key properties of loss and regularization functions, referred to as restricted strong convexity
and decomposability, that ensure corresponding regularized M -estimators have fast convergence
rates, and which are optimal in many well-studied cases.

1 Introduction

High-dimensional statistics is concerned with models in which the ambient dimension of the problem
p may be of the same order as—or substantially larger than—the sample size n. While its roots
are quite old, dating back to classical random matrix theory and high-dimensional testing problems
(e.g, [26, 46, 58, 82]), the past decade has witnessed a tremendous surge of research activity. Rapid
development of data collection technology is a major driving force: it allows for more observations
to be collected (larger n), and also for more variables to be measured (larger p). Examples are ubiq-
uitous throughout science: astronomical projects such as the Large Synoptic Survey Telescope [1]
produce terabytes of data in a single evening; each sample is a high-resolution image, with several
hundred megapixels, so that p " 108. Financial data is also of a high-dimensional nature, with
hundreds or thousands of financial instruments being measured and tracked over time, often at
very fine time intervals for use in high frequency trading. Advances in biotechnology now allow
for measurements of thousands of genes or proteins, and lead to numerous statistical challenges
(e.g., see the paper [6] and references therein). Various types of imaging technology, among them
magnetic resonance imaging in medicine [44] and hyper-spectral imaging in ecology [38], also lead
to high-dimensional data sets.

1



In the regime p " n, it is well known that consistent estimators cannot be obtained unless
additional constraints are imposed on the model. Accordingly, there are now several lines of work
within high-dimensional statistics, all of which are based on imposing some type of low-dimensional
constraint on the model space, and then studying the behavior of different estimators. Examples
include linear regression with sparsity constraints, estimation of covariance or inverse covariance ma-
trices, graphical model selection, sparse principal component analysis, low-rank matrix estimation,
and sparse additive non-parametric models. The classical technique of regularization has proven
fruitful in all of these contexts. Many well known estimators are based on solving a convex op-
timization problem formed by the sum of a loss function with a weighted regularizer; we refer to
any such method as a regularized M -estimator. For instance, in application to linear models, the
Lasso or basis pursuit approach [72, 22] is based on a combination of the least-squares loss with
!1-regularization, and so involves solving a quadratic program. Similar approaches have been ap-
plied to generalized linear models, resulting in more general (non-quadratic) convex programs with
!1-constraints. Several types of regularization have been used for estimating matrices, including
standard !1-regularization, a wide range of sparse group-structured regularizers, as well as regular-
ization based on the nuclear norm (sum of singular values).

Past work: Within the framework of high-dimensional statistics, the goal is to obtain bounds on
the error—meaning the difference between the estimate and some nominal parameter setting—that
hold with high probability for a finite sample size, and also allow the ambient dimension p, as well
as other structural parameters (e.g., sparsity of a vector, degree of a graph, rank of matrix), to grow
as a function of the sample size n. By now, for various types of M -estimators based on convex regu-
larization, there are a large number of theoretical results in place that hold under high-dimensional
scaling. It must be emphasized that our referencing is necessarily incomplete given the extraordinary
number of papers that have appeared in recent years. Sparse linear regression has perhaps been
the most active area, and multiple bodies of work can be differentiated by the error metric under
consideration. They include work on exact recovery for noiseless observations (e.g., [24, 23, 17]),
prediction error consistency (e.g., [27, 14, 76, 77]), consistency of the parameter estimates in !2 or
some other norm (e.g., [14, 13, 77, 85, 50, 8, 18]), as well as variable selection consistency [49, 81, 87].
The information-theoretic limits of sparse linear regression are also well-understood, and !1-based
methods are known to be optimal for !q-ball sparsity [59], and near-optimal for model selection [80].
For generalized linear models (GLMs), estimators based on !1-regularized maximum likelihood have
also been studied, including results on risk consistency [78], consistency in !2 or !1-norm [4, 31, 47],
and model selection consistency [63, 11]. Sparsity has also proven useful in application to different
types of matrix estimation problems, among them sparse covariance matrices [7, 15, 32]. Another
line of work has studied the problem of estimating Gaussian Markov random fields, or equivalently
inverse covariance matrices with sparsity constraints. Here there are a range of results, including
convergence rates in Frobenius, operator and other matrix norms [69, 64, 37, 89], as well as results
on model selection consistency [64, 37, 49]. Motivated by applications in which sparsity arises in
a structured manner, other researchers have proposed different types of block-structured regular-
izers (e.g., [74, 75, 86, 84, 2, 5, 29]), among them the group Lasso based on !1/!2 regularization.
High-dimensional consistency results have been obtained for exact recovery based on noiseless ob-
servations [71, 5], convergence rates in !2-norm (e.g., [51, 28, 43, 5]) as well as model selection
consistency (e.g., [57, 53, 51]). Problems of low-rank matrix estimation also arise in numerous
applications. Techniques based on thresholding as well as nuclear norm regularization have been
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studied for different statistical models, including compressed sensing [66, 40, 67], matrix comple-
tion [19, 33, 34, 65, 52], multitask regression [83, 54, 68, 12, 3], and system identification [25, 54, 42].
Finally, although the primary emphasis of this paper is on high-dimensional parametric models, reg-
ularization methods have also proven effective for a class of high-dimensional non-parametric models
that have a sparse additive decomposition (e.g., [62, 48, 35, 36]). Again, regularization methods
have been been shown to achieve minimax-optimal rates in this setting [60].

Our contributions: As we have noted previously, almost all of these estimators can be seen
as particular types of regularized M -estimators, with the choice of loss function, regularizer and
statistical assumptions changing according to the model. This methodological similarity suggests
an intriguing possibility: is there a common set of theoretical principles that underlies analysis of
all these estimators? If so, it could be possible to gain a unified understanding of a large collection
of techniques for high-dimensional estimation.

The main contribution of this paper is to provide an affirmative answer to this question. In
particular, we isolate and highlight two key properties of a regularized M -estimator—namely, a de-
composability property for the regularizer, and a notion of restricted strong convexity that depends
on the interaction between the regularizer and the loss function. For loss functions and regulariz-
ers satisfying these two conditions, we prove a general result (Theorem 1) about consistency and
convergence rates for the associated estimates. This result provides a family of bounds indexed by
subspaces, and each bound consists of the sum of approximation error and estimation error. This
general result, when specialized to different statistical models, yields in a direct manner a large
number of corollaries, some of them known and others novel. In addition to our framework and
main result (Theorem 1), other new results include minimax-optimal rates for sparse regression over
!q-balls (Corollary 3), a general oracle-type result for group-structured norms with applications to
generalized !q-ball sparsity (Corollary 4), as well as bounds for generalized linear models under
minimal assumptions (Corollary 5), allowing for both unbounded and non-Lipschitz functions. In
concurrent work, a subset of the current authors have also used this framework to prove several
results on low-rank matrix estimation using the nuclear norm [54], as well as optimal rates for noisy
matrix completion [52]. Finally, en route to establishing these corollaries, we also prove some new
technical results that are of independent interest, including guarantees of restricted strong convexity
for group-structured regularization (Proposition 1) and for generalized linear models (Proposition 2).

The remainder of this paper is organized as follows. We begin in Section 2 by formulating the
class of regularized M -estimators that we consider, and then defining the notions of decomposability
and restricted strong convexity. Section 3 is devoted to the statement of our main result (Theorem 1),
and discussion of its consequences. Subsequent sections are devoted to corollaries of this main result
for different statistical models, including sparse linear regression (Section 4), estimators based on
group-structured regularizers (Section 5), estimation in generalized linear models (Section 6), and
low-rank matrix estimation (Section 7).

2 Problem formulation and some key properties

In this section, we begin with a precise formulation of the problem, and then develop some key
properties of the regularizer and loss function.
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2.1 A family of M-estimators

Let Zn
1 := {Z1, . . . , Zn} denote n observations drawn i.i.d. according to some distribution P, and sup-

pose that we are interested in estimating some parameter θ of the distribution P. Let L : Rp × Zn → R

be some loss function that, for a given set of observations Zn
1 , assigns a cost L(θ; Zn

1 ) to any parame-
ter θ ∈ Rp. We assume that that the population risk R(θ) = EZn

1
[L(θ; Zn

1 )] is independent of n, and
we let θ∗ ∈ arg min

θ∈Rp
R(θ) be a minimizer of the population risk. As is standard in statistics, in order

to estimate the parameter vector θ∗ from the data Zn
1 , we solve a convex program that combines the

loss function with a regularizer. More specifically, let r : Rp → R denote a regularization function,
and consider the regularized M -estimator given by

θ̂λn ∈ arg min
θ∈Rp

{
L(θ; Zn

1 ) + λnr(θ)
}
, (1)

where λn > 0 is a user-defined regularization penalty. Throughout the paper, we assume that the
loss function L is convex and differentiable, and that the regularization function r is a norm.

Our goal is to provide general techniques for deriving bounds on the difference between any
solution θ̂λn to the convex program (1) and the unknown vector θ∗. In this paper, we derive bounds
on the norm ‖θ̂λn − θ∗‖#, where the error norm is induced by an inner product 〈·, ·〉# on Rp. Most
often, this error norm will either be the Euclidean !2-norm on vectors, or the analogous Frobenius
norm for matrices, but our theory also applies to certain types of weighted norms. In addition,
we provide bounds on the quantity r(θ̂λn − θ∗), which measures the error in the regularizer norm.
In the classical setting, the ambient dimension p stays fixed while the number of observations n
tends to infinity. Under these conditions, there are standard techniques for proving consistency and
asymptotic normality for the error θ̂λn − θ∗. In contrast, the analysis of this paper is all within a
high-dimensional framework, in which the tuple (n, p), as well as other problem parameters, such
as vector sparsity or matrix rank etc., are all allowed to tend to infinity. In contrast to asymptotic
normality, our goal is to obtain explicit finite sample error bounds that hold with high probability.

Throughout the paper, we make use of the following notation. For any given subspace A ⊆ Rp,
we let A⊥ be its orthogonal complement, as defined by the inner product 〈·, ·〉#—namely, the set
A⊥ :=

{
v ∈ Rp | 〈v, u〉# = 0 for all u ∈ A

}
. In addition, we let ΠA : Rp → A denote the projection

operator, defined by

ΠA(u) := arg min
v∈A
‖u− v‖# , (2)

with the projection operator ΠA⊥ defined in an analogous manner.

2.2 Decomposability

We now motivate and define the decomposability property of regularizers, and then show how it
constrains the error in the M -estimation problem (1). This property is defined in terms of a pair
of subspaces A ⊆ B of Rp. The role of the model subspace A is to capture the constraints specified
by the model; for instance, it might be the subspace of vectors with a particular support (see
Example 1), or a subspace of low-rank matrices (see Example 3). The orthogonal complement B⊥

is the perturbation subspace, representing deviations away from the model subspace A. In the ideal
case, we have B⊥ = A⊥, but our definition allows for the possibility that B is strictly larger than A.
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Definition 1. A norm-based regularizer r is decomposable with respect to the subspace pair
A ⊆ B if

r(α+ β) = r(α) + r(β) for all α ∈ A and β ∈ B⊥. (3)

In order to build some intuition, let us consider the ideal case A = B for the time being, so that the
decomposition (3) holds for all pairs (α,β) ∈ A × A⊥. For any given pair (α,β) of this form, the
vector α + β can be interpreted as perturbation of the model vector α away from the subspace A,
and it is desirable that the regularizer penalize such deviations as much as possible. By the triangle
inequality, we always have r(α+ β) ≤ r(α) + r(β), so that the decomposability condition (3) holds
if and only the triangle inequality is tight for all pairs (α,β) ∈ (A, A⊥). It is exactly in this setting
that the regularizer penalizes deviations away from the model subspace A as much as possible.

In general, it is not difficult to find subspace pairs that satisfy the decomposability property.
As a trivial example, any regularizer is decomposable with respect to A = Rp and its orthogonal
complement A⊥ = {0}. As will be clear in our main theorem, it is of more interest to find subspace
pairs in which the model subspace A is “small”, so that the orthogonal complement A⊥ is “large”.
Recalling the projection operator (2), of interest to us is its action on the unknown parameter
θ∗ ∈ Rp. In the most desirable setting, the model subspace A can be chosen such that ΠA(θ∗) ≈ θ∗
and ΠA⊥(θ∗) ≈ 0. If this can be achieved with the model subspace A remaining relatively small, then
our main theorem guarantees that it is possible to estimate θ∗ at a relatively fast rate. The following
examples illustrate suitable choices of the spaces A and B in three concrete settings, beginning with
the case of sparse vectors.

Example 1. Sparse vectors and !1-norm regularization. Suppose the error norm ‖ ·‖ # is the usual
!2-norm, and that the model class of interest is the set of s-sparse vectors in p dimensions. For any
particular subset S ⊆ {1, 2, . . . , p} with cardinality s, we define the model subspace

A(S) :=
{
α ∈ R

p | αj = 0 for all j /∈ S}. (4)

Here our notation reflects the fact that A depends explicitly on the chosen subset S. By construction,
we have ΠA(S)(θ

∗) = θ∗ for any vector that is supported on S.
Now define B(S) = A(S), and note that the orthogonal complement with respect to the Eu-

clidean inner product is given by

B⊥(S) = A⊥(S) =
{
β ∈ R

p | βj = 0 for all j ∈ S
}
. (5)

This set corresponds to the perturbation subspace, capturing deviations away from the set of vectors
with support S. We claim that for any subset S, the !1-norm r(α) = ‖α‖1 is decomposable with
respect to the pair (A(S), B(S)). Indeed, by construction of the subspaces, any α ∈ A(S) can be
written in the partitioned form α = (αS , 0Sc), where αS ∈ Rs and 0Sc ∈ Rp−s is a vector of zeros.
Similarly, any vector β ∈ B⊥(S) has the partitioned representation (0S ,βSc). Putting together the
pieces, we obtain

‖α+ β‖1 = ‖(αS , 0) + (0,βSc)‖1 = ‖α‖1 + ‖β‖1,

showing that the !1-norm is decomposable as claimed. ♦
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As a follow-up to the previous example, it is also worth noting that the same argument shows
that for a strictly positive weight vector ω, the weighted !1-norm ‖α‖ω :=

∑p
j=1 ωj |αj | is also de-

composable with respect to the pair (A(S), B(S)). For another natural extension, we now turn to
the case of sparsity models with more structure.

Example 2. Group-structured norms. In many applications, sparsity arises in a more structured
fashion, with groups of coefficients likely to be zero (or non-zero) simultaneously. In order to model
this behavior, suppose that the index set {1, 2, . . . , p} can be partitioned into a set of T disjoint
groups, say G = {G1, G2, . . . , GT }. With this set-up, for a given vector 'ν = (ν1, . . . , νT ) ∈ [1,∞]T ,
the associated (1,'ν)-group norm takes the form

‖α‖G,%ν :=
T∑

t=1

‖αGt‖νt . (6)

For instance, with the choice 'ν = (2, 2, . . . , 2), we obtain the group !1/!2-norm, corresponding to the
regularizer that underlies the group Lasso [84]. The choice 'ν = (∞, . . . ,∞) has also been studied
in past work [75, 53].

We claim that the norm ‖ ·‖ G,%ν is again decomposable with respect to appropriately defined
subspaces. Indeed, given any subset SG ⊆ {1, . . . , T} of group indices, say with cardinality sG = |SG |,
we can define the subspace

A(SG) :=
{
α ∈ R

p | αGt = 0 for all t /∈ SG
}
, (7)

as well as its orthogonal complement with respect to the usual Euclidean inner product

A⊥(SG) = B⊥(SG) :=
{
α ∈ R

p | αGt = 0 for all t ∈ SG
}
. (8)

With these definitions, for any pair of vectors α ∈ A(SG) and β ∈ B⊥(SG), we have

‖α+ β‖G,%ν =
∑

t∈SG

‖αGt + 0Gt‖νt +
∑

t∈Sc

‖0Gj + βGt‖νt = ‖α‖G,%ν + ‖β‖G,%ν , (9)

thus verifying the decomposability condition. ♦

Example 3. Low-rank matrices and nuclear norm. Now suppose that each parameter Θ ∈ Rp1×p2

is a matrix; this corresponds to an instance of our general set-up with p = p1p2, as long as we
identify the space Rp1×p2 with Rp1p2 in the usual way. We equip this space with the inner product
〈〈Θ, Γ〉〉 := trace(ΘΓT ), a choice which yields the Frobenius norm

‖Θ‖# :=
√
〈〈Θ, Θ〉〉 =

√√√√
p1∑

j=1

p2∑

k=1

Θ2
jk (10)

as the induced norm. In many settings, it is natural to consider estimating matrices that are
low-rank; examples include principal component analysis, spectral clustering, collaborative filter-
ing, and matrix completion. In particular, consider the class of matrices Θ ∈ Rp1×p2 that have
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rank r ≤ min{p1, p2}. For any given matrix Θ, we let row(Θ) ⊆ Rp2 and col(Θ) ⊆ Rp1 denote its
row space and column space respectively. Let U and V be a given pair of r-dimensional subspaces
U ⊆ Rp1 and V ⊆ Rp2 ; these subspaces will represent left and right singular vectors of the tar-
get matrix Θ∗ to be estimated. For a given pair (U, V ), we can define the subspaces A(U, V ) and
B⊥(U, V ) of Rp1×p2 given by

A(U, V ) :=
{
Θ ∈ R

p1×p2 | row(Θ) ⊆ V, col(Θ) ⊆ U
}
, and (11a)

B⊥(U, V ) :=
{
Θ ∈ R

p1×p2 | row(Θ) ⊆ V ⊥, col(Θ) ⊆ U⊥}. (11b)

Unlike the preceding examples, in this case, we have A(U, V ) .= B(U, V ). However, as is required
by our theory, we do have the inclusion A(U, V ) ⊆ B(U, V ). Indeed, given any Θ ∈ A(U, V ) and
Γ ∈ B⊥(U, V ), we have ΘTΓ = 0 by definition, and hence 〈〈Θ, Γ〉〉 = trace(ΘTΓ) = 0. Consequently,
we have shown that Θ is orthogonal to the space B⊥(U, V ), implying the claimed inclusion.

Finally, we claim that the nuclear or trace norm r(Θ) = |||Θ|||1, corresponding to the sum of
the singular values of the matrix Θ, satisfies the decomposability property with respect to the pair
(A(U, V ), B⊥(U, V )). By construction, any pair of matrices Θ ∈ A(U, V ) and Γ ∈ B⊥(U, V ) have
orthogonal row and column spaces, which implies the required decomposability condition—namely
|||Θ + Γ|||1 = |||Θ|||1 + |||Γ|||1. ♦

A line of recent work (e.g., [21, 20]) has studied matrix problems involving the sum of a low-rank
matrix with a sparse matrix, along with the regularizer formed by a weighted sum of the nuclear
norm and the elementwise !1-norm. By a combination of Examples 1 and Example 3, this regularizer
also satisfies the decomposability property with respect to appropriately defined subspaces.

2.3 A key consequence of decomposability

Thus far, we have specified a class (1) of M -estimators based on regularization, defined the notion of
decomposability for the regularizer and worked through several illustrative examples. We now turn
to the statistical consequences of decomposability—more specifically, its implications for the error
vector ∆̂λn = θ̂λn − θ∗, where θ̂ ∈ Rp is any solution of the regularized M -estimation procedure (1).
Letting 〈·, ·〉 denote the usual Euclidean inner product, the dual norm of r is given by

r∗(v) := sup
u∈Rp\{0}

〈u, v〉
r(u)

. (12)

It plays a key role in our specification of the regularization parameter λn in the convex program (1),
in particular linking it to the data Zn

1 that defines the estimator.

Lemma 1. Suppose that L is a convex function, and consider any optimal solution θ̂ to the opti-
mization problem (1) with a strictly positive regularization parameter satisfying

λn ≥ 2 r∗(∇L(θ∗; Zn
1 )). (13)

Then for any pair (A, B) over which r is decomposable, the error ∆̂ = θ̂λn − θ∗ belongs to the set

C(A, B; θ∗) :=
{
∆ ∈ R

p | r(ΠB⊥(∆)) ≤ 3r(ΠB(∆)) + 4r(ΠA⊥(θ∗))
}
. (14)

7



r(∆B⊥)

r(∆B)

r(∆B⊥)

r(∆B)

(a) (b)

Figure 1. Illustration of the set C(A,B; θ∗) in the special case ∆ = (∆1,∆2,∆3) ∈ R3 and regularizer
r(∆) = ‖∆‖1, relevant for sparse vectors (Example 1). This picture shows the case S = {3}, so that
the model subspace is A(S) = B(S) = {∆ ∈ R3 | ∆1 = ∆2 = 0}, and its orthogonal complement
is given by A⊥(S) = B⊥(S) = {∆ ∈ R3 | ∆3 = 0}. (a) In the special case when θ∗ ∈ A(S) so that
r(ΠA⊥(θ∗)) = 0, the set C(A,B; θ∗) is a cone. (b) When θ∗ does not belong to A(S), the set
C(A,B; θ∗) is enlarged in the co-ordinates (∆1,∆2) that span B⊥(S). It is no longer a cone, but is
still a star-shaped set.

We prove this result in Appendix A.1. It has the following important consequence: for any decom-
posable regularizer and an appropriate choice (13) of regularization parameter, we are guaranteed
that the error vector ∆̂ belongs to a very specific set, depending on the unknown vector θ∗. As
illustrated in Figure 1, the geometry of the set C depends on the relation between θ∗ and the model
subspace A. When θ∗ ∈ A, then we are guaranteed that r(ΠA⊥(θ∗)) = 0. In this case, the con-
straint (14) reduces to r(ΠB⊥(∆)) ≤ 3r(ΠB(∆)), so that C is a cone, as illustrated in panel (a).
In the more general case when θ∗ /∈ A and r(ΠA⊥(θ∗)) .= 0, the set C is not a cone, but rather a
star-shaped set excluding a small ball centered at the origin (panel (b)). As will be clarified in the
sequel, this difference (between θ∗ ∈ A and θ∗ /∈ A) plays an important role in bounding the error.

2.4 Restricted strong convexity

We now turn to an important requirement of the loss function, and its interaction with the statis-
tical model. Recall that ∆̂ = θ̂λn − θ∗ is the difference between an optimal solution θ̂λn and the
true parameter, and consider the loss difference L(θ̂λn ; Zn

1 ) − L(θ∗; Zn
1 ). To simplify notation, we

frequently write L(θ̂λn)−L(θ∗) when the underlying data Zn
1 is clear from context. In the classical

setting, under fairly mild conditions, one expects that that the loss difference should converge to
zero as the sample size n increases. It is important to note, however, that such convergence on its
own is not sufficient to guarantee that θ̂λn and θ∗ are close, or equivalently that ∆̂ is small. Rather,
the closeness depends on the curvature of the loss function, as illustrated in Figure 2. In a desirable
setting (panel (a)), the loss function is sharply curved around its optimum θ̂λn , so that having a
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θ∗ θ̂λn

dL

∆̂

θ∗ θ̂λn

dL

∆̂

(a) (b)

Figure 2. Role of curvature in distinguishing parameters. (a) Loss function has high curvature around

∆̂. A small excess loss dL = |L(θ̂λn
) − L(θ∗)| guarantees that the parameter error ∆̂ = θ̂λn

− θ∗ is
also small. (b) A less desirable setting, in which the loss function has relatively low curvature around
the optimum.

small loss difference |L(θ∗)− L(θ̂λn)| translates to a small error ∆̂ = θ̂λn − θ∗. Panel (b) illustrates
a less desirable setting, in which the loss function is relatively flat, so that the loss difference can be
small while the error ∆̂ is relatively large.

The standard way to ensure that a function is “not too flat” is via the notion of strong convexity—
in particular, by requiring that there exist some constant γ > 0 such that

δL(∆, θ∗; Zn
1 ) := L(θ∗ + ∆; Zn

1 )− L(θ∗; Zn
1 )− 〈∇L(θ∗; Zn

1 ),∆〉 ≥ γ‖∆‖22 (15)

for all ∆ ∈ Rp in a neighborhood of θ∗. When the loss function is twice differentiable, restricted
strong convexity amounts to a uniform lower bound on the eigenvalues of the Hessian ∇2L.

Under classical “fixed p, large n” scaling, the loss function will be strongly convex under mild
conditions. For instance, suppose that population function R(θ) := EZn

1
[L(θ; Zn

1 )] is strongly convex,
or equivalently, that the Hessian ∇2R(θ) is strictly positive definite in a neighborhood of θ∗. As a
concrete example, when the loss function L is defined based on negative log likelihood of a statistical
model, then the Hessian ∇2R(θ) corresponds to the Fisher information matrix, a quantity which
arises naturally in asymptotic statistics. If the dimension p is fixed while the sample size n goes to
infinity, standard arguments can be used to show that (under mild regularity conditions) the random
Hessian ∇2L(θ; Zn

1 ) converges to ∇2R(θ) = EZn
1
[∇2L(θ; Zn

1 )] uniformly for all θ in a neighborhood
of θ∗.

Whenever the pair (n, p) both increase in such a way that p > n, the situation is drastically
different: the p×p Hessian matrix ∇2L(θ; Zn

1 ) will always be rank-deficient. As a concrete example,
consider linear regression based on samples Zi = (yi, xi) ∈ R× Rp, for i = 1, 2, . . . , n. Using the
least-squares loss L(θ; Zn

1 ) = 1
2n‖y−Xθ‖22, the p× p Hessian matrix ∇2L(θ; Zn

1 ) = 1
nXT X has rank

at most n, meaning that the loss cannot be strongly convex when p > n. In the high-dimensional
setting, a typical loss function will take the form shown in Figure 3(a): while curved in certain
directions, it will be completely flat in a large number of directions. Thus, it is impossible to
guarantee global strong convexity.
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(a) (b)

Figure 3. (a) Illustration of a generic loss function in the high-dimensional p > n setting:
it is curved in certain directions, but completely flat in others. (b) Illustration of the set
K(δ;A,B, θ∗) = C(A,B; θ∗) ∩ {∆ ∈ Rp | ‖∆‖" = δ} over which restricted strong convexity must
hold. It is the intersection of a ball of radius δ with the star-shaped set C(A,B, θ∗).

In summary, we need to relax the notion of strong convexity by restricting the set of directions
for which condition (15) holds. We formalize this idea as follows:

Definition 2. For a given set S, the loss function satisfies restricted strong convexity (RSC)
with parameter κL > 0 if

L(θ∗ + ∆; Zn
1 )− L(θ∗; Zn

1 )− 〈∇L(θ∗; Zn
1 ),∆〉

︸ ︷︷ ︸
δL(∆, θ∗; Zn

1 )

≥ κL ‖∆‖2# for all ∆ ∈ S. (16)

It remains to specify suitable choices of sets S for this definition. Based on our discussion of
regularizers and Lemma 1, one natural candidate is the set C(A, B; θ∗). As will be seen, this choice
is suitable only in the special case θ∗ ∈ A, so that C is a cone, as illustrated in Figure 1(a). In the
more general setting (θ∗ /∈ A), the set C is not a cone, but rather contains an ‖ · ‖#-ball of some
positive radius centered at the origin. In this setting, even in the case of least-squares loss, it is
impossible to certify RSC over the set C, since it contains vectors in all possible directions.

For this reason, in order to obtain a generally applicable theory, it is essential to further restrict
the set C, in particular by introducing some tolerance δ > 0, and defining the set

K(δ; A, B, θ∗) := C(A, B; θ∗) ∩
{
θ ∈ R

p | ‖∆‖# = δ
}
. (17)

As illustrated in Figure (3)(b), the set K(δ) consists of the intersection of the sphere of radius δ
in the error norm ‖ ·‖ # with the set C(A, B; θ∗). As long as the tolerance parameter δ is suitably
chosen, the additional sphere constraint, in conjunction with C, excludes many directions in space.
The necessity of this additional sphere case—essential for the inexact case θ∗ /∈ A—does not appear
to have been explicitly recognized in past work, even in the special case of sparse vector recovery.
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3 Bounds for general M-estimators

We are now ready to state a general result that provides bounds and hence convergence rates for
the error ‖θ̂λn − θ∗‖#, where θ̂λn is any optimal solution of the convex program (1). Although it
may appear somewhat abstract at first sight, we illustrate that this result has a number of concrete
and useful consequences for specific models. In particular, we recover as an immediate corollary
the best known results about estimation in sparse linear models with general designs [8, 50], as
well as a number of new results, including minimax-optimal rates for estimation under !q-sparsity
constraints, as well as results for sparse generalized linear models, estimation of block-structured
sparse matrices and estimation of low-rank matrices.

Let us recall our running assumptions on the structure of the convex program (1).

(G1) The loss function L is convex and differentiable.

(G2) The regularizer is a norm, and is decomposable with respect to a subspace pair A ⊆ B.

The statement of our main result involves a quantity that relates the error norm and the regularizer:

Definition 3 (Subspace compatibility constant). For any subspace B of Rp, the subspace com-

patibility constant with respect to the pair (r, ‖ ·‖ #) is given by

Ψ(B) := inf
{
c > 0 | r(u) ≤ c ‖u‖# for all u ∈ B

}
. (18)

This quantity reflects the degree of compatibility between the regularizer and the error norm over
the subspace B. As a simple example, if B is a s-dimensional co-ordinate subspace, with regularizer
r(u) = ‖u‖1 and error norm ‖u‖# = ‖u‖2, then we have Ψ(B) =

√
s.

With this notation, we now come to the main result of this paper:

Theorem 1 (Bounds for general models). Under conditions (G1) and (G2), consider the convex
program (1) based on a strictly positive regularization constant λn ≥ 2r∗(∇L(θ∗; Zn

1 )). Define the
critical tolerance

δn := inf
δ>0

{
δ | δ ≥

2λn

κL
Ψ(B) +

√
2λnr(ΠA⊥(θ∗))

κL
, and RSC holds over K(δ; A, B, θ∗).

}
. (19)

Then any optimal solution θ̂λn to the convex program (1) satisfies the bound ‖θ̂λn − θ∗‖# ≤ δn.

Remarks: We can gain intuition by discussing in more detail some different features of this result.

(a) It should be noted that Theorem 1 is actually a deterministic statement about the set of op-
timizers of the convex program (1) for a fixed choice of λn. Since this program is not strictly
convex in general, it may have multiple optimal solutions θ̂λn , and the stated bound holds for
any of these optima. Probabilistic analysis is required when Theorem 1 is applied to particular
statistical models, and we need to verify that the regularizer satisfies the condition

λn ≥ 2r∗(∇L(θ∗; Zn
1 )), (20)

11



and that the loss satisfies the RSC condition. A challenge here is that since θ∗ is unknown, it is
usually impossible to compute the quantity r∗(∇L(θ∗; Zn

1 )). Instead, when we derive consequences
of Theorem 1 for different statistical models, we use large deviations techniques in order to provide
bounds that hold with high probability over the data Zn

1 .
(b) Second, note that Theorem 1 actually provides a family of bounds, one for each pair (A, B) of

subspaces for which the regularizer is decomposable. For any given pair, the error bound is the
sum of two terms, corresponding to estimation error Eerr and approximation error Eapp, given by
(respectively)

Eerr :=
2λn

κL
Ψ(B), and Eapp :=

√
2λnr(ΠA⊥(θ∗))

κL
. (21)

As the dimension of the subspace A increases (so that the dimension of A⊥ decreases), the
approximation error tends to zero. But since A ⊆ B, the estimation error is increasing at the
same time. Thus, in the usual way, optimal rates are obtained by choosing A and B so as to
balance these two contributions to the error. We illustrate such choices for various specific models
to follow.

A large body of past work on sparse linear regression has focused on the case of exactly sparse
regression models for which the unknown regression vector θ∗ is s-sparse. For this special case, recall
from Example 1 in Section 2.2 that we can define an s-dimensional subspace A that contains θ∗.
Consequently, the associated set C(A, B; θ∗) is a cone (see Figure 1(a)), and it is thus possible to
establish that restricted strong convexity (RSC) holds without any need for the additional tolerance
parameter δ defining K. This same reasoning applies to other statistical models, among them group-
sparse regression, in which a small subset of groups are active, as well as low-rank matrix estimation.
The following corollary provides a simply stated bound that covers all of these models:

Corollary 1. If, in addition to the conditions of Theorem 1, the true parameter θ∗ belongs to A and
the RSC condition holds over C(A, B, θ∗), then any optimal solution θ̂λn to the convex program (1)
satisfies the bounds

‖θ̂λn − θ∗‖# ≤
2λn

κL
Ψ(B), and (22a)

r(θ̂λn − θ∗) ≤
6λn

κL
Ψ2(B). (22b)

Focusing first on the bound (22a), it consists of three terms, each of which has a natural interpre-
tation:

(a) The bound is inversely proportional to the RSC constant κL, which measures the curvature
of the loss function in a restricted set of directions.

(b) The bound is proportional the subspace compatibility constant Ψ(B) from Definition 3, which
measures the compatibility between the regularizer r and error norm ‖ · ‖# over the subspace
B.

(c) The bound also scales linearly with the regularization parameter λn, which must be strictly
positive and satisfy the lower bound (20).

12



The bound (22b) on the error measured in the regularizer norm is similar, except that it scales
quadratically with the subspace compatibility constant. As the proof clarifies, this additional de-
pendence arises since the regularizer over the subspace B is larger than the norm ‖ ·‖ # by a factor
of at most Ψ(B) (see Definition 3).

Obtaining concrete rates using Corollary 1 requires some work in order to provide control on
the three quantities in the bounds (22a) and (22b), as illustrated in the examples to follow.

4 Convergence rates for sparse linear regression

In order to illustrate the consequences of Theorem 1 and Corollary 1, let us begin with one of
the simplest statistical models, namely the standard linear model. It is based on n observations
Zi = (xi, yi) ∈ Rp×R of covariate-response pairs. Let y ∈ Rn denote a vector of the responses, and
let X ∈ Rn×p be the design matrix, where xi ∈ Rp is the ith row. This pair is linked via the linear
model

y = Xθ∗ + w, (23)

where θ∗ ∈ Rp is the unknown regression vector, and w ∈ Rn is a noise vector. Given the observations
Zn

1 = (y, X) ∈ Rn × Rn×p, our goal is to obtain a “good” estimate θ̂ of the regression vector θ∗,

assessed either in terms of its !2-error ‖θ̂ − θ∗‖2 or its !1-error ‖θ̂ − θ∗‖1.
It is worth noting that whenever p > n, the standard linear model (23) is unidentifiable, since

the rectangular matrix X ∈ Rn×p has a nullspace of dimension at least p−n. Consequently, in order
to obtain an identifiable model—or at the very least, to bound the degree of non-identifiability—it
is essential to impose additional constraints on the regression vector θ∗. One natural constraint is
that of some type of sparsity in the regression vector; for instance, one might assume that θ∗ has at
most s non-zero coefficients, as discussed at more length in Section 4.2. More generally, one might
assume that although θ∗ is not exactly sparse, it can be well-approximated by a sparse vector, in
which case one might say that θ∗ is “weakly sparse”, “sparsifiable” or “compressible”. Section 4.3
is devoted to a more detailed discussion of this weakly sparse case.

A natural M -estimator for this problem is the constrained basis pursuit or Lasso [22, 72], ob-
tained by solving the !1-penalized quadratic program

θ̂λn ∈ arg min
θ∈Rp

{ 1

2n
‖y −Xθ‖22 + λn‖θ‖1

}
, (24)

for some choice λn > 0 of regularization parameter. Note that this Lasso estimator is a par-
ticular case of the general M -estimator (1), based on the loss function and regularization pair
L(θ; Zn

1 ) = 1
2n‖y −Xθ‖22 and r(θ) =

∑p
j=1 |θj | = ‖θ‖1. We now show how Theorem 1 can be

specialized to obtain bounds on the error θ̂λn − θ∗ for the Lasso estimate.

4.1 Restricted eigenvalues for sparse linear regression

We begin by discussing the special form of restricted strong convexity for the least-squares loss
function that underlies the Lasso. For the quadratic loss function L(θ; Zn

1 ) = 1
2n‖y − Xθ‖22, the

first-order Taylor series expansion from Definition 2 is exact, so that

δL(∆, θ∗; Zn
1 ) = 〈∆,

1

n
XT X〉∆ =

1

n
‖X∆‖22.
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This exact relation allows for substantial theoretical simplification. In particular, in order to estab-
lish restricted strong convexity (see Definition 2) for quadratic losses, it suffices to establish a lower
bound on ‖X∆‖22/n, one that holds uniformly for an appropriately restricted subset of p-dimensional
vectors ∆.

As previously discussed in Example 1, for any subset S ⊆ {1, 2, . . . , p}, the !1-norm is decom-
posable with respect to the subspace A(S) = {α ∈ Rp | αSc = 0} and its orthogonal complement.
When the unknown regression vector θ∗ ∈ Rp is exactly sparse, it is natural to choose S equal to
the support set of θ∗. By appropriately specializing the definition (14) of C, we are led to consider
the cone

C(S) :=
{
∆ ∈ R

p | ‖∆Sc‖1 ≤ 3‖∆S‖1
}
. (25)

See Figure 1(a) for an illustration of this set in three dimensions. With this choice and the quadratic
loss function, restricted strong convexity with respect to the !2-norm is equivalent to requiring that
the design matrix X satisfy the condition

‖Xθ‖22
n

≥ κL ‖θ‖22 for all θ ∈ C(S). (26)

This is a type of restricted eigenvalue (RE) condition, and has been studied in past work on basis
pursuit and the Lasso (e.g., [8, 50, 59, 76]). It is a much milder condition than the restricted
isometry property [18], since only a lower bound is required, and the strictly positive constant κL
can be arbitrarily close to zero. Indeed, as shown by Bickel et al. [8], the restricted isometry property
(RIP) implies the RE condition (26), but not vice versa. More strongly, Raskutti et al. [61] give
examples of matrix families for which the RE condition (26) holds, but the RIP constants tend to
infinity as (n, |S|) grow. One could also enforce that a related condition hold with respect to the
!1-norm—viz.

‖Xθ‖22
n

≥ κ′L
‖θ‖21
|S|

for all θ ∈ C(S). (27)

This type of !1-based RE condition is less restrictive than the corresponding !2 version (26); see van
de Geer and Bühlmann [77] for further discussion.

It is natural to ask whether there are many matrices that satisfy these types of RE condi-
tions. This question was addressed by Raskutti et al. [59, 61], who showed that if the design
matrix X ∈ Rn×p is formed by independently sampling each row Xi ∼ N(0,Σ), referred to as
the Σ-Gaussian ensemble, then there are strictly positive constants (κ1,κ2), depending only on the
positive definite matrix Σ, such that

‖Xθ‖2√
n
≥ κ1 ‖θ‖2 − κ2

√
log p

n
‖θ‖1 for all θ ∈ Rp (28)

with probability greater than 1 − c1 exp(−c2n). In particular, the results of Raskutti et al. [61]
imply that this bound holds with κ1 = 1

4λmin(
√
Σ) and κ2 = 9

√
max

j=1,...,p
Σjj , but sharper results are

possible.
The bound (28) has an important consequence: it guarantees that the RE property (26) holds1

with κL = κ1
2 > 0 as long as n > 64(κ2/κ1)2 s log p. Therefore, not only do there exist matrices

1To see this fact, note that for any θ ∈ C(S), we have ‖θ‖1 ≤ 4‖θS‖1 ≤ 4
√

s‖θS‖2. Given the lower bound (28),

for any θ ∈ C(S), we have the lower bound ‖Xθ‖2√
n

≥
˘

κ1 −4κ2

q

s log p
n

¯

‖θ‖2 ≥ κ1

2
‖θ‖2, where final inequality follows

as long as n > 64(κ2/κ1)
2 s log p.
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satisfying the RE property (26), but it holds with high probability for any matrix random sampled
from a Σ-Gaussian design. Related analysis by Zhou [88] extends these types of guarantees to the
case of sub-Gaussian designs.

4.2 Lasso estimates with exact sparsity

We now show how Corollary 1 can be used to derive convergence rates for the error of the Lasso
estimate when the unknown regression vector θ∗ is s-sparse. In order to state these results, we
require some additional notation. Using Xj ∈ Rn to denote the jth column of X, we say that X is
column-normalized if

‖Xj‖2√
n
≤ 1 for all j = 1, 2, . . . , p. (29)

Here we have set the upper bound to one in order to simplify notation as much as possible. This par-
ticular choice entails no loss of generality, since we can always rescale the linear model appropriately
(including the observation noise variance) so that it holds.

In addition, we assume that the noise vector w ∈ Rn is zero-mean and has sub-Gaussian tails,
meaning that there is a constant σ > 0 such that for any fixed ‖v‖2 = 1,

P
[
|〈v, w〉| ≥ t

]
≤ 2 exp

(
−
δ2

2σ2

)
for all δ > 0. (30)

For instance, this condition holds in the special case of i.i.d. N(0,σ2) Gaussian noise; it also
holds whenever the noise vector w consists of independent, bounded random variables. Under these
conditions, we recover as a corollary of Theorem 1 the following result:

Corollary 2. Consider an s-sparse instance of the linear regression model (23) such that X satisfies
the RE condition (26), and the column normalization condition (29). Given the Lasso program (24)

with regularization parameter λn = 4σ
√

log p
n , then with probability at least 1− c1 exp(−c2nλ2

n), any

solution θ̂λn satisfies the bounds

‖θ̂λn − θ
∗‖22 ≤

64σ2

κ2
L

s log p

n
, and (31a)

‖θ̂λn − θ∗‖1 ≤
24σ

κL
s

√
log p

n
. (31b)

Although these error bounds are known from past work [8, 50, 76], our proof illuminates the un-
derlying structure that leads to the different terms in the bound—in particular, see equations (22a)
and (22b) in the statement of Corollary 1.

Proof. We first note that the RE condition (27) implies that RSC holds with respect to the sub-
space A(S). As discussed in Example 1, the !1-norm is decomposable with respect to A(S) and its
orthogonal complement, so that we may set B(S) = A(S). Since any vector θ ∈ A(S) has at most

s non-zero entries, the subspace compatibility constant is given by Ψ(A(S)) = sup
θ∈A(S)\{0}

‖θ‖1

‖θ‖2
=
√

s.

The final step is to compute an appropriate choice of the regularization parameter. The gradient
of the quadratic loss is given by ∇L(θ; (y, X)) = 1

nXT w, whereas the dual norm of the !1-norm is
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the !∞-norm. Consequently, we need to specify a choice of λn > 0 such that

λn ≥ 2 r∗(∇L(θ∗; Zn
1 )) = 2

∥∥ 1

n
XT w

∥∥
∞

with high probability. Using the column normalization (29) and sub-Gaussian (30) conditions, for

each j = 1, . . . , p, we have the tail bound P
[
|〈Xj , w〉/n| ≥ t

]
≤ 2 exp

(
− nt2

2σ2

)
. Consequently, by

union bound, we conclude that P
[
‖XT w/n‖∞ ≥ t

]
≤ 2 exp

(
− nt2

2σ2 +log p
)
. Setting t2 = 4σ2 log p

n , we
see that the choice of λn given in the statement is valid with probability at least 1−c1 exp(−c2nλ2

n).
Consequently, the claims (31a) and (31b) follow from the bounds (22a) and (22b) in Corollary 1.

4.3 Lasso estimates with weakly sparse models

We now consider regression models for which θ∗ is not exactly sparse, but rather can be approximated
well by a sparse vector. One way in which to formalize this notion is by considering the !q “ball” of
radius Rq, given by

Bq(Rq) := {θ ∈ R
p |

p∑

i=1

|θi|q ≤ Rq}, where q ∈ [0, 1] is parameter.

In the special case q = 0, this set corresponds to an exact sparsity constraint—that is, θ∗ ∈ B0(R0)
if and only if θ∗ has at most R0 non-zero entries. More generally, for q ∈ (0, 1], the set Bq(Rq)
enforces a certain decay rate on the ordered absolute values of θ∗.

In the case of weakly sparse vectors, the constraint set C takes the form

C(A, B; θ∗) = {∆ ∈ R
p | ‖∆Sc‖1 ≤ 3‖∆S‖1 + 4‖θ∗Sc‖1

}
. (32)

It is essential to note that—in sharp contrast to the case of exact sparsity—the set C is no longer
a cone, but rather contains a ball centered at the origin. To see the difference, compare panels (a)
and (b) of Figure 1. As a consequence, it is never possible to ensure that ‖Xθ‖2/

√
n is uniformly

bounded from below for all vectors θ in the set (32). For this reason, it is essential that Theorem 1
require only that such a bound only hold over the set K(δ), formed by intersecting C with a spherical
shell {∆ ∈ Rp | ‖∆‖# = δ}.

The random matrix result (28), stated in the previous section, allows us to establish a form of
RSC that is appropriate for the setting of !q-ball sparsity. More precisely, as shown in the proof of
the following result, it guarantees that RSC holds with a suitably small δ > 0. To the best of our
knowledge, the following corollary of Theorem 1 is a novel result.

Corollary 3. Suppose that X satisfies the condition (28) and the column normalization condi-
tion (29); the noise w is sub-Gaussian (30); and θ∗ belongs to Bq(Rq) for a radius Rq such that
√

Rq
( log p

n

) 1
2
− q

4 = o(1). Then if we solve the Lasso with regularization parameter λn = 4σ
√

log p
n ,

there are strictly positive constants (c1, c2) such that any optimal solution θ̂λn satisfies

‖θ̂λn − θ∗‖22 ≤ 64 Rq

(
σ2

κ2
1

log p

n

)1− q
2

(33)

with probability at least 1− c1 exp(−c2nλ2
n).
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Remarks: Note that this corollary is a strict generalization of Corollary 2, to which it reduces
when q = 0. More generally, the parameter q ∈ [0, 1] controls the relative “sparsifiability” of θ∗, with
larger values corresponding to lesser sparsity. Naturally then, the rate slows down as q increases
from 0 towards 1. In fact, Raskutti et al. [59] show that the rates (33) are minimax-optimal over
the !q-balls—implying that not only are the consequences of Theorem 1 sharp for the Lasso, but
more generally, no algorithm can achieve faster rates.

Proof. Since the loss function L is quadratic, the proof of Corollary 2 shows that the stated choice

λn = 4
√
σ2 log p

n is valid with probability at least 1 − c exp(−c′nλ2
n). Let us now show that the

RSC condition holds. We do so via condition (28), in particular showing that it implies the RSC
condition over an appropriate set as long as ‖θ̂ − θ∗‖2 is sufficiently large. For a threshold τ > 0 to
be chosen, define the thresholded subset

Sτ :=
{
j ∈ {1, 2, . . . , p} | |θ∗j | > τ

}
. (34)

Now recall the subspaces A(Sτ ) and A⊥(Sτ ) previously defined, as in equations (4) and (5) of
Example 1 with S = Sτ . The following lemma, proved in Appendix B, provides sufficient conditions
for restricted strong convexity with respect to these subspace pairs:

Lemma 2. Under the assumptions of Corollary 3 and the choice τ = λn
κ1

, then the RSC condition
holds with κL = κ1/4 over the set K(δ; A(Sτ ), B(Sτ ), θ∗) for all tolerance parameters

δ ≥ δ∗ :=
4κ2

κ1

√
log p

n
Rq τ

1−q (35)

This result guarantees that we may apply Theorem 1 with over K(δ∗) with κL = κ1/4, from which
we obtain

‖θ̂ − θ∗‖2 ≤ max

{
δ∗,

8λn

κ1
Ψ(A(Sτ )) +

√
8λn ‖θ∗Sc

τ
‖1

κ1

}
. (36)

From the proof of Corollary 2, we have Ψ(A(Sτ )) =
√

Sτ . It remains to upper bound the cardinality
of Sτ in terms of the threshold τ and !q-ball radius Rq. Note that we have

Rq ≥
p∑

j=1

|θ∗j |q ≥
∑

j∈Sτ

|θ∗i |q ≥ τ q|Sτ |, (37)

whence |Sτ | ≤ τ−q Rq for any τ > 0. Next we upper bound the approximation error ‖θ∗Sc
τ
‖1, using

the fact that θ∗ ∈ Bq(Rq). Letting Sc
τ denote the complementary set Sτ\{1, 2, . . . , p}, we have

‖θ∗Sc
τ
‖1 =

∑

j∈Sc
τ

|θ∗j | =
∑

j∈Sc
τ

|θ∗j |q|θ∗j |1−q ≤ Rq τ
1−q. (38)

Setting τ = λn/κ1 and then substituting the bounds (37) and (38) into the bound (36) yields

‖θ̂ − θ∗‖2 ≤ max

{
δ∗, 8

√
Rq
(λn

κ1

)1−q/2
+

√
8Rq

(λn

κ1

)2−q
}
≤ max

{
δ∗, 16

√
Rq
(λn

κ1

)1−q/2
}

.

Under the assumption
√

Rq
( log p

n

) 1
2
− q

4 = o(1), the critical δ∗ in the condition (35) is of lower order
than the second term, so that the claim follows.
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5 Convergence rates for group-structured norms

The preceding two sections addressed M -estimators based on !1-regularization, the simplest type
of decomposable regularizer. We now turn to some extensions of our results to more complex
regularizers that are also decomposable. Various researchers have proposed extensions of the Lasso
based on regularizers that have more structure than the !1 norm (e.g., [75, 84, 86, 47, 5]). Such
regularizers allow one to impose different types of block-sparsity constraints, in which groups of
parameters are assumed to be active (or inactive) simultaneously. These norms naturally arise in
the context of multivariate regression, where the goal is to predict a multivariate output in Rm on
the basis of a set of p covariates. Here it is natural to assume that groups of covariates are useful
for predicting the different elements of the m-dimensional output vector. We refer the reader to
the papers papers [75, 84, 86, 47, 5] for further discussion and motivation of such block-structured
norms.

Given a collection G = {G1, . . . , GT } of groups, recall from Example 2 in Section 2.2 the def-
inition of the group norm ‖ ·‖ G,%ν . In full generality, this group norm is based on a weight vector
'ν = (ν1, . . . , νT ) ∈ [1,∞]T , one for each group. For simplicity, here we consider the case when νt = ν
for all t = 1, 2, . . . , T , and we use ‖ · ‖G,ν to denote the associated group norm. As a natural gener-
alization of the Lasso, we consider the block Lasso estimator

θ̂ ∈ arg min
θ∈Rp

{ 1

n
‖y −Xθ‖22 + λn‖θ‖G,ν

}
, (39)

where λn > 0 is a user-defined regularization parameter. Different choices of the parameter ν yield
different estimators, and in this section, we consider the range ν ∈ [2,∞]. This range covers the two
most commonly applied choices, ν = 2, often referred to as the group Lasso, as well as the choice
ν = +∞.

5.1 Restricted strong convexity for group sparsity

As a parallel to our analysis of ordinary sparse regression, our first step is to provide a condition
sufficient to guarantee restricted strong convexity for the group-sparse setting. More specifically,
we state the natural extension of condition (28) to the block-sparse setting, and prove that it holds
with high probability for the class of Σ-Gaussian random designs. Recall from Theorem 1 that the
dual norm of the regularizer plays a central role. For the block-(1, ν)-regularizer, the associated
dual norm is a block-(∞, ν∗) norm, where (ν, ν∗) are conjugate exponents satisfying 1

ν + 1
ν∗ = 1.

Letting ε ∼ N(0, Ip×p) be a standard normal vector, we consider the following condition. Suppose
that there are strictly positive constants (κ1,κ2) such that, for all ∆ ∈ Rp, we have

‖X∆‖2√
n
≥ κ1‖∆‖2 − κ2

ρG(ν∗)√
n
‖∆‖1,ν where ρG(ν∗) := E

[
max

t=1,2,...,T
‖εGt‖ν∗

]
. (40)

To understand this condition, first consider the special case of T = p groups, each of size one, so
that the group-sparse norm reduces to the ordinary !1-norm. (The choice of ν ∈ [2,∞] is irrelevant
when the group sizes are all one.) In this case, we have

ρG(2) = E[‖w‖∞] ≤
√

3 log p,

using standard bounds on Gaussian maxima. Therefore, condition (40) reduces to the earlier con-
dition (28) in this special case.
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Let us consider a more general setting, say with ν = 2 and T groups each of size m, so that
p = Tm. For this choice of groups and norm, we have ρG(2) = E

[
max

t=1,...,T
‖wGt‖2

]
where each sub-

vector wGt is a standard Gaussian vector with m elements. Since E[‖wGt‖2] ≤
√

m, tail bounds for
χ2-variates yield ρG(2) ≤

√
m +

√
3 log T , so that the condition (40) is equivalent to

‖X∆‖2√
n
≥ κ1‖∆‖2 − κ2

[√
m

n
+

√
3 log T

n

]
‖∆‖G,2 for all ∆ ∈ Rp.

Thus far, we have seen the form that condition (40) takes for different choices of the groups and
parameter ν. It is natural to ask whether there are any matrices that satisfy the condition (40).
As shown in the following result, the answer is affirmative—more strongly, almost every matrix
satisfied from the Σ-Gaussian ensemble will satisfy this condition with high probability. (Here we
recall that for a non-degenerate covariance matrix, a random design matrix X ∈ Rn×p is drawn
from the Σ-Gaussian ensemble if each row xi ∼ N(0,Σ), i.i.d. for i = 1, 2, . . . , n.)

Proposition 1. For a design matrix X ∈ Rn×p from the Σ-ensemble, there are constants (κ1,κ2)
depending only Σ such that condition (40) holds with probability greater than 1− c1 exp(−c2n).

We provide the proof of this result in Appendix C.1. This condition can be used to show that
appropriate forms of RSC hold, for both the cases of exactly group-sparse and weakly sparse vectors.
As with !1-regularization, these RSC conditions are much milder than analogous RIP conditions
(e.g., [28, 71, 5]), which require that all sub-matrices up to a certain size are close to isometries.

5.2 Convergence rates

Apart from RSC, we impose one additional condition on the design matrix. For a given group G
of size m, let us view XG as an operator from !mν → !n2 , and define the associated operator norm
|||XG|||ν→2 := max

‖θ‖ν=1
‖XG θ‖2. We then require that

|||XGt |||ν→2√
n

≤ 1 for all t = 1, 2, . . . , T . (41)

Note that this is a natural generalization of the column normalization condition (29), to which it
reduces when we have T = p groups, each of size one. As before, we may assume without loss
of generality, rescaling X and the noise as necessary, that condition (41) holds with constant one.
Finally, we define the maximum group size m = max

t=1,...,T
|Gt|. With this notation, we have the

following novel result:

Corollary 4. Suppose that the noise w is sub-Gaussian (30), and the design matrix X satisfies
condition (40) and the block normalization condition (41). If we solve the group Lasso with

λn ≥ 2σ

{
m1−1/ν

√
n

+

√
log T

n

}
, (42)

then with probability at least 1 − 2/T 2, for any group subset SG ⊆ {1, 2, . . . , T} with cardinality
|SG | = sG, any optimal solution θ̂λn satisfies

‖θ̂λn − θ
∗‖22 ≤

4λ2
n

κ2
L

sG +
4λn

κL

∑

t/∈SG

‖θ∗Gt
‖ν . (43)
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Remarks: Since the result applies to any ν ∈ [2,∞], we can observe how the choices of different
group-sparse norms affect the convergence rates. So as to simplify this discussion, let us assume
that the groups are all of equal size so that p = mT is the ambient dimension of the problem.

Case ν = 2: The case ν = 2 corresponds to the block (1, 2) norm, and the resulting estimator is
frequently referred to as the group Lasso. For this case, we can set the regularization parameter as

λn = 2σ
{√

m
n +

√
log T

n

}
. If we assume moreover that θ∗ is exactly group-sparse, say supported on

a group subset SG ⊆ {1, 2, . . . , T} of cardinality sG , then the bound (43) takes the form

‖θ̂ − θ∗‖22 = O
(

sG m

n
+

sG log T

n

)
. (44)

Similar bounds were derived in independent work by Lounici et al. [43] and Huang and Zhang [28]
for this special case of exact block sparsity. The analysis here shows how the different terms arise,
in particular via the noise magnitude measured in the dual norm of the block regularizer.

In the more general setting of weak block sparsity, Corollary 4 yields a number of novel re-
sults. For instance, for a given set of groups G, we can consider the block sparse analog of the
!q-“ball”—namely the set

Bq(Rq;G, 2) :=

{
θ ∈ R

p |
T∑

t=1

‖θGt‖
q
2 ≤ Rq

}
.

In this case, if we optimize the choice of S in the bound (43) so as to trade off the estimation and
approximation errors, then we obtain

‖θ̂ − θ∗‖22 = O
(

Rq

[
m

n
+

log T

n

]1− q
2
)

,

which is a novel result. This result is a generalization of our earlier Corollary 3, to which it reduces
when we have T = p groups each of size m = 1.

Case ν = +∞: Now consider the case of !1/!∞ regularization, as suggested in past work [75]. In

this case, Corollary 4 implies that ‖θ̂ − θ∗‖22 = O
(

s m2

n + s log T
n

)
. Similar to the case ν = 2, this

bound consists of an estimation term, and a search term. The estimation term sm2

n is larger by a
factor of m, which corresponds to amount by which an !∞ ball in m dimensions is larger than the
corresponding !2 ball.

We provide the proof of Corollary 4 in Appendix C.2. It is based on verifying the conditions
of Theorem 1: more precisely, we use Proposition 1 in order to establish RSC, and we provide a
lemma that shows that the regularization choice (42) is valid in the context of Theorem 1.

6 Convergence rates for generalized linear models

The previous sections were devoted to the study of high-dimensional linear models, under either
sparsity constraints (Section 4) or group-sparse constraints (Section 5). In these cases, the quadratic
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loss function allowed us to reduce the study of restricted strong convexity to the study of restricted
eigenvalues. However, the assumption of an ordinary linear model is limiting, and may not be
suitable in some settings. For instance, the response variables may be binary as in a classification
problem, or follow another type of exponential family distribution (e.g., Poisson, Gamma etc.) It
is natural then to consider high-dimensional models that involve non-quadratic losses. This section
is devoted to an in-depth analysis of the setting in which the real-valued response y ∈ Y is linked
to the p-dimensional covariate x ∈ Rp via a generalized linear model (GLM) with canonical link
function. This extension, though straightforward from a conceptual viewpoint, introduces some
technical challenges. Restricted strong convexity (RSC) is a more subtle condition in this setting,
and one of the results in this section is Proposition 2, which guarantees that RSC holds with high
probability for a broad class of GLMs.

6.1 Generalized linear models and M-estimation

We begin with background on generalized linear models. Suppose that conditioned on the covariate
vector, the response variable has the distribution

P(y | x; θ∗,σ) ∝ exp

{
y 〈θ∗, x〉 − ψ(〈θ∗, x〉)

c(σ)

}
(45)

Here the scalar σ > 0 is a fixed and known scale parameter, whereas the vector θ∗ ∈ Rp is fixed but
unknown, and our goal is to estimate it. The function ψ : R 5→ R is known as the link function. We
assume that ψ is defined on all of R; otherwise, it would be necessary to impose constraints on the
vector 〈θ∗, x〉 so as to ensure that the model was meaningfully defined. From standard properties
of exponential families [10], it follows that ψ is infinitely differentiable, and its second derivative ψ′′

is strictly positive on the real line.

Let us illustrate this set-up with some standard examples:

Example 4.(a) The model (45) includes the usual linear model as a special case. In particular,
let the response y take values in Y = R, define the link function ψ(u) = u2/2 and set c(σ) = σ2,
where σ is the standard deviation of the observation noise. The conditional distribution (45) takes
the form

P(y | x; θ∗,σ) ∝ exp

{
y 〈θ∗, x〉 − (〈θ∗, x〉)2/2

σ2

}
.

In this way, we recognize that conditioned on x, the response y has a Gaussian distribution with
mean 〈θ∗, x〉 and variance σ2.

(b) For the logistic regression model, the response y takes binary values (Y = {0, 1}), and the link
function is given by ψ(u) = log(1 + exp(u)). There is no scale parameter σ for this model, and
we have

P(y | x; θ∗) = exp
{
y〈θ∗, x〉 − log(1 + exp(〈θ∗, x〉))

}
,

so that conditioned on x, the response y is a Bernoulli variable with P(y = 1 | x; θ∗) = exp(〈θ∗,x〉)
1+exp(〈θ∗,x〉) .
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(c) In the Poisson model, the response y takes a positive integer value in Y = {0, 1, 2, . . .}, and the
conditional distribution of the response given the covariate takes the form

P(y | x; θ∗) = exp
{
y〈θ∗, x〉 − exp(〈θ∗, x〉)

}
,

corresponding to a GLM with link function ψ(u) = exp(u).
♦

We now turn to the estimation problem of interest in the GLM setting. Suppose that we
sample n i.i.d. covariate vectors {xi}p

i=1 from some distribution over Rp. For each i = 1, . . . , n,
we then draw an independent response variable yi ∈ Y according to the distribution P(y | xi; θ∗),
Given the collection of observations Zn

1 := {(xi, yi)}n
i=1, the goal is to estimate the parameter vector

θ∗ ∈ Rp. When θ∗ is an s-sparse vector, it is natural to consider the estimator based on !1-regularized
maximum likelihood—namely, the convex program

θ̂λn ∈ arg min
θ∈Rp

{
−〈θ,

1

n

n∑

i=1

yixi〉+
1

n

n∑

i=1

ψ
(
〈θ, xi〉

)

︸ ︷︷ ︸
L(θ;Zn

1 )

+λn‖θ‖1
}

. (46)

This estimator is a special case of our M -estimator (1) with r(θ) = ‖θ‖1.

6.2 Restricted strong convexity for GLMs

In order to leverage Theorem 1, we need to establish that an appropriate form of RSC holds for
generalized linear models. In the special case of linear models, we exploited a result in random
matrix theory, as stated in the bound (28), in order to verify these properties, both for exactly
sparse and weakly sparse models. In this section, we state an analogous result for generalized linear
models. It applies to models with sub-Gaussian behavior (see equation (30)), as formalized by the
following condition:

(GLM1) The rows xi, i = 1, 2, . . . , n of the design matrix are i.i.d. samples from a zero-mean
distribution with covariance matrix cov(xi) = Σ such that λmin(Σ) ≥ κ+ > 0, and for any
v ∈ Rp, the variable 〈v, xi〉 is sub-Gaussian with parameter at most κu‖v‖22.

We recall that RSC involves lower bounds on the error in the first-order Taylor series expansion—
namely, the quantity

δL(∆, θ∗; Zn
1 ) := L(θ∗ + ∆; Zn

1 )− L(θ∗; Zn
1 )− 〈∇L(θ∗; Zn

1 ),∆〉.

When the loss function is more general than least-squares, then the quantity δL cannot be reduced
to a fixed quadratic form, Rather, we need to establish a result that provides control uniformly over
a neighborhood. The following result is of this flavor:

Proposition 2. For any minimal GLM satisfying condition (GLM1) , there exist positive constants
κ1 and κ2, depending only on (κ+,κu) and ψ, such that

δL(∆, θ∗; Zn
1 ) ≥ κ1‖∆‖2

{
‖∆‖2 − κ2

√
log p

n
‖∆‖1

}
for all ‖∆‖2 ≤ 1. (47)

with probability at least 1− c1 exp(−c2n).
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Note that Proposition 2 is a lower bound for an an empirical process; in particular, given the
empirical process {δL(∆, θ∗; Zn

1 ), ∆ ∈ Rp}, it yields a lower bound on the infimum over ‖∆‖2 ≤ 1.
The proof of this result, provided in Appendix D.1, requires a number of techniques from empirical
process theory, among them concentration bounds, the Ledoux-Talagrand contraction inequality,
and a peeling argument. A subtle aspect is the use of an appropriate truncation argument to deal
with the non-Lipschitz and unbounded functions that it covers.

In the current context, the most important consequence of Proposition 2 is that it guarantees
that GLMs satisfy restricted strong convexity for s-sparse models as long as n = Ω(s log p). This
follows by the same argument as in the quadratic case (see Section 4.1).

6.3 Convergence rates

We now use Theorem 1 and Proposition 2 in order to derive convergence rates for the GLM
Lasso (46). In addition to our sub-Gaussian assumptions on the covariates (Condition (GLM1)),
we require the following mild regularity conditions on the link function:

(GLM2) For some constant Mψ > 0, at least one of the following two conditions holds:

(i) The Hessian of the cumulant function is uniformly bounded: ‖ψ′′‖∞ ≤Mψ, or

(ii) The covariates are bounded (|xij | ≤ 1), and

E
[
max
|u|≤1

[ψ′′(〈θ∗, x〉+ u)]α
]
≤Mψ for some α ≥ 2. (48)

Whereas condition (GLM1) applies purely to the random choice of the covariates {xi}n
i=1, con-

dition (GLM2) also involves the structure of the GLM. Straightforward calculations show that the
standard linear model and the logistic model both satisfy (GLM2) (i), whereas the Poisson model
satisfies the moment condition when the covariates are bounded. The following result provides con-
vergence rates for GLMs; we state it in terms of positive constants (c0, c1, c2, c3) that depend on the
parameters in conditions (GLM1) and (GLM2) .

Corollary 5. Consider a GLM satisfying conditions (GLM1) and (GLM2) , and suppose that

n > 9κ2
2 s log p. For regularization parameter λn = c0

√
log p

n , any optimal solution θ̂λn to the GLM

Lasso satisfies the bound

‖θ̂λn − θ∗‖22 ≤ c1
s log p

n
(49)

with probability greater than 1− c2/nα.

The proof, provided in Appendix D.2, is based on a combination of Theorem 1 and Proposition 2,
along with some tail bounds to establish that the specified choice of regularization parameter λn is
suitable. Note that up to differences in constant factors, the rate (49) is the same as the ordinary
linear model with an s-sparse vector.

7 Convergence rates for low rank matrices

Finally, we consider the implications of our main result for the problem of estimating a matrix
Θ∗ ∈ Rp1×p2 that is either exactly low rank, or well-approximated by low rank matrices. Such
estimation problems arise in various guises, including principal component analysis, multivariate
regression, matrix completion, and system identification.
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7.1 Matrix-based regression and examples

In order to treat a range of instances in a unified manner, it is helpful to set up the problem of
matrix regression. For a pair of p1 × p2 matrices Θ and X, recall the usual trace inner product
〈〈X, Θ〉〉 := trace(XTΘ). In terms of this notation, we then consider an observation model in which
each observation yi ∈ R is a noisy version of such an inner product. More specifically, for each
i = 1, . . . , n, we let Xi ∈ Rp1×p2 denote a matrix, and define

yi = 〈〈Xi, Θ∗〉〉+ wi, for i = 1, 2, . . . , n, (50)

where wi ∈ R is an additive observation noise. When the unknown matrix Θ∗ has low rank structure,
it is natural to consider the estimator

Θ̂λn ∈ arg min
Θ∈Rp1×p2

{
1

2n

n∑

i=1

(
yi − 〈〈Xi, Θ)〉〉

)2
+ λn |||Θ|||1

}
, (51)

using the nuclear norm |||Θ|||1 =
∑min{p1,p2}

j=1 σj(Θ) for regularization. Note that the estimator (51)
is a special case of our general estimator (1). From the computational perspective, it is an in-
stance of a semidefinite program [79], and there are a number of efficient algorithms for solving it
(e.g., [9, 41, 45, 55, 56]).

Let us consider some examples to illustrate applications covered by the model (51).

Example 5.(a) Matrix completion [19, 52, 65, 68, 70]: Suppose that one observes a relatively
small subset of the entries of a matrix Θ∗ ∈ Rp1×p2 . These observations may be uncorrupted, or
(as is relevant here) corrupted by additive noise. If n entries are observed, then one has access
to the samples yi = Θ∗

a(i)b(i) + wi for i = 1, 2, . . . , n, where (a(i), b(i)) corresponds to the matrix

entry associated with observation i. This set-up is an instance of the model (50), based on the
observation matrices Xi = Ea(i)b(i), corresponding to the matrix with one in position (a(i), b(i))
and zeroes elsewhere.

(b) Multivariate regression [54, 68, 83]: Suppose that for j = 1, 2, . . . , p2, we are given a regression
problem in p1 dimensions, involving the unknown regression vector θ∗j ∈ Rp1 . By stacking these
regression vectors as columns, we can form a p1 × p2 matrix

Θ∗ =
[
θ∗1 θ∗2 · · · θ∗p2

]

of regression coefficients. A multivariate regression problem based on N observations then takes
the form Y = ZΘ∗ + W , where Z ∈ RN×p1 is the matrix of covariates, and Y ∈ RN×p2 is the
matrix of response vectors. In many applications, it is natural to assume that the regression
vectors {θ∗j , j = 1, 2, . . . , p2} are relatively similar, and so can be modeled as lying within or
close to a lower dimensional subspace. Equivalently, the matrix Θ∗ is either exactly low rank,
and approximately low rank. As an example, in multi-view imaging, each regression problem is
obtained from a different camera viewing the same scene, so that one expects substantial sharing
among the different regression problems. This model can be reformulated as an instance of the
observation model (50) based on n = N p2 observations; see the paper [54] for details.
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(c) Compressed sensing [16, 54, 66]: The goal of compressed sensing to estimate a parameter vector
or matrix based on noisy random projections. In the matrix variant [66], one makes noisy obser-
vations of the form (50), where each Xi is a standard Gaussian random matrix (i.e., with i.i.d.
N(0, 1) entries).

(d) System identification in autoregressive processes [25, 54, 42]: Consider a vector-valued stochastic
process that is evolves according to the recursion Zt+1 = Θ∗Zt + Vt, where Wt ∼ N(0, ν2).
Suppose that we observe a sequence (Z1, Z2, . . . , ZN ) generated by this vector autoregressive
(VAR) process, and that our goal is to estimate the unknown system matrix Θ∗ ∈ Rp×p, where
p1 = p2 = p in this case. This problem of system identification can be tackled by solving a
version of the M -estimator (51) with n = N p observations, based on suitable definitions of the
matrices Xi.

♦

7.2 Restricted strong convexity for matrix estimation

Let us now consider the form of restricted strong convexity (RSC) relevant for the estimator (51). In
order to do so, we first define an operator X : Rp1×p2 → Rn. This operator plays an analogous role
to the design matrix in ordinary linear regression, and is defined elementwise by [X(Θ)]i = 〈〈Xi, Θ〉〉.
Using this notation, the observation model can be re-written in a vector form as y = X(Θ∗) + w,
and the estimator (51) takes the form

Θ̂λn ∈ arg min
Θ∈Rp1×p2

{
1

2n
‖y − X(Θ)‖22

︸ ︷︷ ︸
L(Θ;Zn

1 )

+λn |||Θ|||1︸ ︷︷ ︸
r(Θ)

}
.

Note that the Hessian of this quadratic loss function L is given by the operator 1
n(X⊗ X), and the

RSC condition amounts to establishing lower bounds of the form 1√
n
‖X(∆)‖2 ≥ κL‖∆‖2 that hold

uniformly for a suitable subset of matrices ∆ ∈ Rp1×p2 .
Recall from Example 3 that the nuclear norm is decomposable with respect to subspaces of

matrices defined in terms of their row and column spaces. We now show how suitable choices lead
to a useful form of RSC for recovering near low-rank matrices. Given a rank k matrix Θ∗ ∈ Rp1×p2 ,
let Θ∗ = UΣV T be its singular value decomposition (SVD), so that U ∈ Rp1×k and V ∈ Rp2×k are
orthogonal, and Σ ∈ Rk×k has the singular values of Θ∗ along its diagonal, ordered from largest
to smallest. For each integer ! = 1, 2, . . . , k, let U + ∈ Rp1×+ denote the submatrix of left singular
vectors associated with the top ! singular values, and define the submatrix V + ∈ Rp2×+ similarly. As
discussed in Example 3 of Section 2.2, the nuclear norm r(Θ) = |||Θ|||1 is decomposable with respect
to the subspaces A+ = A(U +, V +) and B = B(U +, V +). Recalling the definition (17) of the set K, a
matrix ∆ belongs to K(δ; A+, B+,Θ∗) if and only if |||∆|||F = δ, and

|||Π(B%)⊥(∆)|||1 ≤ 3|||ΠB%(∆)|||1 + 4
k∑

j=++1

σj(Θ
∗),

and the RSC condition amounts to requiring

1√
n
‖X(∆)‖2 ≥ κL‖∆‖2 for all ∆ ∈ K(δ; A+, B+,Θ∗). (52)
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This RSC condition can be shown to hold with high probability for different instantiations of the
observation model (50). It is relatively straightforward to show [54] that it holds for multivariate
regression and system identification of autoregressive models, as discussed in parts (b) and (d)
of Example 5. For the case of compressed sensing, it has been shown that RIP conditions hold
for certain types of sub-Gaussian matrices [66, 16]; other authors have imposed RIP conditions in
the setting of multivariate regression [68]. As in the case of linear regression, RIP conditions are
sufficient to guarantee the RSC property, but are much more restrictive in general. For instance, it
is possible to construct sequences of models where the RIP constants tend to infinity while the RSC
condition holds [54]. Even more strikingly, for the case of matrix completion, it is never possible
for the RIP condition to hold; however, a fruitful version of restricted strong convexity does exist,
and can be used to derive minimax-optimal bounds, up to logarithmic factors, for noisy matrix
completion [52].

8 Discussion

In this paper, we have presented a unified framework for deriving convergence rates for a class of
regularized M -estimators. The theory is high-dimensional and non-asymptotic in nature, meaning
that it yields explicit bounds that hold with high probability for finite sample sizes, and reveals
the dependence on dimension and other structural parameters of the model. Two properties of
the M -estimator play a central role in our framework. We isolated the notion of a regularizer
being decomposable with respect to a pair of subspaces, and showed how it constrains the error
vector—meaning the difference between any solution and the nominal parameter—to lie within a
very specific set. This fact is significant, because it allows for a fruitful notion of restricted strong
convexity to be developed for the loss function. Since the usual form of strong convexity cannot
hold under high-dimensional scaling, this interaction between the decomposable regularizer and the
loss function is essential.

Our main result (Theorem 1) provides a deterministic bound on the error for a broad class
of regularized M -estimators. By specializing this result to different statistical models, we derived
various explicit convergence rates for different estimators, including some known results and a range
of novel results. We derived convergence rates for sparse linear models, both under exact and
approximate sparsity assumptions; our results for models with !q-ball are novel, and have been
proven minimax-optimal elsewhere [59]. For generalized linear models with sparsity, we derived a
convergence rate that covers a wide range of models, and also proved a novel technical result on
restricted strong convexity that holds under relatively mild conditions. In the case of sparse group
regularization, we established a novel upper bound of the oracle type, with a separation between the
approximation and estimation error terms. For matrix estimation, the framework described here has
been used to derive bounds on Frobenius error that are known to be minimax-optimal [52, 54, 68].

There are a variety of interesting open questions associated with our work. In this paper, for
simplicity of exposition, we have specified the regularization parameter in terms of the dual norm
r∗ of the regularizer. In many cases, this choice leads to convergence rates that are known to
be minimax-optimal, including linear regression over !q-balls (Corollary 3) for sufficiently small
radii, and various instances of low-rank matrix regression. In other cases, some refinements of our
convergence rates are possible; for instance, for the special case of linear sparsity regression (i.e., an
exactly sparse vector, with a constant fraction of non-zero elements), our rates are sub-optimal by a
logarithmic factor. However, optimal rates can be obtained by a more careful analysis of the noise

26



term, which allows for a slightly smaller choice of the regularization parameter. Similarly, there
are other non-parametric settings in which a more delicate choice of the regularization parameter
is required [36, 60]. Last, we suspect that there are many other statistical models, not discussed
in this paper, for which this framework can yield useful results. Some examples include different
types of hierarchical regularizers and/or overlapping group regularizers [29, 30], as well as methods
using combinations of decomposable regularizers, such as the fused Lasso [73], and work on matrix
decomposition [21, 20].
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A Proofs related to Theorem 1

In this section, we collect the proofs of Lemma 1 and our main result. All our arguments in this
section are deterministic, and so we adopt the shorthand L(θ∗) = L(θ∗; Zn

1 ). For an arbitrary vector
∆ ∈ Rp, we also use the simpler notation

∆A := ΠA(∆), ∆A⊥ := ΠA⊥(∆), ∆B := ΠB(∆), and ∆B⊥ := ΠB⊥(∆).

Both proofs make use of the function F : Rp → R given by

F(∆) := L(θ∗ + ∆)− L(θ∗) + λn
{
r(θ∗ + ∆)− r(θ∗)

}
. (53)

In addition, we exploit the following fact: since F(0) = 0, the optimal error ∆̂ = θ̂− θ∗ must satisfy
F(∆̂) ≤ 0.

A.1 Proof of Lemma 1

Note that the function F consists of two parts: a difference of loss functions, and a difference of
regularizers. In order to control F , we require bounds on these two quantities:

Lemma 3 (Deviation inequalities). For any decomposable regularizer and p-dimensional vectors θ∗

and ∆, we have

r(θ∗ + ∆)− r(θ∗) ≥ r(∆B⊥)− r(∆B)− 2r(θ∗A⊥). (54)

Moreover, as long as λn ≥ 2r∗(∇L(θ∗)) and L is convex, we have

L(θ∗ + ∆)− L(θ∗) ≥ −
λn

2

[
r
(
∆B

)
+ r
(
∆B⊥

)]
. (55)
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Proof. By triangle inequality, we have

r
(
θ∗ + ∆

)
= r

(
θ∗A + θ∗A⊥ + ∆B + ∆B⊥

)

≥ r
(
θ∗A + ∆B⊥

)
− r
(
θ∗A⊥ + ∆B

)

≥ r
(
θ∗A + ∆B⊥

)
− r
(
θ∗A⊥

)
− r
(
∆B

)
.

By decomposability applied to θ∗A and ∆B⊥ , we have r
(
θ∗A + ∆B⊥

)
= r

(
θ∗A
)

+ r
(
∆B⊥

)
, so that

r
(
θ∗ + ∆

)
≥ r

(
θ∗A
)

+ r
(
∆B⊥

)
− r
(
θ∗A⊥

)
− r
(
∆B
)
. (56)

Similarly, by triangle inequality, we have r(θ∗) ≤ r
(
θ∗A
)

+ r
(
θ∗A⊥

)
. Combining this inequality with

the bound (56), we obtain

r
(
θ∗ + ∆

)
− r(θ∗) ≥ r

(
θ∗A
)

+ r
(
∆B⊥

)
− r
(
θ∗A⊥

)
− r
(
∆B

)
−
{
r
(
θ∗A
)

+ r
(
θ∗A⊥

)}

= r
(
∆B⊥

)
− r
(
∆B

)
− 2r

(
θ∗A⊥

)
,

which yields the claim (54).
Turning to the loss difference, using the convexity of the loss function L, we have

L(θ∗ + ∆)− L(θ∗) ≥ 〈∇L(θ∗),∆〉 ≥ −|〈∇L(θ∗),∆〉|.

Applying the (generalized) Cauchy-Schwarz inequality with the regularizer and its dual, we obtain

|〈∇L(θ∗),∆〉| ≤ r∗(∇L(θ∗)) r(∆) ≤
λn

2

[
r
(
∆B

)
+ r
(
∆B⊥

)]
,

where the final equality uses triangle inequality, and the assumed bound λn ≥ 2r∗(∇L(θ∗)). Con-
sequently, we conclude that L(θ∗ + ∆)− L(θ∗) ≥ −λn

2

[
r
(
∆B

)
+ r
(
∆B⊥

)]
, as claimed.

We can now complete the proof of Lemma 1. Combining the two lower bounds (54) and (55),
we obtain

0 ≥ F(∆̂) ≥ λn
{
r(∆B⊥)− r(∆B)− 2r(θ∗A⊥)

}
−
λn

2

[
r
(
∆B

)
+ r
(
∆B⊥

)]

=
λn

2

{
r(∆B⊥)− 3r(∆B)− 4r(θ∗A⊥)

}
,

from which the claim follows.

A.2 Proof of Theorem 1

For an error tolerance δ > 0 as given in the theorem, we are concerned with the behavior of the
function F previously defined (53) over the set

K(δ; A, B, θ∗) :=
{
∆ ∈ R

p | ‖∆‖# = δ
}
∩ C(A, B; θ∗), (57)

where

C(A, B; θ∗) :=
{
∆ ∈ R

p | r
(
∆B⊥

)
≤ 3r

(
∆B

)
+ 4r

(
θ∗A⊥

)}
. (58)

Since the subspace pair (A, B) and true parameter θ∗ remain fixed throughout this analysis, we
adopt the shorthand notation K(δ) and C for the remainder of this proof.

The following lemma shows that it suffices to control the sign of the function F over the set (57).

28



Lemma 4. If F(∆) > 0 for all vectors ∆ ∈ K(δ), then ‖∆̂‖# ≤ δ.

Proof. We first claim that C is star-shaped, meaning that if ∆̂ ∈ C, then the entire line {t∆̂ | t ∈ (0, 1)}
connecting ∆̂ with the all-zeroes vector is contained with C. This property is immediate whenever
θ∗ ∈ A, since C is then a cone, as illustrated in Figure 1(a). Now consider the general case, when
θ∗ /∈ A. We first observe that for any t ∈ (0, 1),

ΠB(t∆) = arg min
β∈B
‖t∆− β‖# = t arg min

β∈B
‖∆−

β

t
‖# = tΠB(∆),

using the fact that β/t also belongs to the subspace B. The equality ΠB⊥(t∆) = tΠB⊥(∆) follows
similarly. Consequently, for all ∆ ∈ C, we have

r(ΠB⊥(t∆)) = r(tΠB⊥(∆))
(i)
= t r(ΠB⊥(∆))

(ii)
≤ t

{
3 r(ΠB(∆)) + 4r(ΠA⊥(θ∗))

}

where step (i) uses the fact that any norm is positive homogeneous,2 and step (ii) uses the inclusion
∆ ∈ C. We now observe that 3 t r(ΠB(∆)) = 3 r(ΠB(t∆)), and that 4t r(ΠA⊥(θ∗)) ≤ 4r(ΠA⊥(θ∗)),
since t ∈ (0, 1), so that

r(ΠB⊥(t∆)) ≤ 3 r(ΠB(t∆)) + t 4ΠA⊥(θ∗) ≤ 3 r(ΠB(t∆)) + 4r(ΠA⊥(θ∗)).

We have thus shown that t∆ ∈ C, and hence that C is star-shaped.
Turning to the lemma itself, we prove the contrapositive statement: in particular, we show that if

for some optimal solution θ̂, the associated error vector ∆̂ = θ̂−θ∗ satisfies the inequality ‖∆̂‖# > δ,
then there must be some vector ∆̃ ∈ K(δ) such that F(∆̃) ≤ 0. If ‖∆̂‖# > δ, then the line joining
∆̂ to 0 must intersect the set K(δ) at some intermediate point t∗∆̂, for some t∗ ∈ (0, 1). Since the
loss function L and regularizer r are convex, the function F is also convex for any choice of the
regularization parameter, so that by Jensen’s inequality,

F
(
t∗∆

)
= F

(
t∗∆ + (1− t∗) 0

)
≤ t∗F(∆̂) + (1− t∗)F(0)

(i)
= t∗F(∆̂),

where equality (i) uses the fact that F(0) = 0 by construction. But since ∆̂ is optimal, we must
have F(∆̂) ≤ 0, and hence F(t∗∆) ≤ 0 as well. Thus, we have constructed a vector ∆̃ = t∗∆ with
the claimed properties, thereby establishing Lemma 4.

We now exploit Lemma 4 in order to prove Theorem 1. More specifically, it suffices to establish
a lower bound on F(∆) over K(δ) for the specified critical radius δ > 0. For an arbitrary ∆ ∈ K(δ),
we have

F(∆) = L(θ∗ + ∆)− L(θ∗) + λn
{
r(θ∗ + ∆)− r(θ∗)

}

(i)
≥ 〈∇L(θ∗),∆〉+ κL‖∆‖2# + λn

{
r(θ∗ + ∆)− r(θ∗)

}

(ii)
≥ 〈∇L(θ∗),∆〉+ κL‖∆‖2# + λn

{
r(∆B⊥)− r(∆B)− 2r(θ∗A⊥)

}
,

2Explicitly, for any norm and non-negative scalar t, we have ‖tx‖ = t‖x‖.
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where inequality (i) holds because the RSC condition holds over K(δ), and inequality (ii) follows
from the bound (54).

By the Cauchy-Schwarz inequality applied to the regularizer r and its dual r∗, we have the
bound |〈∇L(θ∗),∆〉| ≤ r∗(∇L(θ∗)) r(∆). Since λn ≥ 2r∗(∇L(θ∗)) by assumption, we conclude that
|〈∇L(θ∗),∆〉| ≤ λn

2 r(∆), and hence that

F(∆) ≥ κL‖∆‖2# + λn
{
r(∆B⊥)− r(∆B)− 2r(θ∗A⊥)

}
−
λn

2
r(∆)

By triangle inequality, we have

r(∆) = r(∆B⊥ + ∆B) ≤ r(∆B⊥) + r(∆B),

and hence, following some algebra

F(∆) ≥ κL‖∆‖2# + λn
{1

2
r(∆B⊥)−

3

2
r(∆B)− 2r(θ∗A⊥)

}

≥ κL‖∆‖2# −
λn

2

{
3r(∆B) + 4r(θ∗A⊥)

}
. (59)

Now by definition (18) of the subspace compatibility, we have the inequality r(∆B) ≤ Ψ(B)‖∆B‖#.
Since the projection ∆B = ΠB(∆) is defined in terms of the norm ‖ ·‖ #, it is non-expansive. Since
0 ∈ B, we have

‖∆B‖# = ‖ΠB(∆)−ΠB(0)‖# ≤ ‖∆− 0‖# = ‖∆‖#.

Combining with the earlier bound, we conclude that r(∆B) ≤ Ψ(B)‖∆‖#. Substituting into the
lower bound (59), we obtain

F(∆) ≥ κL‖∆‖2# −
λn

2

{
3Ψ(B) ‖∆‖# + 4r(θ∗A⊥)

}
.

This is a strictly positive definite quadratic form in ‖∆‖#, and so will be positive for ‖∆‖# sufficiently
large; in particular, following some algebra, we find that it suffices to have ‖∆‖# ≥ 1

κL

{
2λnΨ(B) +√

2κLλnr(θ∗
A⊥)

}
. This completes the proof of Theorem 1.

B Proof of Lemma 2

For any ∆ in the set C(Sτ ), we have

‖∆‖1 ≤ 4‖∆Sτ ‖1 + 4‖θ∗Sc
τ
‖1 ≤

√
|Sτ |‖∆‖2 + 4Rq τ

1−q ≤ 4
√

Rq τ
−q/2 ‖∆‖2 + 4Rq τ

1−q,

where we have used the bounds (37) and (38). Therefore, for any vector ∆ ∈ C(Sτ ), the condi-
tion (28) implies that

‖X∆‖2√
n
≥ κ1 ‖∆‖2 − κ2

√
log p

n

{√
Rq τ

−q/2 ‖∆‖2 + Rq τ
1−q
}

= ‖∆‖2
{
κ1 − κ2

√
Rq log p

n
τ−q/2

}
− κ2

√
log p

n
Rq τ

1−q.
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By our choices τ = λn
κ1

and λn = 4σ
√

log p
n , we have κ2

√
Rq log p

n τ−q/2 = κ2

(8σ)q/2

√
Rq
( log p

n

)1− q
2 ,

which is less than κ1/2 under the stated assumptions. Thus, we obtain the lower bound

‖X∆‖2√
n
≥
κ1

2

{
‖∆‖2 −

2κ2

κ1

√
log p

n
Rq τ

1−q

}
.

Finally, recalling the choice δ∗ = 4κ2
κ1

√
log p

n Rq τ1−q previously specified (35), then we have

‖X∆‖2√
n
≥
κ1

2

{
‖∆‖2 −

‖∆‖2
2

}
=
κ1

4
‖∆‖2

for any ∆ ∈ C(Sτ ) with ‖∆‖2 ≥ δ∗, as claimed.

C Proofs for group-sparse norms

In this section, we collect the proofs of results related to the group-sparse norms in Section 5.

C.1 Proof of Proposition 1

The proof of this result follows similar lines to the proof of condition (28) given by Raskutti et
al. [61], hereafter RWY, who established this result in the special case of the !1-norm. Here we
describe only those portions of the proof that require modification. For a radius t > 0, define the
set

V (t) :=
{
θ ∈ R

p | ‖Σ1/2θ‖2 = 1, ‖θ‖G,ν ≤ t
}
,

as well as the random variable M(t; X) := 1− infθ∈V (t)
‖Xθ‖2√

n
. The argument in Section 4.2 of RWY

makes use of the Gordon-Slepian comparison inequality in order to upper bound this quantity.
Following the same steps, we obtain the modified upper bound

E[M(t; X)] ≤
1

4
+

1√
n

E
[

max
j=1,...,T

‖wGj
‖ν∗
]

t,

where w ∼ N(0,Σ). The argument in Section 4.3 uses concentration of measure to show that this
same bound will hold with high probability for M(t; X) itself; the same reasoning applies here.
Finally, the argument in Section 4.4 of RWY uses a peeling argument to make the bound suitably
uniform over choices of the radius t. This argument allows us to conclude that

inf
θ∈Rp

‖Xθ‖2√
n
≥

1

4
‖Σ1/2θ‖2 − 9 E

[
max

j=1,...,T
‖wGj

‖ν∗
]
‖θ‖G,ν for all θ ∈ Rp

with probability greater than 1 − c1 exp(−c2n). Recalling the definition of ρG(ν∗), we see that in
the case Σ = Ip×p, the claim holds with constants (κ1,κ2) = (1

4 , 9). Turning to the case of general
Σ, let us define the matrix norm |||A|||ν∗ := max

‖β‖ν∗=1
‖Aβ‖ν∗ . With this notation, some algebra shows

that the claim holds with κ1 = 1
4λmin(Σ1/2) and κ2 = 9 max

t=1,...,T
|||(Σ1/2)Gt |||ν∗ .
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C.2 Proof of Corollary 4

In order to prove this claim, we need to verify that Theorem 1 may be applied. Doing so requires
defining the appropriate model and perturbation subspaces, computing the compatibility constant,
and checking that the specified choice (42) of regularization parameter λn is valid. For a given
subset SG ⊆ {1, 2, . . . , T}, define the subspaces

A(SG) :=
{
θ ∈ R

p | θGt = 0 for all t /∈ SG
}
, and A⊥(SG) :=

{
θ ∈ R

p | θGt = 0 for all t ∈ SG
}
.

As discussed in Example 2, the block norm ‖ ·‖ G,ν is decomposable with respect to these subspaces.
Let us compute the regularizer-error compatibility function, as defined in equation (18), that relates
the regularizer (‖ ·‖ G,ν in this case) to the error norm (here the !2-norm). For any ∆ ∈ A(SG), we
have

‖∆‖G,ν =
∑

t∈SG

‖∆Gt‖ν
(a)
≤

∑

t∈SG

‖∆Gt‖2 ≤
√

s ‖∆‖2,

where inequality (a) uses the fact that ν ≥ 2.
Finally, let us check that the specified choice of λn satisfies the condition (20). As in the proof

of Corollary 2, we have ∇L(θ∗; Zn
1 ) = 1

nXT w, so that the final step is to compute an upper bound
on the quantity

r∗(
1

n
XT w) =

1

n
max

t=1,...,T
‖(XT w)Gt‖ν∗

that holds with high probability.

Lemma 5. Suppose that X satisfies the block column normalization condition (41), and the obser-
vation noise is sub-Gaussian (30). Then we have

P

[
max

t=1,...,T
‖
XT

Gt
w

n
‖ν∗ ≥ 2σ

{m1−1/ν

√
n

+

√
log T

n

}]
≤ 2 exp

(
− 2 log T

)
. (60)

Proof. Throughout the proof, we assume without loss of generality that σ = 1, since the general re-
sult can be obtained by rescaling. For a fixed group G of size m, consider the submatrix XG ∈ Rn×m.

We begin by establishing a tail bound for the random variable ‖XT
Gw
n ‖ν∗ .

Deviations above the mean: For any pair w, w′ ∈ Rn, we have

∣∣∣∣‖
XT

Gw

n
‖ν∗ − ‖

XT
Gw′

n
‖ν∗
∣∣∣∣ ≤

1

n
‖XT

G(w − w′)‖ν∗ =
1

n
max
‖θ‖ν=1

〈XG θ, (w − w′)〉.

By definition of the (ν → 2) operator norm, we have

1

n
‖XT

G(w − w′)‖ν∗ ≤
1

n
|||XG|||ν→2 ‖w − w′‖2

(i)
≤

1√
n
‖w − w′‖2,
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where inequality (i) uses the block normalization condition (41). We conclude that the function

w 5→ ‖XT
Gw
n ‖ν∗ is a Lipschitz with constant 1/

√
n, so that by Gaussian concentration of measure for

Lipschitz functions [39], we have

P

[
‖
XT

Gw

n
‖ν∗ ≥ E

[
‖
XT

Gw

n
‖ν∗
]

+ δ

]
≤ 2 exp

(
−

nδ2

2

)
for all δ > 0. (61)

Upper bounding the mean: For any vector β ∈ Rm, define the zero-mean Gaussian random variable

Zβ = 1
n〈β, XT

Gw〉, and note the relation ‖XT
Gw
n ‖ν∗ = max

‖β‖ν=1
Zβ . Thus, the quantity of interest is the

supremum of a Gaussian process, and can be upper bounded using Gaussian comparison principles.
For any two vectors ‖β‖ν ≤ 1 and ‖β′‖ν ≤ 1, we have

E

[
(Zβ − Zβ′)

2

]
=

1

n2
‖XG(β − β′)‖22

(a)
≤

2

n

|||XG|||2ν→2

n
‖β − β′‖22

(b)
≤

2

n
‖β − β′‖22,

where inequality (a) uses the fact that ‖β − β′‖ν ≤
√

2, and inequality (b) uses the block normal-
ization condition (41).

Now define a second Gaussian process Yβ =
√

2
n 〈β, ε〉, where ε ∼ N(0, Im×m) is standard Gaus-

sian. By construction, for any pair β,β′ ∈ Rm, we have E
[
(Yβ − Yβ′)

2
]

= 2
n‖β − β

′‖22 ≥ E[(Zβ − Zβ′)
2],

so that the Sudakov-Fernique comparison principle [39] implies that

E

[
‖
XT

Gw

n
‖ν∗
]

= E

[
max

‖β‖ν=1
Zβ

]
≤ E

[
max

‖β‖ν=1
Yβ

]
.

By definition of Yβ , we have

E

[
max

‖β‖ν=1
Yβ

]
=

√
2

n
E
[
‖ε‖ν∗

]
=

√
2

n
E

[( m∑

j=1

|εj |ν
∗)1/ν∗

]

≤
√

2

n
m1/ν∗

(
E[|ε1|ν

∗
]
)1/ν∗

,

using Jensen’s inequality, and the concavity of the function f(t) = t1/ν∗ for ν∗ ∈ [1, 2]. Finally, we

have
(
E[|ε1|ν

∗
]
)1/ν∗ ≤

√
E[ε21] = 1 and 1/ν∗ = 1− 1/ν, so that we have shown that

E

[
max

‖β‖ν=1
Yβ

]
≤ 2

m1−1/ν

√
n

. (62)

Finally, combining the bound (62) with the concentration statement (61), we obtain

P

[
‖
XT

Gw

n
‖ν∗ ≥ 2

m1−1/ν

√
n

+ δ

]
≤ 2 exp

(
−

nδ2

2

)
.
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We now apply the union bound over all groups, and set δ2 = 4 log T
n to conclude that

P

[
max

t=1,...,T
‖
XT

Gt
w

n
‖ν∗ ≥ 2

{m1−1/ν

√
n

+

√
log T

n

}]
≤ 2 exp

(
− 2 log T

)
,

as claimed.

D Proofs related to generalized linear models

In this section, we collect the proofs of several results concerning generalized linear models.

D.1 Proof of Proposition 2

Applying a second-order Taylor expansion to the negative log likelihood (46) between θ∗ + ∆ and
θ∗, we conclude that for some v ∈ [0, 1],

δL(∆, θ∗; Zn
1 ) := L(θ∗ + ∆)− L(θ∗)− 〈∇L(θ∗),∆〉 =

1

n

n∑

i=1

ψ′′(〈θ∗, xi〉+ v〈∆, xi〉
)
〈∆, xi〉2. (63)

We now lower bound the right-hand side by a suitably truncated version. For a truncation level

− τ2−τ τ
2 τ

ϕτ (u)

u

Figure 4. Illustration of truncation function ϕτ . It agrees with u2 for all |u| ≤ τ
2
, and then tapers

off so that it is zero for all |u| ≥ τ . By construction, it is a Lipschitz function.

τ > 0 to be chosen shortly (see equation (67)), define the functions

ϕτ (u) =






u2 if |u| ≤ τ
2 ,

(τ − u)2 if τ2 ≤ |u| ≤ τ
0 otherwise

, and ατ (u) =

{
u for |u| ≤ τ ,
0 otherwise.

(64)

Let us focus on a given term Ai := ψ′′(〈θ∗, xi〉+ v〈∆, xi〉
)
〈∆, xi〉2. Introducing a second trunca-

tion level T ≥ τ , consider the event:

|〈θ∗, xi〉| > T or |〈∆, xi〉| > τ. (65)

Case 1: If the event (65) holds, then we use the lower bound Ai ≥ 0.

34



Case 2: If the event (65) does not hold, then the definitions (64) of the truncation functions ensure
that

〈θ∗, xi〉 = αT (〈θ∗, xi〉), 〈∆, xi〉 = ατ (〈∆, xi〉), and 〈∆, xi〉2 = ϕτ (〈∆, xi〉),

and thus that

Ai = ψ′′(〈θ∗, x〉+ v〈∆, xi〉
)
〈∆, xi〉2 = ψ′′(αT (〈θ∗, xi〉) + vατ (〈∆, xi〉)

)
ϕτ
(
〈∆, xi〉

)
.

In order to combine the two cases, let I [|〈θ∗, x〉| ≤ T ] be a {0, 1}-valued indicator function, and
note that ϕτ

(
〈∆, xi〉I [|〈θ∗, xi〉| ≤ T ]

)
= 0 whenever the event (65) holds. With this notation, we

have established the lower bound

ψ′′(〈θ∗, x〉+ v〈∆, xi〉
)
〈∆, xi〉2 ≥ ψ′′

(
αT (〈θ∗, xi〉) + vατ (〈∆, xi〉)

)
ϕτ
(
〈∆, xi〉I [|〈θ∗, xi〉| ≤ T ]

)
.

Defining the constant Lψ(T ) := min
|u|≤2T

ψ′′(u) and recalling that T ≥ τ by choice, we have

ψ′′(αT (〈θ∗, xi〉)+vατ (〈∆, xi〉)
)
≥ Lψ(T ) for any sample. Consequently, summing over all n samples,

we conclude that

δL(∆, θ∗; Zn
1 ) ≥ Lψ(T )

1

n

n∑

i=1

ϕτ
(
〈∆, xi〉I [|〈θ∗, xi〉| ≤ T ]

)

︸ ︷︷ ︸
bEn

[
ϕτ

(
〈∆,x〉I [|〈θ∗,x〉|≤T ]

)]

(66)

where we have used Ên to denote empirical expectation over the n samples. We now define the

constant K3 := max{1, 16κ2
u log(24κ2

u
κ2

%
)}, and for a given !2-radius δ ∈ (0, 1], we choose the truncation

parameters as

T 2 := K3 and τ2(δ) := K3δ
2. (67)

Based on the lower bound (66), in order to prove the result, it suffices to show that there exist
strictly positive constants κ1 and κ2, depending only on ψ and the covariance matrix Σ of the
covariates, such that for any fixed δ ∈ (0, 1], we have

Ên
[
ϕτ(δ)

(
〈∆, x〉I [|〈θ∗, x〉| ≤ T ]

)]
≥ κ1 ‖∆‖2

{
‖∆‖2 − κ2

√
log p

n
‖∆‖1

}
∀ ‖∆‖2 = δ (68)

with high probability. In fact, it is enough to prove the claim (68) for ‖∆‖2 = δ = 1. To reduce
from the general case, suppose that the claim (68) holds for δ = 1. For any vector ∆ with ‖∆‖2 = δ,
we can apply the claim to the rescaled vector ∆̃ = ∆/‖∆‖2, thereby obtaining

Ên
[
ϕτ(1)

(
〈∆/‖∆‖2, x〉I [|〈θ∗, x〉| ≥ T ]

)]
≥ κ1

{
1− κ2

√
log p

n

‖∆‖1
‖∆‖2

}
. (69)

Note that from the definition (64), for any c > 0 and z ∈ R, we have the homogeneity property
ϕc(cz) = c2ϕ1(z). Multiplying both sides of the bound (69) by δ2 = ‖∆‖22 and using this homogene-
ity property yields the claim.
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Consequently, for the remainder of the proof, we restrict our attention to δ = 1, and and the
truncation level τ = τ(1) = K3. We use S2(1) to denote the spherical shell with !2-radius one, and
S1(t) :=

{
∆ ∈ Rp | ‖∆‖1 = t

}
to denote the !1-sphere of radius t to be chosen. For each ∆ ∈ Rp,

let us introduce the notation3

f∆(x) := 〈∆, x〉 I [|〈θ∗, x〉| ≤ T ], and g∆(x) := ϕτ
(
f∆(x)

)
. (70)

For each radius t > 0, define the event

E(t) :=

{
Ên
[
g∆(x)

]
< κ1

[
1− κ2

√
log p

n
t

]
, for some ∆ ∈ S1(t) ∩ S2(1)

}
.

Our goal is to show that the probability of this event is very small, and we do so via the following
two steps:

(a) First, we show that with the truncation parameters (67), for any fixed ∆ ∈ S2(1), we have

E[g∆(x)] ≥
κ+
2

. (71)

(b) Second, defining the random variable Z(t) := sup
∆∈S2(1) ∩ S1(t)

∣∣Ên
[
g∆(x)

]
− E[g∆(x)]

∣∣, we prove

the tail bound

P

[
Z(t) ≥

κ+
4

+ 50K3 κu

√
log p

n
t

]
≤ c1 exp

(
− c2n− c′2t log p

)
. (72)

In conjunction, equations (71) and (72) imply that P[E(t)] ≤ c1 exp(−c2n − c′2t log p). This result
implies the claim of Proposition 2 with slightly different constants ci by a peeling argument (see
Raskutti et al. [61] for details).

Let us first prove the lower bound (71). By assumption (GLM1), for any ∆ ∈ S2(1), we have
E[〈∆, x〉2] ≥ κ+‖∆‖22 = κ+, so that it suffices to show that

Ex
[
〈∆, x〉2 − g∆(x)

)]
≤
κ+
2

. (73)

Note that g∆(x) ≥ 0 for all x, and g∆(x) = 〈∆, x〉2 for all x such |〈θ∗, x〉| ≤ T and |〈∆, x〉| ≤ τ
2 .

Therefore, by union bound, we have

Ex
[
〈∆, x〉2 − g∆(x)

)]
≤ Ex

[
〈∆, x〉2I [|〈θ∗, x〉| ≥ T ]

]
+ Ex

[
〈∆, x〉2I [|〈∆, x〉| ≥

τ

2
]
]
.

We bound each of the two terms on the right-hand side in turn. By the Cauchy-Schwarz inequality,

Ex
[
〈∆, x〉2I [|〈θ∗, x〉| ≥ T ]

]
≤
√

Ex
[
〈∆, x〉4

] √
P[|〈θ∗, x〉| ≥ T ].

3Although f∆ and g∆ also depend on (θ∗, T ) and (θ∗, T, τ), these quantities remain fixed throughout the argument,
so that we omit the dependence.
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By our assumptions, the variables 〈θ∗, x〉 and 〈∆, x〉 are both zero-mean and sub-Gaussian with

parameter κ2
u. Consequently, we have Ex

[
〈∆, x〉4

]
≤ 3κ4

u and P[|〈θ∗, x〉| ≥ T ] ≤ 2 exp(− T 2

2κ2
u
), and

thus

Ex
[
〈∆, x〉2I [|〈θ∗, x〉| ≥ T ]

]
≤ 6κ2

u exp(−
T 2

4κ2
u
). (74)

A similar argument for the other term yields

Ex
[
〈∆, x〉2I [|〈∆, x〉| ≥

τ

2
]
]
≤ 6κ2

u exp(−
τ2

16 κ2
u
). (75)

With δ = 1, the specified choices (67) τ2 = T 2 = K3 guarantee that each of these terms is at most
κ%
4 , which completes the proof of the lower bound (73), and hence (71).

Now let us prove the tail bound (72). For any ∆ ∈ S2(1), we have ‖g∆‖∞ ≤ τ2 = K3. Therefore,

by the Azuma-Hoeffding inequality, for any z > 0, we have P[Z(t) ≥ E[Z(t)] + z] ≤ 2 exp
(
− nz2

4K2
3

)
.

Setting z∗(t) = κ%
4 + 2K3 κu

√
log p

n t, we obtain

P[Z(t) ≥ E[Z(t)] + z∗(t)]] ≤ 2 exp

{
−

n
(κ%

4 + 2K3 κu

√
log p

n t
)2

4K2
3

}
≤ 2 exp

(
−

nκ2
+

64K2
3

− κ2
ut log p

)
.

(76)

Consequently, in order to establish the claim (72), it suffices to show that

E[Z(t)] ≤ 48K3 κu t

√
log p

n
. (77)

Letting {εi}n
i=1 be an i.i.d. sequence of Rademacher variables, a standard symmetrization argu-

ment [39] yields

E[Z(t)] ≤ 2 Ex,ε
[

sup
∆∈S2(1)∩S1(t)

∣∣ 1
n

n∑

i=1

εig∆(xi)
∣∣] = 2 Ex,ε

[
sup

∆∈S2(1)∩S1(t)

∣∣ 1
n

n∑

i=1

εiϕτ
(
f∆(xi)

)∣∣],

where the final step uses the definition (70) of g∆. By the definition (64), the function ϕτ is
Lipschitz with parameter at most L = 2τ = 2

√
K3 ≤ 2K3, and ϕτ (0) = 0. Therefore, by the

Ledoux-Talagrand contraction inequality (see [39], p. 112), we have

E[Z(t)] ≤ 8 K3 Ex,ε
[

sup
∆∈S2(1)∩S1(t)

∣∣ 1
n

n∑

i=1

εif∆(xi)
∣∣]

= 8 K3 Ex,ε

[
sup

∆∈S2(1)∩S1(t)

∣∣〈 1

n

n∑

i=1

εixiI [|〈θ∗, xi〉| ≤ T ], ∆
〉∣∣
]

≤ 8 K3 t Ex,ε

∥∥ 1

n

n∑

i=1

εixiI [|〈θ∗, xi〉| ≤ T ]
∥∥
∞. (78)

37



Finally, let us upper bound the remaining expectation. For each fixed index j = 1, . . . , p, define the
variable uij := xijI [|〈θ∗, xi〉| ≤ T ], and note that by definition, we have 1

n

∑n
i=1 u2

ij ≤
1
n

∑n
i=1 x2

ij .
Since the variables {xij , i = 1, 2, . . . , n} are i.i.d zero-mean sub-Gaussian with parameter at most
κ2

u, standard bounds for the norms of sub-Gaussian vectors yields

P
[
|
1

n

n∑

i=1

u2
ij | ≥ 2κ2

u

]
≤ P

[
|
1

n

n∑

i=1

x2
ij | ≥ 2κ2

u

]
≤ 2 exp(−cn).

Thus, if we define the event T :=
{
| 1n
∑n

i=1 u2
ij | ≤ 2κ2

u for all j = 1, 2, . . . , p
}
, then the union bound

implies that

P[T ] ≥ 1− 2 exp(−cn + log p)
(i)
≥ 1− 2 exp(−c′n),

where inequality (i) follows since n " log p. Conditionally on T , the variable 1
n

∑n
i=1 εiuij is sub-

Gaussian with parameter at most 2κ2
u

n . Since ‖ 1
n

∑n
i=1 εiui‖∞ is the maximum of p such terms, known

bounds on expectations of sub-Gaussian maxima (e.g., see Ledoux and Talagrand [39], p. 79) yield

E
∥∥ 1

n

∑n
i=1 εiui

∥∥
∞ ≤ 6κu

√
log p

n . Combining with the earlier bound (78) yields the claim (77).

D.2 Proof of Corollary 5

For a given support set S, recall the subspaces A(S) and B(S) first defined in Example 1. Recall
from our discussion following Proposition 2 that, as long as n > 9κ2

2 |S| log p, restricted strong
convexity with some κL > 0 holds for the pair A = B for all vectors ∆ ∈ C(A; B; θ∗)∩ {‖∆‖2 ≤ 1}.
Since ΠA⊥(θ∗) = 0, Theorem 1 implies that, for a given valid choice of λn— meaning that it satisfies
the bound (20)— any solution θ̂λn satisfies the bound

‖θ̂λn − θ∗‖2 ≤
2Ψ(A(S))

κL
λn. (79)

As calculated previously, for the combination of !1-norm as regularizer and !2-norm as error metric,
we have Ψ(A(S)) =

√
|S|.

The only remaining step is to verify that the specified choice of λn satisfies the condition (20).
We compute the loss gradient ∇L(θ∗; Zn

1 ) = − 1
n

∑n
i=1 xi

(
yi−ψ′(〈θ∗, xi〉)

)
, as before, the dual norm

of the !1-norm is the !∞-norm. The following result yields the requisite control on the !∞-norm of
this loss gradient:

Lemma 6. Under conditions (GLM1) and (GLM2), there are universal positive constants (c1, c2)
such that

P

[
‖∇L(θ∗; Zn

1 )‖∞ ≥ c1

√
log p

n

]
≤

c2

n
.

Combining this claim with the earlier bound (79) yields the claim of Corollary 5.

In order to complete the proof, it remains to prove Lemma 6. For a fixed index j ∈ {1, 2, . . . , p},
we begin by establishing an upper bound on the moment generating function of the sum 1

n

∑n
i=1 Vij ,
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where Vij := xij
(
yi − ψ′(〈θ∗, xi〉)

)
. Let us condition on {xi}n

i=1 to start, so that yi is drawn from the
exponential family with parameter 〈θ∗, xi〉. For any t ∈ R, we compute the cumulant function

log E[exp(tVij) | xi] = log
{
E[exp(txijyi)] exp(−txijψ

′(〈θ∗, xi〉))
}

= ψ(txij + 〈θ∗, xi〉)− ψ(〈θ∗, xi〉)− ψ′(〈θ∗, xi〉)
(
txij

)
.

Consequently, by second-order Taylor series expansion, we have

log E[exp(tVij) | xi] =
t2

2
x2

ijψ
′′(〈θ∗, xi〉+ vi txij) for some vi ∈ [0, 1].

Since this upper bound holds for each i = 1, 2, . . . , n, we have shown that

1

n

n∑

i=1

log E[exp(tVij) | xi] ≤
t2

2

{
1

n

n∑

i=1

x2
ijψ

′′(〈θ∗, xi〉+ vi txij
)}

. (80)

At this point, we split the analysis into two cases, depending on whether condition (i) or (ii) holds
in assumption (GLM2) .
Case (i): Using the uniform bound on the second derivative, we obtain

1

n

n∑

i=1

log E[exp(tVij) | xi] ≤
t2‖ψ′′‖∞

2

{ 1

n

n∑

i=1

x2
ij

}
.

For each index j, the variables {xij}n
i=1 are i.i.d., zero-mean and sub-Gaussian with parameter at

most κu (by assumption (GLM1)). Consequently, we have E[x2
ij ] ≤ κ2

u. Since the squared variables
are sub-exponential, and we have the tail bound

P[
1

n

n∑

i=1

x2
ij ≥ 2κ2

u] ≤ 2 exp(−n/4). (81)

Now define the event E =
{

max
j=1,...,p

1
n

∑n
i=1 x2

ij ≤ 2κ2
u

}
. By combining union bound with the tail

bound (81), we have

P[Ec] ≤ 2 exp(−n/2 + log p) ≤ 2 exp(−cn), (82)

where we have used the fact that n" log p. Conditioned on the event E , we have

1

n

n∑

i=1

log E[exp(tVij) | xi] ≤ t2‖ψ′′‖∞κ2
u for each j = 1, 2, . . . , p.

By the Chernoff bound, we obtain P
[
| 1n
∑n

i=1 Vij | ≥ t | E
]
≤ 2 exp

(
− n t2

‖ψ′′‖∞κ2
u

)
. Combining this

bound with the union bound yields

P[ max
j=1,...,p

|
1

n

n∑

i=1

Vij | ≥ δ | E ] ≤ 2 exp
(
− n

δ2

‖ψ′′‖∞κ2
u

+ log p
)
. (83)
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Setting δ∗ =
√

2‖ψ′′‖∞κ2
u

log p
n , and putting together the pieces yields

P

[
max

j=1,...,p
|
1

n

n∑

i=1

Vij | ≥ δ∗] ≤ P[Ec] + P

[
max

j=1,...,p
|
1

n

n∑

i=1

Vij | ≥ δ∗ | E
]

≤ c1 exp(−c2 log p),

where the final inequality combines the bounds (82) and (83). Since p" n in the regime of interest,
the claim follows.

Case (ii): In this case, we assume that the model c satisfies conditions GLM (ii). Let us take |t| ≤ 1
in our calculations above. Since |xij | ≤ 1 by assumption, from the bound (80), we have

1

n

n∑

i=1

log E[exp(tVij) | xi] ≤
t2

2

{
1

n

n∑

i=1

max
|z|≤1

ψ′′(〈θ∗, xi〉+ z
)

︸ ︷︷ ︸
Ui

}
.

For a constant c0, define the event E ′(c0) :=
{
| 1n
∑n

i=1 Ui| ≤ c2
0

}
. By the condition GLM (ii),

the random variables Ui are non-negative, i.i.d., and have a bounded αth moment. Therefore, by
Chebyshev’s inequality, as long the constant c0 is chosen sufficiently large, there is a positive constant
c1 such that P[E ′(c0)] ≥ 1− c1/nα. From the upper bound (80), we conclude that

1

n

n∑

i=1

log E
[
exp(tVij) | E ′(c0)

]
≤

c2
0t

2

2
for all |t| ≤ 1.

Consequently, for any δ > 0, the Chernoff bound implies that

P
[
|
1

n

n∑

i=1

Uij | ≥ δ | E ′(c0)
]
≤ 2 exp

{
n
(c2

0t
2

2
− tδ

)}
for all |t| ≤ 1.

For any δ ∈ [0, c2
0], we may set t = δ

c20
≤ 1 to obtain P

[
| 1n
∑n

i=1 Uij | ≥ δ E ′(c0)
]
≤ 2 exp

(
− nδ2

2c20

)
.

Since this bound holds for each j = 1, . . . , p, the union bound implies that

P
[
‖∇L(θ∗; Zn

1 )‖∞ ≥ δ | E ′(c0)
]
≤ 2 exp

(
−

nδ2

2c2
0

+ log p) for all δ ∈ [0, c2
0].

We now set δ = 2c0

√
log p

n ; this choice is less than c2
0 since n" log p. With this choice, we obtain

P

[
‖∇L(θ∗; Zn

1 )‖∞ ≥ 2c0

√
log p

n
| E ′
]
≤ 2 exp

(
− 2 log p) ≤

2

n
,

where the final inequality holds since p" n in the regime of interest.
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