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DATA SPECTROSCOPY: EIGENSPACES OF
CONVOLUTION OPERATORS AND CLUSTERING

By Tao Shi∗, Mikhail Belkin† and Bin Yu‡

The Ohio State University∗† and University of California, Berkeley‡

This paper focuses on obtaining clustering information about a
distribution from its i.i.d. samples. We develop theoretical results to
understand and use clustering information contained in the eigen-
vectors of data adjacency matrices based on a radial kernel function
with a sufficiently fast tail decay. In particular, we provide population
analyses to gain insights into which eigenvectors should be used and
when the clustering information for the distribution can be recovered
from the sample. We learn that a fixed number of top eigenvectors
might at the same time contain redundant clustering information and
miss relevant clustering information. We use this insight to design
the Data Spectroscopic clustering (DaSpec) algorithm that utilizes
properly selected eigenvectors to determine the number of clusters
automatically and to group the data accordingly. Our findings ex-
tend the intuitions underlying existing spectral techniques such as
spectral clustering and Kernel Principal Components Analysis, and
provide new understanding into their usability and modes of failure.
Simulation studies and experiments on real world data are conducted
to show the potential of our algorithm. In particular, DaSpec is found
to handle unbalanced groups and recover clusters of different shapes
better than the competing methods.

1. Introduction. Data clustering based on eigenvectors of a proximity
or affinity matrix (or its normalized versions) has become popular in machine
learning, computer vision and many other areas. Given data x1, · · · , xn ∈ R

d,
this family of algorithms constructs an affinity matrix (Kn)ij = K(xi, xj)/n

based on a kernel function, such as a Gaussian kernel K(x, y) = e−
‖x−y‖2

2ω2 .
Clustering information is obtained by taking eigenvectors and eigenvalues of
the matrix Kn or the closely related graph Laplacian matrix Ln = Dn−Kn,
where Dn is a diagonal matrix with (Dn)ii =

∑

j(Kn)ij . The basic intu-
ition is that when the data come from several clusters, distances between
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2 SHI, ET AL.

clusters are typically far larger than the distances within the same cluster
and thus Kn and Ln are (close to) block-diagonal matrices up to a per-
mutation of the points. Eigenvectors of such block-diagonal matrices keep
the same structure. For example, the few top eigenvectors of Ln can be
shown to be constant on each cluster, assuming infinite separation between
clusters, allowing one to distinguish the clusters, by looking for data points
corresponding to the same or similar values of the eigenvectors.

In particular we note the algorithm of Scott and Longuet-Higgins [13]
who proposed to embed data into the space spanned by the top eigenvectors
of Kn, normalize the data in that space, and group data by investigating
the block structure of inner product matrix of normalized data. Perona
and Freeman [10] suggested to cluster the data into two groups by directly
thresholding the top eigenvector of Kn.

Another important algorithm, the normalized cut, was proposed by Shi
and Malik [14] in the context of image segmentation. It separates data into
two groups by thresholding the second smallest generalized eigenvector of
Ln. Assuming k groups, Malik, et al.[6] and Ng, et al. [8] suggested embed-
ding the data into the span of the bottom k eigenvectors of the normalized

graph Laplacian1 In −D
−1/2
n KnD

−1/2
n and applying the k-means algorithm

to group the data in the embedding space. For further discussions on spec-
tral clustering, we refer the reader to Weiss [20], Dhillon, et al. [2] and von
Luxburg [18]. An empirical comparison of various methods is provided in
Verma and Meila [17]. A discussion of some limitations of spectral cluster-
ing can be found in Nadler and Galun [7]. A theoretical analysis of statis-
tical consistency of different types of spectral clustering is provided in von
Luxburg, et al [19].

Similarly to spectral clustering methods, Kernel Principal Component
Analysis (Schölkopf, et al. [12]) and spectral dimensionality reduction (e.g.,
Belkin and Niyogi [1]) seek lower dimensional representations of the data by
embedding them into the space spanned by the top eigenvectors of Kn or
the bottom eigenvectors of the normalized graph Laplacian with the expec-
tation that this embedding keeps non-linear structure of the data. Empirical
observations have also been made that KPCA can sometimes capture clus-
ters in the data. The concept of using eigenvectors of the kernel matrix is
also closely connected to other kernel methods in the machine learning lit-
erature, notably Support Vector Machines (cf. Vapnik [16] and Schölkopf
and Smola [11]), which can be viewed as fitting a linear classifier in the
eigenspace of Kn.

Although empirical results and theoretical studies both suggest that the

1We assume here that the diagonal terms of Kn are replaced by zeros.
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DATA SPECTROSCOPIC CLUSTERING 3

top eigenvectors contain clustering information, the effectiveness of these
algorithms hinges heavily on the choice of the kernel and its parameters, the
number of the top eigenvectors used, and the number of groups employed.
As far as we know, there are no explicit theoretical results or practical
guidelines on how to make these choices. Instead of tackling these questions
regarding to particular data sets, it may be more fruitful to investigate them
from a population point of view. Williams and Seeger [21] investigated the
dependence of the spectrum ofKn on the data density function and analyzed
this dependence in the context of lower rank matrix approximations to the
kernel matrix. To the best of our knowledge this work was the first theoretical
study of this dependence.

In this paper we aim to understand spectral clustering methods based on
a population analysis. We concentrate on exploring the connections between
the distribution P and the eigenvalues and eigenfunctions of the distribution-
dependent convolution operator:

(1.1) KP f(x) =

∫

K(x, y)f(y)dP (y) .

The kernels we consider will be positive (semi-)definite radial kernels. Such
kernels can be written as K(x, y) = k(‖x − y‖), where k : [0,∞) → [0,∞)
is a decreasing function. We will use kernels with sufficiently fast tail decay,

such as the Gaussian kernel or the exponential kernelK(x, y) = e−
‖x−y‖

ω . The
connections found allow us to gain some insights into when and why these
algorithms are expected to work well. In particular, we learn that a fixed
number of top eigenvectors of the kernel matrix do not always contain all of
the clustering information. In fact, when the clusters are not balanced and/or
have different shapes, the top eigenvectors may be inadequate and redundant
at the same time. That is, some of the top eigenvectors may correspond to
the same cluster while missing other significant clusters. Consequently, we
devise a clustering algorithm that selects only those eigenvectors, which have
clustering information not represented by the other eigenvectors already
selected.

The rest of the paper is organized as follows. In Section 2, we cover the
basic definitions, notations, and mathematical facts about the distribution-
dependent convolution operator and its spectrum. We point out the strong
connection between KP and its empirical version, the kernel matrix Kn,
which allows us to approximate the spectrum of KP given data.

In Section 3, we characterize the dependence of eigenfunctions of KP on
both the distribution P and the kernel function K(·, ·). We show that the
eigenfunctions of KP decay to zero at the tails of the distribution P and that
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their decay rates depends on both the tail decay rate of P and that of the
kernel K(·, ·). For distributions with only one high density component, we
provide theoretical analysis. A discussion of three special cases can be found
in the Appendix A. In the first two examples, the exact form of the eigen-
functions of KP can be found; in the third, the distribution is concentrated
on or around a curve in R

d.
Further, we consider the case when the distribution P contains several

separate high-density components. Through classical results of the pertur-
bation theory, we show that the top eigenfunctions of KP are approximated
by the top eigenfunctions of the corresponding operators defined on some of
those components. However, not every component will contribute to the top
few eigenfunctions of KP as the eigenvalues are determined by the size and
configuration of the corresponding component. Based on this key property,
we show that the top eigenvectors of the kernel matrix may or may not
preserve all clustering information, which explains some empirical observa-
tions of certain spectral clustering methods. A real-world high dimensional
dataset, the USPS postal code digit data, is also analyzed to illustrate this
property.

In Section 4, we utilize our theoretical results to construct the Data Spec-
troscopic clustering (DaSpec) algorithm that estimates the number of groups
data-dependently, assigns labels to each observation, and provides a classifi-
cation rule for unobserved data, all based on the same eigen decomposition.
Data-dependent choices of algorithm parameters are also discussed. In Sec-
tion 5, the proposed DaSpec algorithm is tested on two simulations against
commonly used k-means and spectral clustering algorithms. In all three situ-
ations, the DaSpec algorithm provides favorable results even when the other
two algorithms are provided with the number of groups in advance. Section 6
contains conclusions and discussion.

2. Notations and Mathematical Preliminaries.

2.1. Distribution-dependent Convolution Operator. Given a probability
distribution P on R

d, we define L2
P (Rd) to be the space of square integrable

functions, f ∈ L2
P (Rd) if

∫

f2dP < ∞, and the space is equipped with
an inner product 〈f, g〉 =

∫

fg dP . Given a kernel (symmetric function of
two variables) K(x, y) : R

d × R
d → R, Eq. (1.1) defines the corresponding

integral operator KP . Recall that an eigenfunction φ : R
d 7→ R and the

corresponding eigenvalue λ of KP are defined by the following equations:

(2.1) KP φ = λφ,
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and the constraint
∫

φ2dP = 1. If the kernel satisfies the condition

(2.2)

∫∫

K2(x, y) dP (x) dP (y) <∞,

the corresponding operator KP is a trace class operator, which, in turn,
implies that it is compact and has a discrete spectrum.

In this paper we will only consider the case when a positive semi-definite
kernel K(x, y) and a distribution P generate a trace class operator KP , so
that it has only countable non-negative eigenvalues λ0 ≥ λ1 ≥ λ2 ≥ . . . ≥ 0.
Moreover, there is a corresponding orthonormal basis in L2

p of eigenfunctions
φi satisfying Eq. (2.1). The dependence of the eigenvalues and eigenfunctions
of KP on P will be one of the main foci of our paper. We note that an
eigenfunction φ is uniquely defined not only on the support of P , but on
every point x ∈ R

d through φ(x) = 1
λ

∫

K(x, y)φ(y)dP (y), assuming that
the kernel function K is defined everywhere on R

d × R
d.

2.2. Kernel Matrix. Let x1, . . . , xn be an i.i.d. sample drawn from dis-
tribution P . The corresponding empirical operator KPn is defined as

KPnf(x) =

∫

K(x, y)f(y)dPn(y) =
1

n

n
∑

i=1

K(x, xi)f(xi).

This operator is closely related to the n× n kernel matrix Kn, where

(Kn)ij = K(xi, xj)/n.

Specifically, the eigenvalues of KPn are the same as those of Kn and an
eigenfunction φ, with an eigenvalue λ 6= 0 of KPn , is connected with the
corresponding eigenvector v = [v1, v2, . . . , vn]′ of Kn by

φ(x) =
1

nλ

n
∑

i=1

K(x, xi) vi ∀x ∈ R
d.

It is easy to verify that KPnφ = λφ. Thus values of φ at locations x1, . . . , xn

coincide with the corresponding entries of the eigenvector v. However, unlike
v, φ is defined everywhere in R

d. For the spectrum of KPn and Kn, the only
difference is that the spectrum of KPn contains 0 with infinite multiplicity.
The corresponding eigenspace includes all functions vanishing on the sample
points.

It is well known that, under mild conditions and when d is fixed, the
eigenvectors and eigenvalues of Kn converge to eigenfunctions and eigenval-
ues of KP as n → ∞ (e.g. Koltchinskii and Giné [4]). Therefore, we expect
the properties of the top eigenfunctions and eigenvalues of KP also hold for
Kn, assuming that n is reasonably large.

imsart-aos ver. 2007/12/10 file: aos_daspec_revsion_2.tex date: March 5, 2009
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3. Spectral Properties of KP . In this section we study the spectral
properties of KP and its connection to the data generating distribution P .
We start with several basic properties of the top spectrum of KP and then
investigate the case when the distribution P is a mixture of several high-
density components.

3.1. Basic Spectral Properties of KP . Through Theorem 1 and its corol-
lary, we obtain an important property of the eigenfunctions of KP , that is,
these eigenfunctions decay fast when away from the majority of masses of
the distribution if the tails of K and P have a fast decay. A second theorem
offers the important property that the top eigenfunction has no sign change
and multiplicity one. (Three detailed examples are provided in Appendix A
to illustrate these two important properties.)

Theorem 1 (Tail decay property of eigenfunctions). An eigenfunction
φ with the corresponding eigenvalue λ > 0 of KP satisfies

|φ(x)| ≤ 1

λ

√

∫

[K(x, y)]2dP (y).

Proof: By Cauchy-Schwarz inequality and the definition of eigenfunction
(2.1), we see that

λ |φ(x)| = |
∫

K(x, y)φ(y)dP (y)| ≤
∫

K(x, y)|φ(y)|dP (y)

≤
√

∫

[K(x, y)]2dP (y)

√

∫

[φ(y)]2dP (y) =

√

∫

[K(x, y)]2dP (y).

The conclusion follows. �

We see that the “tails” of eigenfunctions of KP decay to zero and that
the decay rate depends on the tail behaviors of both the kernel K and the
distribution P . This observation will be useful to separate high-density areas
in the case of P having several components. Actually, we have the following
corollary immediately:

Corollary 1. Let K(x, y) = k(‖x− y‖) and k(·) being nonincreasing.
Assume that P is supported on a compact set D ⊂ R

d. Then

|φ(x)| ≤ k (dist(x,D))

λ

where dist(x,D) = infy∈D ‖x− y‖.
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The proof follows from Theorem 1 and the fact that k(·) is a nonincreasing
function. And now we give an important property of the top (corresponding
to the largest eigenvalue) eigenfunction.

Theorem 2 (Top eigenfunction). Let K(x, y) be a positive semi-definite
kernel with full support on R

d. The top eigenfunction φ0(x) of the convolu-
tion operator KP

1. is the only eigenfunction with no sign change on R
d;

2. has multiplicity one;
3. is non-zero on the support of P .

The proof is given in Appendix B and these properties will be used later
when we propose our clustering algorithm in Section 4.

3.2. An Example: Top Eigenfunctions of KP for Mixture Distributions.
We now study the spectrum of KP defined on a mixture distribution

(3.1) P =
G
∑

g=1

πgP g ,

which is a commonly used model in clustering and classification. To reduce
notation confusion, we use italicized superscript 1 , 2 , . . . , g , . . . , G as the
index of the mixing component and ordinary superscript for the power of
a number. For each mixing component P g , we define the corresponding
operator KP g as

KP gf(x) =

∫

K(x, y)f(y)dP g(y) .

We start by a mixture Gaussian example given in Figure 1. Gaussian ker-
nel matrices Kn, K1

n and K2
n (ω = 0.3) are constructed on three batches

of 1,000 iid samples from each of the three distributions: 0.5N(2, 12) +
0.5N(−2, 12), N(2, 12) and N(−2, 12). We observe that the top eigenvec-
tors of Kn are nearly identical to the top eigenvectors of K1

n or K2
n .

From the point of view of the operator theory, it is easy to understand
this phenomenon: with a properly chosen kernel, the top eigenfunctions of an
operator defined on each mixing component are approximate eigenfunctions
of the operator defined on the mixture distribution. To be explicit, let us con-
sider the Gaussian convolution operator KP defined by P = π1P 1 + π2P 2 ,
with Gaussian components P 1 = N(µ1 , [σ1 ]2) and P 2 = N(µ2 , [σ2 ]2) and
the Gaussian kernel K(x, y) with bandwidth ω. Due to the linearity of con-
volution operators, KP = π1KP 1 + π2KP 2 .
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Consider an eigenfunction φ1 (x) of KP 1 with the corresponding eigenvalue
λ1 , KP 1φ1 (x) = λ1φ1 (x). We have

KPφ
1 (x) = π1λ1φ1 (x) + π2

∫

K(x, y)φ1 (y)dP 2 (y) .

As shown in Proposition 1 in Appendix A, in the Gaussian case, φ1 (x) is
centered at µ1 and its tail decays exponentially. Therefore, assuming enough
separation between µ1 and µ2 , π2

∫

K(x, y)φ1 (y) dP 2 (y) is close to 0 every-
where and hence φ1 (x) is an approximate eigenfunction of KP . In the next
section, we will show that a similar approximation holds for general mixture
distributions whose components may not be Gaussian distributions.

3.3. Perturbation Analysis. For KP defined by a mixture distribution
(3.1) and a positive semi-definite kernel K(· , ·), we now study the connec-
tion between its top eigenvalues and eigenfunctions and those of each KP g .
Without loss of generality, let us consider a mixture of two components. We
state the following theorem regarding the top eigenvalue λ0 of KP .

Theorem 3 (Top eigenvalue of mixture distribution). Let P = π1P 1 +
π2P 2 be a mixture distribution on R

d with π1 + π2 = 1. Given a positive
semi-definite kernel K, denote the top eigenvalue of KP , KP 1 and KP 2 as
λ0, λ

1
0 and λ2

0 respectively. Then λ0 satisfies

max(π1λ1
0 , π

2λ2
0 ) ≤ λ0 ≤ max(π1λ1

0 , π
2λ2

0 ) + r,

where

(3.2) r =

(

π1π2

∫∫

[K(x, y)]2 dP 1 (x) dP 2 (y)

)1/2

.

The proof is given in the appendix. As illustrated in Figure 2, the value
of r in Eq (3.2) is small when P 1 and P 2 do not overlap much. Meanwhile,
the size of r is also affected by how fast K(x, y) approaches zero as ‖x− y‖
increases. When r is small, the top eigenvalue of KP is close to the larger
one of π1λ1

0 and π2λ2
0 . Without loss of generality, we assume π1λ1

0 > π2λ2
0

in the rest of this section.
The next lemma is a general perturbation result for the eigenfunctions of

KP . The empirical (matrix) version of this lemma appeared in Diaconis et
al. [3] and more general results can be traced back to Parlett [9].

Lemma 1. Consider an operator KP with the discrete spectrum λ0 ≥
λ1 ≥ · · · . If

‖KP f − λf‖L2
P
≤ ǫ
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for some λ, ǫ > 0, and f ∈ L2
P , then KP has an eigenvalue λk such that

|λk −λ| ≤ ǫ. If we further assume that s = mini:λi 6=λk
|λi −λk| > ǫ, then KP

has an eigenfunction fk corresponding to λk such that ‖f − fk‖L2
P
≤ ǫ

s−ǫ .

The Lemma shows that a constant λ must be “close” to an eigenvalue
of KP if the operator “almost” projects a function f to λf . Moreover, the
function f must be “close” to an eigenfunction of KP if the distance between
KP f and λf is smaller than the eigen-gaps between λk and other eigenvalues
of KP . We are now in a position to state the perturbation result for the top
eigenfunction of KP . Given the facts that |λ0 − π1λ1

0 | ≤ r and

KPφ
1
0 = π1 KP 1φ1

0 + π2 KP 2φ1
0 = (π1λ1

0 )φ1
0 + π2 KP 2φ1

0 ,

Lemma 1 indicates that φ1
0 is close to φ0 if ‖π2 KP 2φ1

0 ‖L2
P

is small enough.
To be explicit, we formulate the following corollary.

Corollary 2 (Top eigenfunction of mixture distribution). Let P =
π1P 1 + π2P 2 be a mixture distribution on R

d with π1 + π2 = 1. Given a
semi-positive definite kernel K(·, ·), we denote the top eigenvalues of KP 1

and KP 2 as λ1
0 and λ2

0 respectively (assuming π1λ1
0 > π2λ2

0 ) and define
t = λ0 − λ1, the eigen-gap of KP . If the constant r defined in Eq.(3.2)
satisfies r < t, and

(3.3)

w

w

w

w

π2

∫

Rd
K(x, y)φ1

0 (y)dP 2 (y)

w

w

w

w

L2
p

≤ ǫ

such that ǫ+ r < t, then π1λ1
0 is close to KP ’s top eigenvalue λ0,

|π1λ1
0 − λ0| ≤ ǫ,

and φ1
0 is close to KP ’s top eigenfunction φ0 in L2

P sense:

(3.4) ‖φ1
0 − φ0‖L2

P
≤ ǫ

t− ǫ
.

The proof is trivial, so it is omitted here. Since Theorem 3 leads to |λ1
0 −

λ0| ≤ r and Lemma 1 suggests |λ1
0 − λk| ≤ ǫ for some k, the condition

r + ǫ < t = λ0 − λ1 guarantees that φ0 as the only possible choice for φ1
0 to

be close to. Therefore, φ1
0 is approximately the top eigenfunction of KP .

It is worth noting that the separable conditions in Theorem 3, Corollary 2
are mainly based on the overlap of the mixture components, but not on
their shapes or parametric forms. Therefore, clustering methods based on
spectral information are able to deal with more general problems beyond the
traditional mixture models based on a parametric family, such as mixture
Gaussians or mixture of exponential families.
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3.4. Top Spectrum of KP for Mixture Distributions. For a mixture dis-
tribution with enough separation between its mixing components, we now
extend the perturbation results in Corollary 2 to other top eigenfunctions
of KP . With close agreement between (λ0, φ0) and (π1λ1

0 , φ
1
0 ), we observe

that the second top eigenvalue of KP is approximately max(π1λ1
1 , π

2λ2
0 )

by investigating the top eigenvalue of the operator defined by a new kernel
Knew = K(x, y)−λ0φ0(x)φ0(y) and P . Accordingly, one may also derive the
conditions under which the second eigenfunctions of KP is approximated by
φ1

1 or φ2
0 , depending on the magnitude of π1λ1

1 and π2λ2
0 . By sequentially

applying the same argument, we arrive at the following corollary.

Property 1 (Mixture property of top spectrum). For a convolution
operator KP defined by a semi-positive definite kernel with a fast tail decay
and a mixture distribution P =

∑G
g=1 π

gP g with enough separations between
it mixing components, the top eigenfunctions of KP are approximately chosen
from the top ones (φg

i ) of KP g , i = 0, 1, . . . , n g = 1 , . . . , G. The ordering of
the eigenfunctions are determined by mixture magnitudes πgλg

i .

This property suggests that each of the top eigenfunctions of KP corre-
sponds to exactly one of the separable mixture components. Therefore, we
can approximate the top eigenfunctions of KP g through those of KP when
enough separations exist among mixing components. However, several of
the top eigenfunctions of KP can correspond to the same component and
a fixed number of top eigenfunctions may miss some components entirely,
specifically the ones with small mixing weights πg or small eigenvalue λ.

When there is a large i.i.d. sample from a mixture distribution whose com-
ponents are well separated, we expect the top eigenvalues and eigenfunctions
of KP to be close to those of the empirical operator KPn . As discussed in
Section 2.2, the eigenvalues of KPn are the same as those of the kernel ma-
trix Kn and the eigenfunctions of KPn coincides with the eigenvectors of Kn

on the sampled points. Therefore, assuming good approximation of KPn to
KP , the eigenvalues and eigenvectors of Kn provide us with access to the
spectrum of KP .

This understanding sheds light on the algorithms proposed in Scott and
Longuet-Higgins [13] and Perona and Freeman [10], in which the top (sev-
eral) eigenvectors of Kn are used for clustering. While the top eigenvectors
may contain clustering information, smaller or less compact groups may not
be identified using just the very top part of the spectrum. More eigenvectors
need to be investigated to see these clusters. On the other hand, information
in the top few eigenvectors may also be redundant for clustering, as some of
these eigenvectors may represent the same group.
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3.5. A Real-Data Example: a USPS Digits Dataset. Here we use a high-
dimensional U.S. Postal Service (USPS) digit dataset to illustrate the prop-
erties of the top spectrum of KP . The data set contains normalized handwrit-
ten digits, automatically scanned from envelopes by the USPS. The images
here have been rescaled and size normalized, resulting in 16 × 16 grayscale
images (see Le Cun, et al. [5] for details). Each image is treated as a vec-
tor xi in R

256. In this experiment, 658 “3”s, 652 “4”s, and 556 “5”s in the
training data are pooled together as our sample (size 1866).

Taking the Gaussian kernel with bandwidth ω = 2, we construct the kernel
matrix Kn and compute its eigenvectors v1, v2, . . ., v1866. We visualize the
digits corresponding to large absolute values for the top eigenvectors. Given
an eigenvector vj , we rank the digits xi, i = 1, 2, . . . , 1866, according to
the absolute value |(vj)i|. In each row of Figure 3, we show the 1st, 36th,
71st, · · · , 316th digits according to that order for a fixed eigenvector vj, j =
1, 2, 3, 15, 16, 17, 48, 49, 50. It turns out that the digits with large absolute
values of the top 15 eigenvectors, some shown in Figure 3, all represent
number “4”. The 16th eigenvector is the first one representing “3” and the
49th eigenvector is the first one for “5”.

The plot of the data embedded using the top three eigenvectors shown
in the left panel of Figure 4 suggests no separation of digits. These results
are strongly consistent with our theoretical findings: A fixed number of the
top eigenvectors of Kn may correspond to the same cluster while missing
other significant clusters. This leads to the failure of clustering algorithms
only using the top eigenvectors of Kn. The k-means algorithm based on top
eigenvectors (normalized as suggested in Scott and Longuet-Higgins [13])
produces accuracies below 80% and reaches the best performance as the
49th eigenvector is included.

Meanwhile, the data embedded in the 1st, 16th and 49th eigenvectors (the
right panel of Figure 4) do present the three groups of digits “3”, “4” and
“5” nearly perfectly. If one can intelligently identify these eigenvectors and
cluster data in the space spanned by them, good performance is expected. In
the next section, we utilize our theoretical analysis to construct an clustering
algorithm that automatically selects these most informative eigenvectors and
groups the data accordingly.

4. A Data Spectroscopic Clustering (DaSpec) Algorithm. In
this section, we propose a Data Spectroscopic clustering (DaSpec) algorithm
based on our theoretical analyses. We chose the commonly used Gaussian
kernel, but it may be replaced by other positive definite radial kernels with
a fast tail decay rate.
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4.1. Justification and the DaSpec Algorithm. As shown in Property 1 for
mixture distributions in Section 3.4, we have access to approximate eigen-
functions of KP g through those of KP when each mixing component has
enough separation from the others. we know from Theorem 2 that among
the eigenfunctions of each component KP g , the top one is the only eigenfunc-
tion with no sign change. When the spectrum of KP g is close to that of KP ,
we expect that there is exactly one eigenfunction with no sign change over
a certain small threshold ǫ. Therefore, the number of separable components
of P is indicated by the number of eigenfunctions φ(x)’s of KP with no sign
change after thresholding.

Meanwhile, the eigenfunctions of each component decay quickly to zero
at the tail of its distribution if there is a good separation of components. At
a given location x in the high density area of a particular component, which
is at the tails of other components, we expect the eigenfunctions from all
other components to be close to zero. Among the top eigenfunction |φg

0(x)|
of KP g defined on each component pg , g = 1 , . . . , G, the group identity of x
corresponds to the eigenfunction that has the largest absolute value, |φg

0(x)|.
Combining this observation with previous discussions on the approximation
of Kn to KP , we propose the following clustering algorithm.

Data Spectroscopic clustering (DaSpec) Algorithm
Input: Data x1, . . . , xn ∈ R

d.
Parameters: Gaussian kernel bandwidth ω > 0, thresholds ǫj > 0
Output: Estimated number of separable components Ĝ and a cluster label
L̂(xi) for each data point xi, i = 1, . . . , n.

Step 1. Construct the Gaussian kernel matrix Kn:

(Kn)ij = 1
n e

−
‖xi−xj‖

2

2ω2 , i, j = 1, . . . , n,
and compute its eigenvalues λ1, λ2, . . . , λn and eigenvectors v1,v2, . . . ,vn

Step 2. Estimate the number of clusters:
- Identify all eigenvectors vj that have no sign changes up to precision ǫj

[We say that a vector e = (e1, . . . , en)′ has no sign changes up to ǫ if
either ∀ i ei > −ǫ or ∀ i ei < ǫ ]

- Estimate the number of groups by Ĝ, the number of such eigenvectors.
- Denote these eigenvectors and the corresponding eigenvalues by

v
1
0 ,v

2
0 , . . . ,v

Ĝ
0 and λ1

0 , λ
2
0 , . . . , λ

Ĝ
0 respectively.

Step 3. Assign a cluster label to each data point xi as :

L̂(xi) = argmaxg{|vg
0i| : g = 1 , 2 , · · · , Ĝ}
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DATA SPECTROSCOPIC CLUSTERING 13

It is obviously important to have data-dependent choices for the param-
eters of the DaSpec algorithm: ω and ǫj’s. We will discuss some heuristics
for that choices in the next section. Given a DaSpec clustering result, one
important feature of our algorithm is that little adjustment is needed to
classify a new data point x. Thanks to the connection between the eigen-
vector v of Kn and the eigenfunction φ of the empirical operator KPn , we
can compute the eigenfunction φg

0 corresponding to v
g
0 by

φg
0(x) =

1

λg
0

n
∑

i=1

K(x, xi)v
g
0i, x ∈ R

d.

Therefore, Step 3 of the algorithm can be readily applied to any x by re-
placing vg

0i with φg
0(x). So the algorithm output can serve as a clustering

rule that separates not only the data, but also the underline distribution,
which is aligned with the motivation behind our Data Spectroscopy algo-
rithm: learning properties of a distribution though the empirical spectrum
of KPn .

4.2. Data-dependent Parameter Specification. Following the justification
of our DaSpec algorithm, we provide some heuristics on choosing algorithm
parameters in a data dependent way.

Gaussian kernel bandwidth ω: The bandwidth controls both the eigen-
gaps and the tail decay rates of the eigenfunctions. When ω is too large, the
tails of eigenfunctions may not decay fast enough to make condition (3.3) in
Corollary 2 hold. However, if ω is too small, the eigengaps may vanish, in
which case each data point will end up as a separate group. Intuitively, we
want to select small ω but still to keep enough (say, n× 5%) neighbors for
most (95% of) data points in the “range” of the kernel, which we define as
a length l that makes P (‖X‖ < l) = 95%. In case of a Gaussian kernel in

R
d, l = ω

√

95% quantile of χ2
d.

Given data x1, . . . , xn or their pairwise L2 distance d(xi, xj), we can find
ω that satisfies the above criteria by first calculating qi = 5% quantile of
{d(xi, xj), j = 1, . . . , n} for each i = 1, . . . , n, then taking

(4.1) ω =
95% quantile of {q1, . . . , qn}

√

95% quantile of χ2
d

.

As shown in the simulation studies in Section 5, this particular choice of
ω works well in low dimensional case. For high dimensional data generated
from a lower dimensional structure, such as an m-manifold, the procedure
usually leads to an ω that is too small. We suggest starting with ω defined in
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14 SHI, ET AL.

(4.1) and trying some neighboring values to see if the results get improved,
maybe based on some labeled data, expert opinions, data visualization, or
trade-off of the between and within cluster distances.

Threshold ǫj : When identifying the eigenvectors with no sign changes in
Step 2, a threshold ǫj is included to deal with the small perturbation in-
troduced by other well separable mixture components. Since ‖vj‖2 = 1
and the elements of the eigenvector decrease quickly (exponentially) from
maxi(|vj(xi)|), we suggest to threshold vj at ǫj = maxi(|vj(xi)|)/n (n as
the sample size) to accommodate the perturbation.

We note that the proper selection of algorithm parameters is critical to
the separation of the spectrum and the success of the clustering algorithms
hinged on the separation. Although the described heuristics seem work well
for low dimensional datasets (as we will show in the next section), they
are still preliminary and more research is needed, especially in high dimen-
sional data analysis. We plan to further study the data-adaptive parameter
selection procedure in the future.

5. Simulation Studies.

5.1. Gaussian Type Components. In this simulation, we examine the ef-
fectiveness of the proposed DaSpec algorithm on datasets generated from
Gaussian mixtures. Each data set (size of 400) is sampled from a mixture of
six bivariate Gaussians, while the size of each group follows a Multinomial
distribution (n = 400, and p1 = · · · = p6 = 1/6). The mean and standard
deviation of each Gaussian are randomly drawn from a Uniform on (−5, 5)
and a Uniform on (0, 0.8) respectively. Four data sets generated from this
distribution are plotted in the left column of Figure 5. It is clear that the
groups may be highly unbalanced and overlap with each other. Therefore,
rather than trying to separate all six components, we expect good cluster-
ing algorithms to identify groups with reasonable separations between high
density areas.

The DaSpec algorithm is applied with parameters ω and ǫj chosen by the
procedure described in Section 4.2. Taking the number of groups identified
by our Daspec algorithm, the commonly used k-means algorithm and the
spectral clustering algorithms proposed in Ng, et al. [8] (using the same ω
as the DaSpec) are also tested to serve as baselines for comparison. As a
common practice with k-means algorithm, fifty random initializations are
used and the final results are from the one that minimizes the optimization
criterion

∑n
i=1(xi − yk(i))

2, where xi is assigned to group k(i) and yk =
∑n

i=1 xiI(k(i) = k)/
∑n

i=1 I(k(i) = k).
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As shown in the second column of Figure 5, the proposed DaSpec al-
gorithm (with data-dependent parameter choices) identifies the number of
separable groups, isolates potential outliers and groups data accordingly.
The results are similar to the k-means algorithm results (the third column)
when the groups are balanced and their shapes are close to round. In these
cases, the k-means algorithm is expected to work well given that the data in
each group are well represented by their average. The last column shows the
results of Ng et al.’s spectral clustering algorithm, which sometimes (see the
first row) assigns data to one group even when they are actually far away.

In summary, for this simulated example, we find that the proposed DaSpec
algorithm with data-adaptively chosen parameters identifies the number of
separable groups reasonably well and produces good clustering results when
the separations are large enough. It is also interesting to note that the algo-
rithm isolates possible “outliers” into a separate group so that they do not
affect the clustering results on the majority of data. The proposed algorithm
competes well against the commonly used k-means and spectral clustering
algorithms.

5.2. Beyond Gaussian Components. We now compare the performance
of the aforementioned clustering algorithms on data sets that contain non-
Gaussian groups, various levels of noise, and possible outliers. Data set D1

contains three well-separable groups and an outlier in R
2. The first group of

data are generated by adding independent Gaussian noiseN((0, 0)T , 0.152I2×2)
to 200 uniform samples from three fourth of a ring with radius 3, which is
from the same distribution as those plotted in the right panel of Figure 8.
The second group includes 100 data points sampled from a bivariate Gaus-
sian N((3,−3)T , 0.52I2×2) and the last group has only 5 data points sampled
from a bivariate Gaussian N((0, 0)T , 0.32I2×2). Finally, one outlier is located
at (5, 5)T . Given D1, three more data sets (D2, D3, and D4) are created by
gradually adding independent Gaussian noise (with standard deviations 0.3,
0.6, 0.9 respectively). The scatter plots of the four datasets are shown in the
left column of Figure 6. It is clear that the degree of separation decreases
from top to bottom.

Similar to the previous simulation, we examine the DaSpec algorithm
with data-driven parameters, the k-means and Ng et al.’s spectral clustering
algorithms on these data sets. The latter two algorithms are tested under two
different assumptions on the number of groups: the number (G) identified
by the DaSpec algorithm or one group less (G − 1). Note that the DaSpec
algorithm claims only one group for D4, so the other two algorithms are not
applied to D4.
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The DaSpec algorithm (the second column in the right panel of Figure 6)
produces a reasonable number of groups and clustering results. For the per-
fectly separable case in D1, three groups are identified and the one outlier
is isolated out. It is worth noting that the incomplete ring is separated from
other groups, which is not a simple task for algorithms based on group cen-
troids. We also see that the DaSpec algorithm starts to combine inseparable
groups as the components become less separable.

Not surprisingly, the k-means algorithms (the third and fourth columns)
do not perform well because of the presence of the non-Gaussian component,
unbalanced groups and outliers. Given enough separations, the spectral clus-
tering algorithm reports reasonable results (the fifth and sixth columns).
However, it is sensitive to outliers and the specification of the number of
groups.

6. Conclusions and Discussion. Motivated by recent developments
in kernel and spectral methods, we study the connection between a probabil-
ity distribution and the associated convolution operator. For a convolution
operator defined by a radial kernel with a fast tail decay, we show that each
top eigenfunction of the convolution operator defined by a mixture distri-
bution is approximated by one of the top eigenfunctions of the operator
corresponding to a mixture component. The separation condition is mainly
based on the overlap between high-density components, instead of their ex-
plicit parametric forms, and thus is quite general. These theoretical results
explain why the top eigenvectors of kernel matrix may reveal the clustering
information but do not always do so. More importantly, our results reveal
that not every component will contribute to the top few eigenfunctions of
the convolution operator KP because the size and configuration of a com-
ponent decide the corresponding eigenvalues. Hence the top eigenvectors of
the kernel matrix may or may not preserve all clustering information, which
explains some empirical observations of certain spectral clustering methods.

Following our theoretical analyses, we propose the Data Spectroscopic
clustering algorithm based on finding eigenvectors with no sign change.
Comparing to commonly used k-means and spectral clustering algorithms,
DaSpec is simple to implement, provides a natural estimator of the num-
ber of separable components. We found that DaSpec handles unbalanced
groups and outliers better than the competing algorithms. Importantly, un-
like k-means and certain spectral clustering algorithms, DaSpec does not
require random initialization, which is a potentially significant advantage in
practice. Simulations show favorable results compared to k-means and spec-
tral clustering algorithms. For practical applications, we also provide some
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guidelines for choosing the algorithm parameters.
Our analyses and discussions on connections to other spectral or kernel

methods shed light on why radial kernels, such as a Gaussian kernel, perform
well in many classification and clustering algorithms. We expect that this
line of investigation would also prove fruitful in understanding other kernel
algorithms, such as Support Vector Machines.

APPENDIX A

Here we provide three concrete examples to illustrate the properties of
the eigenfunction of KP shown in Section 3.1.

Example 1: Gaussian kernel, Gaussian density
Let us start with the univariate Gaussian case where the distribution P ∼

N(µ, σ2) and the kernel function is also Gaussian. Shi, et al. [15] provided
the eigenvalues and eigenfunctions of KP , and the result is a slightly refined
version of a result in Zhu, et al. [22].

Proposition 1. For P ∼ N(µ, σ2) and a Gaussian kernel K(x, y) =

e−
(x−y)2

2ω2 , let β = 2σ2/ω2 and let Hi(x) be the i-th order Hermite polynomial.
Then eigenvalues and eigenfunctions of KP for i = 0, 1, · · · are given by

λi =

√

2

(1 + β +
√

1 + 2β)

(

β

1 + β +
√

1 + 2β

)i

φi(x) =
(1 + 2β)1/8

√
2ii!

exp

(

−(x− µ)2

2σ2

√
1 + 2β − 1

2

)

Hi

(

(

1

4
+
β

2

)
1
4 x− µ

σ

)

.

Here Hk is the k-th order Hermite Polynomial. Clearly from the explicit
expression and expected from Theorem 2, φ0 is the only positive eigen-
function of KP . We note that each eigenfunction φi decays quickly (as it is a
Gaussian multiplied by a polynomial) away from the mean µ of the probabil-
ity distribution. We also see that the eigenvalues of KP decay exponentially
with the rate dependent on the bandwidth of the Gaussian kernel ω and the
variance of the probability distribution σ2. These observations can be easily
generalized to the multivariate case, see Shi, et al. [15].

Example 2: Exponential kernel, uniform distribution on an inter-
val.

To give another concrete example, consider the exponential kernelK(x, y) =

exp(− |x−y|
ω ) for the uniform distribution on the interval [−1, 1] ⊂ R. In Di-

aconis, et al. [3] it was shown that the eigenfunctions of this kernel can be
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written as cos(bx) or sin(bx) inside the interval [−1, 1] for appropriately cho-
sen values of b and decay exponentially away from it. The top eigenfunction
can be written explicitly as follows:

φ(x) =
1

λ

∫

[−1,1]
e−

|x−y|
ω cos(by) dy, ∀x ∈ R,

where λ is the corresponding eigenvalue. Figure 7 illustrates an example of
this behavior, for ω = 0.5.

Example 3: A curve in R
d. We now give a brief informal discussion of

the important case when our probability distribution is concentrated on or
around a low-dimensional submanifold in a (potentially high-dimensional)
ambient space. The simplest example of this setting is a Gaussian distribu-
tion, which can be viewed as a zero-dimensional manifold (the mean of the
distribution) plus noise.

A more interesting example of a manifold is a curve in R
d. We observe

that such data are generated by any time-dependent smooth deterministic
process, whose parameters depend continuously on time t. Let ψ(t) : [0, 1] →
R

d be such a curve. Consider a restriction of the kernel KP to ψ. Let x, y ∈ ψ
and let d(x, y) be the geodesic distance along the curve. It can be shown that
d(x, y) = ‖x−y‖+O(‖x−y‖3), when x, y are close, with the remainder term
depending on how the curve is embedded in R

d. Therefore, we see that if
the kernel KP is a sufficiently local radial basis kernel, the restriction of KP

to ψ is a perturbation of KP in a one-dimensional case. For the exponential
kernel, the one-dimensional kernel can be written explicitly (see Example 2)
and we have an approximation to the kernel on the manifold with a decay
off the manifold (assuming that the kernel is a decreasing function of the
distance). For the Gaussian kernel a similar extension holds, although no
explicit formula can be easily obtained.

The behaviors of the top eigenfunction of the Gaussian and exponential
kernel respectively are demonstrated in Figure 8. The exponential kernel
corresponds to the bottom left panel. The behavior of the eigenfunction
is seen generally consistent with the top eigenfunction of the exponential
kernel on [−1, 1] shown in Figure 8. The Gaussian kernel (top left panel)
has similar behaviors but produces level lines more consistent with the data
distribution, which may be preferable in practice. Finally we observe that the
addition of small noise (right top and bottom panels) does not significantly
change the eigenfunctions.
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APPENDIX B

Proof of Theorem 2: For a semi-positive definite kernel K(x, y) with full
support on R

d, we first show the top eigenfunction φ0 of KP has no sign
change on the support of the distribution. We define R+ = {x ∈ R

d :
φ0(x) > 0}, R− = {x ∈ R

d : φ0(x) < 0} and φ̄0(x) = |φ0(x)|. It is clear that
∫

φ̄2
0dP =

∫

φ2
0dP = 1.

Assume that P (R+) > 0 and P (R−) > 0, we will show that
∫ ∫

K(x, y)φ̄0(x)φ̄0(y)dP (x)dP (y) >

∫ ∫

K(x, y)φ0(x)φ0(y)dP (x)dP (y),

which contradicts with the assumption that φ0(·) is the eigenfunction as-
sociated with the largest eigenvalue. Denoting g(x, y) = K(x, y)φ0(x)φ0(y)
and ḡ(x, y) = K(x, y)φ̄0(x)φ̄0(y), we have

∫

R+

∫

R+
ḡ(x, y)dP (x)dP (y) =

∫

R+

∫

R+
g(x, y)dP (x)dP (y),

and the equation also holds on region R− × R−. However, over the region
{(x, y) : x ∈ R+ and y ∈ R−}, we have

∫

R+

∫

R−
ḡ(x, y)dP (x)dP (y) >

∫

R+

∫

R−
g(x, y)dP (x)dP (y),

since K(x, y) > 0, φ0(x) > 0, and φ0(y) < 0. The inequality holds on
{(x, y) : x ∈ R− and y ∈ R+}. Putting four integration regions together,
we arrive at the contradiction. Therefore, the assumptions P (R+) > 0 and
P (R−) > 0 can not be true at the same time, which implies that φ0(·) has
no sign changes on the support of the distribution.

Now consider ∀x ∈ R
d. We have

λ0φ0(x) =

∫

K(x, y)φ0(y)dP (y).

Given the facts that λ0 > 0, K(x, y) > 0, and φ0(y) have the same sign on
the support, it is straightforward to see that φ0(x) has no sign changes and
has full support in R

d. Finally, the isolation of (λ0, φ0) follows. If there exist
another φ that shares the same eigenvalue λ0 with φ0, they both have no
sign change and have full support on R

d. Therefore
∫

φ0(x)φ(x)dP (x) > 0
and it contradicts with the orthogonality between eigenfunctions. �

Proof of Theorem 3: By definition, the top eigenvalue of KP satisfies:

λ0 = max
f

∫∫

K(x, y)f(x)f(y)dP (x)dP (y)
∫

[f(x)]2dP (x)
.
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For any function f ,

∫∫

K(x, y)f(x)f(y)dP (x)dP (y)

= [π1 ]2
∫∫

K(x, y)f(x)f(y)dP 1 (x)dP 1 (y)

+ [π2 ]2
∫∫

K(x, y)f(x)f(y)dP 2 (x)dP 2 (y)

+ 2π1π2

∫∫

K(x, y)f(x)f(y)dP 1 (x)dP 2 (y)

≤ [π1 ]2 λ1
0

∫

[f(x)]2dP 1 (x) + [π2 ]2λ2
0

∫

[f(x)]2dP 2 (x)

+ 2π1π2

∫∫

K(x, y)f(x)f(y)dP 1 (x)dP (y)2

Now we concentrate on the last term:

2π1π2

∫∫

K(x, y)f(x)f(y)dP 1 (x)dP 2 (y)

≤ 2π1π2

√

∫∫

[K(x, y)]2dP 1 (x)dP 2 (y)

√

∫∫

[f(x)]2[f(y)]2dP 1 (x)dP 2 (y)

= 2

√

π1π2

∫∫

[K(x, y)]2dP 1 (x)dP 2 (y)

√

π1

∫

[f(x)]2dP 1 (x)

√

π2

∫

[f(y)]2dP 2 (y)

≤
√

π1π2

∫∫

[K(x, y)]2dP 1 (x)dP 2 (y)

(

π1

∫

[f(x)]2dP 1 (x) + π2

∫

[f(x)]2dP 2 (x)

)

= r

∫

[f(x)]2dP (x)

where r = (π1π2
∫∫

[K(x, y)]2dP 1(x)dP 2(y))1/2. Thus,

λ0 = max
f :
∫

f2dP=1

∫∫

K(x, y)f(x)f(y)dP (x)dP (y)

≤ max
f :
∫

f2dP=1

[

π1λ1
0

∫

[f(x)]2π1dP 1 (x) + π2λ2
0

∫

[f(x)]2π2ddP 2 (x) + r

]

≤ max(π1λ1
0 , π

2λ2
0 ) + r

The other side of the equality is easier to prove. Assuming π1λ1
0 > π2λ2

0

and taking the top eigenfunction φ1
0 of KP 1 as f , we derive the following re-

sults by using the same decomposition on
∫∫

K(x, y)φ1
0 (x)φ1

0 (y)dP (x)dP (y)
and the facts that

∫

K(x, y)φ1
0 (x)ddP 1 (x) = λ1

0φ
1
0 (y) and

∫

[φ1
0 ]2dP 1 = 1.
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Denoting h(x, y) = K(x, y)φ1
0 (x)φ1

0 (y), we have

λ0 ≥
∫∫

K(x, y)φ1
0 (x)φ1

0 (y)dP (x)dP (y)
∫

[φ1
0 (x)]2dP (x)

=
[π1 ]2λ1

0 + [π2 ]2
∫∫

h(x, y)dP 2 (x)dP 2 (y) + 2π1π2λ1
0

∫

[φ1
0 (x)]2dP 2 (x)

π1 + π2
∫

[φ1
0 (x)]2dP 2 (x)

= π1λ1
0

(

π1 + 2π2
∫

[φ1
0 (x)]2dP 2 (x)

π1 + π2
∫

[φ1
0 (x)]2dP 2 (x)

)

+
[π2 ]2

∫∫

h(x, y)dP 2 (x)dP 2 (y)

π1 + π2
∫

[φ1
0 (x)]2dP 2 (x)

≥ πλ1
0 .

This completes the proof. �
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Fig 1. Eigenvectors of a Gaussian kernel matrix (ω = 0.3) of 1000 data sampled from a
Mixture Gaussian distribution 0.5N(2, 12) + 0.5N(−2, 12). Left panels: Histogram of the
data (top), first eigenvector of Kn (middle), and second eigenvector of Kn (bottom). Right
panels: Histograms of data from each component (top), first eigenvector of K1

n (middle),
and first eigenvector of K2

n (bottom).
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Fig 2. Illustration of separation condition (3.2) in Theorem 3.
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Fig 3. Digits ranked by the absolute value of eigenvectors v1, v2, . . ., v50. The digits in
each row correspond to the 1st, 36th, 71st, · · · , 316th largest absolute value of the selected
eigenvector. Three eigenvectors, v1, v16, and, v49, are identified by our DaSpec algorithm.
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Fig 4. Left: Scatter plots of digits embedded in the top three eigenvectors; Right: Digits
embedded in the 1st, 16th and 49th eigenvectors.
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Fig 5. Clustering results on four simulated data sets described in Section 5.1. First col-
umn: scatter plots of data; Second column: results the proposed spectroscopic clustering
algorithm; Third column: results of the k-means algorithm; Fourth column: results of the
spectral clustering algorithm (Ng, et al. [8]).
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Fig 6. Clustering results on four simulated data sets described in Section 5.2. First column:
scatter plots of data; Second column: labels of the G identified groups by the proposed
spectroscopic clustering algorithm; Third and forth columns: k-means algorithm assuming
G−1 and G groups respectively; Fifth and sixth columns: spectral clustering algorithm (Ng
et al. [8]) assuming G − 1 and G groups respectively.
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Fig 8. Contours of the top eigenfunction of KP for Gaussian (upper panels) and expo-
nential kernels (lower panels) with bandwidth 0.7. The curve is 3/4 of a ring with radius
3 and independent noise of standard deviation 0.15 added in the right panels.
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