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Abstract

Given n observations of a p-dimensional random vector, the covariance matrix and its inverse
(precision matrix) are needed in a wide range of applications. Sample covariance (e.g. its
eigenstructure) can misbehave when p is comparable to the sample size n. Regularization is
often used to mitigate the problem.

In this paper, we proposed an !1 penalized pseudo-likelihood estimate for the inverse covari-
ance matrix. This estimate is sparse due to the !1 penalty, and we term this method SPLICE.
Its regularization path can be computed via an algorithm based on the homotopy/LARS-Lasso
algorithm. Simulation studies are carried out for various inverse covariance structures for p = 15
and n = 20, 1000. We compare SPLICE with the !1 penalized likelihood estimate and a !1 pe-
nalized Cholesky decomposition based method. SPLICE gives the best overall performance in
terms of three metrics on the precision matrix and ROC curve for model selection. Moreover,
our simulation results demonstrate that the SPLICE estimates are positive-definite for most of
the regularization path even though the restriction is not enforced.
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1 Introduction

Covariance matrices are perhaps the simplest statistical measure of association between a set of

variables and widely used. Still, the estimation of covariance matrices is extremely data hungry,

as the number of fitted parameters grows rapidly with the number of observed variables p. Global

properties of the estimated covariance matrix, such as its eigenstructure, are often used (e.g. Prin-

cipal Component Analysis, Jolliffe, 2002). Such global parameters may fail to be consistently

estimated when the number of variables p is non-negligible in the comparison to the sample size

n. As one example, it is a well-known fact that the eigenvalues and eigenvectors of an estimated

covariance matrix are inconsistent when the ratio p
n does not vanish asymptotically (Marchenko

and Pastur, 1967; Paul et al., 2008). Data sets with a large number of observed variables p and

small number of observations n are now a common occurrence in statistics. Modeling such data sets

creates a need for regularization procedures capable of imposing sensible structure on the estimated

covariance matrix while being computationally efficient.

Many alternative approaches exist for improving the properties of covariance matrix estimates.

Shrinkage methods for covariance estimation were first considered in Stein (1975, 1986) as a way to

correct the overdispersion of the eigenvalues of estimates of large covariance matrices. Ledoit and

Wolf (2004) present a shrinkage estimator that is the asymptotically optimal convex linear com-

bination of the sample covariance matrix and the identity matrix with respect to the Froebenius

norm. Daniels and Kass (1999, 2001) propose alternative strategies using shrinkage toward diag-

onal and more general matrices. Factorial models have also been used as a strategy to regularize

estimates of covariance matrices (Fan et al., 2006). Tapering the covariance matrix is frequently

used in time series and spatial models and have been used recently to improve the performance of

covariance matrix estimates used by classifiers based on linear discriminant analysis (Bickel and

Levina, 2004) and in Kalman filter ensembles (Furrer and Bengtsson, 2007). Regularization of the

covariance matrix can also be achieved by regularizing its eigenvectors (Johnstone and Lu, 2004;

Zou et al., 2006).

Covariance selection methods for estimating covariance matrices consist of imposing sparsity

on the precision matrix (i.e., the inverse of the covariance matrix). The Sparse Pseudo-Likelihood
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Inverse Covariance Estimates (SPLICE) proposed in this paper fall into this category. This family of

methods was introduced by Dempster (1972). An advantage of imposing structure on the precision

matrix stems from its close connections to linear regression. For instance, Wu and Pourahmadi

(2003) use, for a fixed order of the random vector, a parametrization of the precision matrix C

in terms of a decomposition C = U′DU with U upper-triangular with unit diagonal and D a

diagonal matrix. The parameters U and D are then estimated through p linear regressions and

Akaike’s Information Criterion (AIC, Akaike, 1973) is used to promote sparsity in U. A similar

covariance selection method is presented in Bilmes (2000). More recently, Bickel and Levina (2008)

have obtained conditions ensuring consistency in the operator norm (spectral norm) for precision

matrix estimates based on banded Cholesky factors. Two disadvantages of imposing the sparsity in

the factor U are: sparsity in U does not necessarily translates into sparsity of C and; the sparsity

structure in U is sensitive to the order of the random variables within the random vector. The

SPLICE estimates proposed in this paper constitute an attempt at tackling these issues.

The AIC selection criterion used in Wu and Pourahmadi (2003) requires, in its exact form,

that the estimates be computed for all subsets of the parameters in U. A more computationally

tractable alternative for performing parameter selection consists in penalizing parameter estimates

by their !1-norm (Breiman, 1995; Tibshirani, 1996; Chen et al., 2001), popularly known as the

LASSO in the context of least squares linear regression. The computational advantage of the !1-

penalization over penalization by the dimension of the parameter being fitted (!0-norm) – such

as in AIC – stems from its convexity (Boyd and Vandenberghe, 2004). Homotopy algorithms for

tracing the entire LASSO regularization path have recently become available (Osborne et al., 2000;

Efron et al., 2004). Given the high-dimensionality of modern days data sets, it is no surprise that

!1-penalization has found its way into the covariance selection literature.

Huang et al. (2006) propose a covariance selection estimate corresponding to an !1-penalty

version of the Cholesky estimate of Wu and Pourahmadi (2003). The off-diagonal terms of U are

penalized by their !1-norm and cross-validation is used to select a suitable regularization param-

eter. While this method is very computationally tractable (an algorithm based on the homotopy

algorithm for linear regressions is detailed below in Appendix B.1), it still suffer from the deficien-
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cies of Cholesky-based methods. Alternatively, Banerjee et al. (2005), Banerjee et al. (2007), Yuan

and Lin (2007), and Friedman et al. (2008) consider an estimate defined by the Maximum Like-

lihood of the precision matrix for the Gaussian case penalized by the !1-norm of its off-diagonal

terms. While these methods impose sparsity directly in the precision matrix, no path-following

algorithms are currently available for them. Rothman et al. (2007) analyze the properties of esti-

mates defined in terms of !1-penalization of the exact Gaussian neg-loglikelihood and introduce a

permutation invariant method based on the Cholesky decomposition to avoid the computational

cost of semi-definite programming.

The SPLICE estimates presented here impose sparsity constraints directly on the precision

matrix. Moreover the entire regularization path of SPLICE estimates can be computed by homotopy

algorithms. It is based on previous work by Meinshausen and Bühlmann (2006) for neighborhood

selection in Gaussian graphical models. While Meinshausen and Bühlmann (2006) use p separate

linear regressions to estimate the neighborhood of one node at a time, we propose merging all p

linear regressions into a single least squares problem where the observations associated to each

regression are weighted according to their conditional variances. The loss function thus formed

can be interpreted as a pseudo neg-loglikelihood (Besag, 1974) in the Gaussian case. To this

pseudo-negloglikelihood minimization, we add symmetry constraints and a weighted version of the

!1-penalty on off-diagonal terms to promote sparsity. The SPLICE estimate can be interpreted

as an approximate solution following from replacing the exact neg-loglikelihood in Banerjee et al.

(2007) by a quadratic surrogate (the pseudo neg-loglikelihood).

The main advantage of SPLICE estimates is algorithmic: by use of a proper parametrization,

the problem involved in tracing the SPLICE regularization path can be recast as a linear regression

problem and thus amenable to be solved by a homotopy algorithm as in Osborne et al. (2000) and

Efron et al. (2004). To avoid computationally expensive cross-validation, we use information criteria

to select a proper amount of regularization. We compare the use of Akaike’s Information criterion

(AIC, Akaike, 1973), a small-sample corrected version of the AIC (AICc, Hurvich et al., 1998)

and the Bayesian Information Criterion (BIC, Schwartz, 1978) for selecting the proper amount of

regularization.
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We use simulations to compare SPLICE estimates to the !1-penalized maximum likelihood

estimates (Banerjee et al., 2005, 2007; Yuan and Lin, 2007; Friedman et al., 2008) and to the

!1-penalized Cholesky approach in Huang et al. (2006). We have simulated both small and large

sample data sets. Our simulations include model structures commonly used in the literature (ring

and star topologies, AR processes) as well as a few randomly generated model structures. SPLICE

had the best performance in terms of the quadratic loss and the spectral norm of the precision

matrix deviation (‖C − Ĉ‖2). It also performed well in terms of the entropy loss. SPLICE had a

remarkably good performance in terms of selecting the off-diagonal terms of the precision matrix: in

the comparison with Cholesky, SPLICE incurred a smaller number of false positives to select a given

number of true positives; in the comparison with the penalized exact maximum likelihood estimates,

the path following algorithm allows for a more careful exploration of the space of alternative models.

The remainder of this paper is organized as follows. Section 2 presents our pseudo-likelihood

surrogate function and some of its properties. Section 3 presents the homotopy algorithm used

to trace the SPLICE regularization path. Section 4 presents simulation results comparing the

SPLICE estimates with some alternative regularized methods. Finally, Section 5 concludes with a

short discussion.

2 An approximate loss function for inverse covariance estimation

In this section, we establish a parametrization of the precision matrix Σ−1 of a random vector X

in terms of the coefficients in the linear regressions among its components. We emphasize that the

parametrization we use differs from the one previously used by Wu and Pourahmadi (2003). Our

alternative parametrization is used to extend the approach used by Meinshausen and Bühlmann

(2006) for the purpose of estimation of sparse precision matrices. The resulting loss function can

be interpreted as a pseudo-likelihood function in the Gaussian case. For non-Gaussian data, the

minimizer of the empirical risk function based on the loss function we propose still yields consistent

estimates. The loss function we propose also has close connections to linear regression and lends

itself well for a homotopy algorithm in the spirit of Osborne et al. (2000) and Efron et al. (2004). A

comparison of this approximate loss function to its exact counterpart in the Gaussian case suggests
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that the approximation is better the sparser the precision matrix.

In what follows, X is a Rn×p matrix containing in each of its n rows observations of the zero-

mean random vector X with covariance matrix Σ. Denote by Xj the j-th entry of X and by XJ∗

the (p − 1) dimensional vector resulting from deleting Xj from X. For a given j, we can permute

the order of the variables in X and partition Σ to get:

cov








Xj

XJ∗







 =




σj,j Σj,J∗

ΣJ∗,j ΣJ∗,J∗





where J∗ corresponds to the indices in XJ∗ , so σj,j is a scalar, Σj,J∗ is a p − 1 dimensional row

vector and ΣJ∗,J∗ is a (p − 1) × (p − 1) square matrix. Inverting this partitioned matrix (see, for

instance Hocking, 1996) yield:




σj,j Σj,J∗

ΣJ∗,j ΣJ∗,J∗





−1

=




1
d2

j
− 1

d2
j
βj

M1 M−1
2



 , (1)

where:

βj =
(

βj,1 . . . , βj,j−1, βj,j+1, . . . ,βj,p

)
= −Σj,J∗Σ−1

J∗,J∗ ∈ R(p−1),

dj =
√(

σj,j − Σj,J∗Σ−1
J∗,J∗ΣJ∗,j

)
∈ R+,

M2 = ΣJ∗,J∗ − ΣJ∗,jσ
−1
j,j Σj,J∗ ,

M1 = −M−1
2 ·

(
Σ−1

J∗,J∗ΣJ∗,j

)
= − 1

d2
j

β′j , , (the second equality due to symmetry).

We will focus on the dj and βj parameters in what follows.

The parameters βj and d2
j correspond respectively to the coefficients and the expected value of

the squared residuals of the best linear model of Xj based on XJ∗ , irrespectively of the distribution

of X. In what follows, we will let βjk denote the coefficient corresponding to Xk in the linear model

of Xj based on XJ∗ . We define:

• D: a p× p diagonal matrix with dj along its diagonal and,
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• B: a p× p matrix with zeros along its diagonal and off-diagonal terms given by βjk.

Using (1) for j = 1, . . . , p yields:

Σ−1 = D−2 (Ip −B) (2)

Since Σ−1 is symmetric, (2) implies that the following constraints hold:

d2
kβjk = d2

jβkj , for j, k = 1, . . . , p. (3)

Equation (2) shows that the sparsity pattern of Σ−1 can be inferred from sparsity in the regres-

sion coefficients contained in B. Meinshausen and Bühlmann (2006) exploit this fact to estimate

the neighborhood of a Gaussian graphical model. They use the LASSO (Tibshirani, 1996) to obtain

sparse estimates of βj :

β̂j(λj) = arg min
bj∈Rp−1

‖Xj −XJ∗bj‖2 + λj‖bj‖1, for j = 1, . . . , p (4)

The neighborhood of the node Xj was then estimated based on the entries of the β̂j that were set

to zero. Minor inconsistencies could occur as the regressions are run separately. As an example,

one could have β̂jk(λj) = 0 and β̂kj(λk) %= 0, which Meinshausen and Bühlmann (2006) solve by

defining AND and OR rules for defining the estimated neighborhood.

To extend the framework of Meinshausen and Bühlmann (2006) to the estimation of precision

matrices the parameters d2
j must also be estimated and the symmetry constraints in (3) must be

enforced. We use a pseudo-likelihood approach (Besag, 1974) to form a surrogate loss function

involving all terms of B and D. For Gaussian X, the negative log-likelihood function of Xj given

XJ∗ is:

log
[
p(Xj |XJ∗ , d2

j , βj)
]

= −n
2 log(2π)− n

2 log(d2
j )− 1

2

(
‖Xj−XJ∗βj‖2

d2
j

)
. (5)

The parameters d2
j and βj can be consistently estimated by minimizing (5). A pseudo-neg-
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loglikelihood function can be formed as:

L(X;D,B) = log
(∏p

j=1 p(Xj |XJ∗ , d2
j , βj)

)

= −np
2 log(2π)− n

2 log det(D2)− 1
2tr

[
X(Ip −B′)D−2(Ip −B)X′] .

(6)

An advantage of the surrogate L(X;D,B) is that, for fixed D, it is a quadratic form in B. To

promote sparsity on the precision matrix, we propose using a weighted !1-penalty on B:

(
D̂(λ), B̂(λ)

)
= arg min

(B,D)
{n log det(D2) + tr

[
X(Ip −B′)D−2(Ip −B)X′]} + λ‖B‖w,1

s.t.






bjj = 0

d2
kkbjk = d2

jjbkj

d2
kj = 0, for k %= j

d2
jj ≥ 0

(7)

where ‖B‖w,1 =
∑p

j,k=1 wjk|bjk|. From (2), the precision matrix estimate Ĉ(λ) is then given by:

Ĉ(λ) = D̂−2(λ)
[
Ip − B̂(λ)

]
. (8)

The weights wjk in (7) can be adjusted to accommodate differences in scale between the bjk

parameters. In the remainder of this paper, we fix wjk = 1 for all j, k such that j %= k (notice that

the weights wjj are irrelevant since bjj = 0 for all j).

The main advantage of the pseudo-likelihood estimates as defined in (7) is algorithmic. Fixing

D, the minimizer with respect to the B parameter is the solution of a !1-penalized least squares

problem. Hence, for fixed D it is possible to adapt the homotopy/LARS-LASSO algorithm (Os-

borne et al., 2000; Efron et al., 2004) to obtain estimates for all values of λ. For each fixed B, the

minimizer with respect to D has a closed form solution. The algorithm presented in Section 3 is

based on performing alternate optimization steps with respect to B and D to take advantage of

these properties.

One drawback of the precision matrix estimate Ĉ(λ) in (7) is that it cannot be ensured to

be positive semi-definite. However, from the optimality conditions to (7) it can be proven that
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for a large enough λ, all terms in the B̂(λ) matrix are set to zero. For such highly regularized

estimates, Ĉ(λ) is diagonal. Therefore, continuity of the regularization path implies existence of

λ∗ < inf{λ : B̂(λ) = 0} for which Ĉ(λ∗) is diagonal dominant and thus positive semi-definite.

We return to the issue of positive semi-definiteness later in the paper. We will prove in Section

2.4 that, when the !1-norm is replaced by the !2-norm, positive semi-definiteness is ensured for

any value of the regularization parameter. That suggests that a penalty similar to the elastic net

(Zou and Hastie, 2005) can make the estimates along the !1-norm regularization path positive

semi-definite for a larger stretch. In addition, in Section 4 we present evidence that the !1-norm

penalized estimates are positive semi-definite for most of the regularization path.

2.1 Alternative normalization

Before we move on, we present a normalization of the X data matrix that leads to a more natural

representation of the precision matrix Ĉ in terms of B̂ and D̂ while resulting in more convenient

symmetry constraints.

The symmetry constraints in (3) can be rewritten in a more insightful form:

dk

dj
βjk =

dj

dk
βkj , for all j %= k. (9)

This alternative representation, suggests that the symmetry constraints can be more easily applied

to a renormalized version of the data. We define:

X̃ = XD−1, and

B̃ = D−1BD.
(10)

Under this renormalization, B̃ is symmetric, a fact that will be explored in the algorithmic section

below to enforce the symmetry constraint within the homotopy algorithm used to trace regulariza-

tion paths for SPLICE estimates.

Another advantage of this renormalization is that the precision matrix estimate can be written
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as:

Ĉ(λ) = D̂−1
[
Ip − ˆ̃B(λ)

]
D̂−1, (11)

making the analysis of the positive semi-definiteness of Ĉ(λ) easier: Ĉ(λ) is positive semi-definite if

and only if Ip− ˆ̃B(λ) is positive semi-definite. This condition is satisfied as long as the eigenvalues

of ˆ̃B(λ) are smaller than 1.

2.2 Comparison of exact and pseudo-likelihoods in the Gaussian case

Banerjee et al. (2005), Yuan and Lin (2007), Banerjee et al. (2007) and Friedman et al. (2008) have

considered estimates defined as the minimizers of the exact likelihood penalized by the !1-norm of

the off-diagonal terms of the precision matrix C:

Ĉexact(λ) = arg minC n log det(C) + tr [XCX′] + λ‖C‖1

s.t. C is symmetric positive semi-definite.
(12)

A comparison of the exact and pseudo-likelihood functions in terms of the (D, B̃) parametriza-

tion suggests when the approximation will be appropriate. In terms of (D, B̃), the pseudo-likelihood

function in (6) is:

L(X;D,B) = −np
2 log(2π)− n

2 log det(D2)− 1
2tr

[
X̃(Ip − B̃)2X̃′

]
. (13)

In the same parametrization, the exact likelihood function is:

Lexact(X;D,B) = −np
2 log(2π)− n

2 log det
[(

Ip − B̃
)]

− n
2 log det(D2)− 1

2tr
[
X̃

(
Ip − B̃

)
X̃′

] (14)

A comparison between (13) and (14) reveals two differences in the exact and pseudo neg-loglikelihood

functions. First, the exact expression involves one additional log det
[(

Ip − B̃
)]

term not appearing

in the surrogate expression. Secondly, in the squared deviation term, the surrogate expression has
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the weighting matrix
[(

Ip − B̃
)]

squared in the comparison to the exact likelihood. For B̃ = 0,

the log det vanishes and the weighting term equals identity and thus idempotent. Since these two

functions are continuous in B̃, we can expect this approximation to work better the smaller the

off-diagonal terms in B̃. In particular, in the completely sparse case, the two functions coincide

and the approximation is exact.

2.3 Properties of the pseudo-likelihood estimate

In the classical setting where p is fixed and n grows to infinity, the unregularized pseudo-likelihood

estimate Ĉ(0) is clearly consistent. The unconstrained estimates for βj and d2
j are all consistent.

In adition, the symmetry constraints we impose are observed in the population version and thus

introduce no asymptotic bias in the (symmetry) constrained estimates. That in conjunction with

the results from Knight and Fu (2000) can be used to prove that, as long as λ = op(n) the !1-

penalized estimates in (7) are consistent.

Still in the classical setting, Yuan and Lin (2007) point out that the unpenalized estimate

Ĉ(0) is not efficient as it does not coincide with the maximum likelihood estimate. However, the

comparison of the exact and pseudo-likelihoods presented in Section 2.2 suggests that the loss in

efficiency should be smaller the sparser the true precision matrix. In addition, the penalized pseudo-

likelihood estimate lends itself better for path following algorithms and can be used to select an

appropriate λ while simultaneously providing a good starting point for algorithms computing the

exact solution.

One interesting question we will not pursue in this paper concerns the quality of the pseudo-

likelihood approximation in the non-classical setting where pn is allowed to grow with n. In that

case, the classical efficiency argument favoring the exact maximum likelihood over the pseudo-

likelihood approximation no longer holds. To the best of our knowledge, it is an open question

whether the penalized exact ML has advantages over a pseudo-likelihood approximation in the

non-parametric case (pn growing with n).
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2.4 Penalization by !2-norm and Positive Semi-definiteness

As mentioned above,the algorithm we propose in Section 3 suffers from the drawback of not enforc-

ing a positive semi-definite constraint. Imposing such constraint is costly in computational terms

and would slow down our path following algorithm. As we will see in the experimental Section 4

below, the unconstrained estimate is positive semi-definite for the greater part of the regularization

path even in nearly singular designs.

Before we review such experimental evidence, however, we study an alternative penalization

that does result in positive semi-definite estimates for all levels of regularization. Consider the

penalized pseudo-likelihood estimate defined by:

ˆ̃B2(λ2) = arg min
B̃

{
tr

[
(Ip − B̃)X̃′X̃(Ip − B̃′)

]
+ λ2 · tr

[
B̃′B̃

]}

s.t.






bjj = 0

b̃jk = b̃kj

(15)

Our next result establishes that the estimate defined by is positive semi-definite along its entire

path:

Theorem 1. Let Ĉ(λ2) = D̂2(λ2)−1
(
Ip − ˆ̃B2(λ2)

)
D̂2(λ2)−1 be the precision matrix estimate re-

sulting from (15). For any D̂2(λ2) and λ2 > 0, the precision matrix estimate Ĉ2(λ2) is positive

semi-definite.

This result suggests that the !2-penalty may be useful in inducing positive semi-definiteness.

So an estimate incorporating both !2- and !1-penalties,

ˆ̃BEN (λ2, λ1) = arg min
B̃

{
tr

[
(Ip − B̃)X̃′X̃(Ip − B̃′)

]
+ λ2 · tr

[
B̃′B̃

]
+ λ1 ·

∣∣∣B̃′B̃
∣∣∣
w,1

}

s.t.






bjj = 0

b̃jk = b̃kj

,
(16)

can have improved performance, over the !1-penalty alone, in terms of positive semi-definiteness.

The subscript EN is a reference to the Elastic Net penalty of Zou and Hastie (2005). In our

experimental section below (Section 4), we have came across non-positive semi-definite precision
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matrix estimate in none other than a few replications. We hence left a detailed study of the Elastic

Net precision matrix estimate defined in (16) for future research.

3 Algorithms

We now detail an iterative algorithm for computing the regularization path for SPLICE estimates.

The computational advantage of that approximate loss function used in (7) follows from two facts:

• For a fixed D, the optimization problem reduces to that of tracing a constrained LASSO

path;

• For a fixed B, the optimizer D̂ has a closed form solution;

Based on these two facts, we propose an iterative algorithm for obtaining estimates D̂(λ̂) and

B̂(λ̂). Within each step, the path for D̂ and B̂ as a function of the regularization parameter λ is

traced and the choice of the regularization parameter λ is updated. We now describe the steps of

our SPLICE algorithm.

1. Let k = 1 and D̂0 = diag
(
‖Xj‖22

n

)p

j=1
.

2. Repeat until convergence:

(a) Set X̃ = XD̂−1
k−1 and use a path-tracing algorithm for the regularized problem:

ˆ̃B(λ) = arg min
B

{
tr

[
X̃(I− B̃′)(I− B̃)X̃′

]
+ λ · ‖B̃‖w̃,1

}

s.t. b̃jk = b̃kj

b̃jj = 0

(b) Compute the corresponding path for D:

D̂k(λ) = diag




‖

(
Ip − B̂(λ)

)
Xj‖22

n




p

j=1

(c) Select a value for the regularization parameter λ̂k;
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(d) Set B̂k = B̂(λ̂k) and D̂k = D̂(λ̂k);

3. Return the estimate Ĉ = D̂−1
k (I− ˆ̃Bk)D̂−1

k ;

A subtle but important detail is the weighting vector w̃ used when applying the penalty in step

2.(a). Since the path is traced in terms of the normalized B̃ parameter instead of B, a correction

must be made in these weights. This can be determined by noticing that:

‖B‖w,1 =
p∑

j,k=1

wjk |bjk| =
p∑

j,k=1

wjk
dj

dk

∣∣∣∣
dk

dj
bjk

∣∣∣∣ =
p∑

j,k=1

w̃jk

∣∣∣b̃jk

∣∣∣ = ‖B̃‖w̃,1,

as long as w̃jk = wjk
dj

dk
. As mentioned before, we fix wjk = 1 throughout this paper, so we set

w̃jk = wjk
dj

dk
in our experiments. Of course, dj are unknown so the current estimate is plugged-in

every time step 2.(a) is executed.

In the remainder of this section, we show how to adapt the homotopy/LARS-LASSO algorithm

to enforce the symmetry constraints d2
kbjk = d2

jbkj along the regularization path, how to select B̂

and D̂ from the path, and discuss some convergence issues related to the algorithm above.

3.1 Enforcing the symmetry constraints along the path

The expression defining the regularization path in step 2.(a) of the SPLICE algorithm above can

be rewritten as:

B̂(λ) = arg min
B

vec
(
X̃(Ip −B′)

)′
vec

(
X̃(Ip −B′)

)
+ λ‖B‖w,1

s.t. bjj = 0

bjk = bkj ,

(17)

which is a quadratic form in B penalized by a weighted version of its !1-norm. To enforce the

equality restriction in (17), we massage the data into an appropriate form so the homotopy/LARS-

LASSO algorithm can be used in its original form.

The optimization problem in (17) corresponds to a constrained version of a penalized regression

14



of modified response (Y) and predictors (Z) given by:

Y =





X̃1

X̃2

...

X̃p





and

Z =





X̃1∗ 0 0 · · · 0

0 X̃2∗ 0 · · · 0

0 0 X̃3∗ · · · 0
...

...
... . . . ...

0 0 0 · · · X̃p∗





Since the “model” for Y given Z is additive, we can force bjk = bjk by creating a modified

design matrix Z̃ where the columns corresponding to bjk and bkj are summed into a single column.

More precisely, the column corresponding to b̃jk with j < k in the Z̃ design matrix has all elements

set to zero except for the rows corresponding to Xk and Xj in the Y vector. These rows must be

set to X̃j and X̃k respectively:

Z̃ =





X̃2 X̃3 · · · X̃p−1 X̃p 0 · · · 0 · · · 0

X̃1 0 · · · 0 0 X̃3 · · · X̃p · · · 0

0 X̃1 · · · 0 0 X̃2 · · · 0 · · · 0
...

0 0 · · · X̃1 0 · · · 0 0 · · · X̃p

0 0 · · · 0 X̃1 · · · 0 0 · · · X̃p−1





The path for the constrained B̃(λ) can then be traced by simply applying a weighted version

of the LASSO algorithm to Y and Z̃. We emphasize that, even though the design matrix Z̃ has

O(np3) elements, it is extremely sparse. It can be proved that it contains only O(np2) non-zero

terms. It is thus crucial that the implementation of the homotopy/LARS-LASSO algorithm used

to trace this path make use of the sparsity of the design matrix.
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3.2 Computational complexity of one step of the algorithm

The algorithm proposed above to trace the regularization path of ˆ̃B(λ) uses the homotopy/LARS-

LASSO algorithm with a modified regression with p(p−1)
2 regressors and np observations. The

computational complexity of the k-th step of the homotopy algorithm in step 2.(a) is of order

O(a2
k +aknp), where ak denotes the number of non-zero terms on the upper triangular, off-diagonal

of B̃(λk) (a detailed analysis is presented in Efron et al., 2004). Clearly, the computational cost

increases rapidly as more off-diagonal terms are added to the precision matrix.

When p grows with n keeping a constant ratio p/n, we find it plausible that most selection

criteria will pick estimates at the most regularized regions of the path: a data sample can only

support so many degrees of freedom. Thus, incorporating early stopping criteria into the path

tracing at step 2.(a) of the SPLICE algorithm can greatly reduce the computational cost of obtaining

the path even further without degrading the statistical performance of the resulting estimates.

If one insists in having the entire precision matrix path, the SPLICE algorithm is still polynomial

in p and n. In the case where no variables are dropped and the variables are added one at a time, the

complexity of the first K steps of the path is given by O(K3 +K2np). Under the same assumptions

and setting K = 0.5 · p(p− 1), the SPLICE algorithm has cost of order O(p6 +np5) to compute the

entire path of solutions to the pseudo-likelihood problem. As a comparison, an algorithm presented

by Banerjee et al. (2005) has a cost of order O(p4.5

η ) to compute an approximate solution for the

penalized exact likelihood at a single point of the path, where η represents the desired level of

approximation.

3.3 Selection criteria for λ:

Different criteria can be used to pick a pair B,D from the regularization path (cf. 2(c) in the

SPLICE algorithm). In the experiment section below, we show the results of using Akaike’s In-

formation Criterion (AIC, Akaike, 1973), the Bayesian information Criterion (BIC, Schwartz,

1978) and a corrected version of the AIC criterion (AICc, Hurvich et al., 1998) using the unbiased

estimate of the degrees of freedom of the LASSO along the regularization path. More precisely, we

16



set:

λ̂ = arg minλ Lexact(X, D̂, B̂(λ)) + K(n, d̂f(Ĉ(λ))

where:

K(n, d̂f(Ĉ(λ))) =






2d̂f(Ĉ(λ)), for AIC,

1+
cdf(Ĉ(λ))

n

1−
cdf(Ĉ(λ))+2

n

, for AICc,

log(n)d̂f(Ĉ(λ)), for BIC,

As our estimate of the degrees of freedom along the path, we follow Zou et al. (2007) and use p

plus the number of non-zero terms in the upper triangular section of B̂(λ), that is,

d̂f(λ) = p +
∣∣∣
{

(i, j) : i < j and B̂ij(λ) %= 0
}∣∣∣ . (18)

The p term in expression (18) stems from the degrees of freedom used for estimating the means.

3.4 Stopping criterion

We now determine the convergence criterion we used to finish the loop started in step (2) of the

SPLICE algorithm. To do that, we look at the variation in the terms of the diagonal matrix D.

We stop the algorithm once:

max
1≤j≤p

{
log

(
[D̂k+1]j
[D̂k]j

)}
< 10−2,

or when the number of iterations exceeds a fixed number Q, whichever occurs first.

We have also observed that letting λk+1 differ from λk often resulted in oscillating estimates

caused solely by small variations in λ from one step to the next. To avoid this issue, we fixed the

regularization parameter λ after a number M < Q of “warm-up” rounds.

We have set M = 6 and Q = 100 for the simulations in Section 4. For most cases, the selected

value of λ and the D̂ matrix had become stable and the algorithm had converged before either the

17



maximum number M of “warm-up” steps was reached.

4 Numerical Results

In this section, we compare the results obtained by SPLICE in terms of estimation accuracy and

model selection performance to other covariance selection methods, namely the Cholesky covariance

selection procedure proposed by Huang et al. (2006) (Cholesky) and the !1-penalized maximum

likelihood estimate studied previously by Yuan and Lin (2007); Banerjee et al. (2005) and Friedman

et al. (2008) (Exact PML). We compare the effectiveness of three different selection criteria – AIC,

AICc and BIC (see Section 3.3)– in picking an estimate from the SPLICE, Cholesky and Penalized

Exact Log-Likelihood regularization paths. We also compare the model selection performance over

the entire regularization path using ROC curves (for details, see 4.1.2). Finally, we study the

positive semi-definiteness of the SPLICE estimates along the regularization path in a near-singular

design.

4.1 Comparison of SPLICE to alternative methods

Figure 1 shows the graphical models corresponding to the simulated data sets we will be using

to compare SPLICE, Cholesky and Exact PML in terms of estimation accuracy and covariance

selection. All designs involve a 15-dimensional zero-mean Gaussian random vector (p = 15) with

precision matrix implied by the graphical models shown in Figure 1. A relatively small sample

size is used to emulate the effect of high-dimensionality. For all comparisons, the estimates are

computed based on either 20 or 1,000 independent samples from each distribution (small sample

case: n = 20, large sample case: n = 1, 000). The results presented here are based on r = 200

replications for each case.

Before we show the results, a few words on our choice of simulation cases:

• The star model (see Figure 1 panel a) provides an interesting example where the ordering of

the variables can have a great influence in the results of an order-dependent method such as

Cholesky. In the Direct Star case, the hub variable is the first entry in the 15-dimensional

18



Figure 1: Simulated cases: In this table, the topology of the precision matrix for all simulated
cases is shown. In each case, the precision matrix is normalized to have unit diagonal. The edges
show the value of cij whenever it differs from zero.
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random vector (as shown in the figure). Conditioning on the first variable (X1) makes all

other variables independent (X2, . . . , X15). Meanwhile, in the inverted star topology, the hub

variable is put at the last position of the 15-dimensional random vector. As a result, no

conditional independence is present until the last variable is added to the conditioning set.

• In the “AR-like” family of models (see Figure 1 panels b, c and d) each 15-dimensional random

vector corresponds (panels c and d) or is very similar (panel b) to 15 observations from an

auto-regressive process. This family of models tends to give some advantage to the Cholesky

procedure as the ordering of the variables within the vector contain some information about

the dependency structure among the variables. The cases in this family are loosely based on

some of the simulation designs used in Yuan and Lin (2007);

• The “random” designs (see Figure 1 panels e, f and g) were obtained by randomly choosing

precision matrices as described in Appendix C. We used these designs to make sure our results

are valid in somewhat less structured environments.

4.1.1 Estimation accuracy of SPLICE, Cholesky and Exact PML

We evaluate the accuracy of the precision matrix estimates according to following four metrics.

• The quadratic loss of the estimated precision matrix, defined as

∆2(C, Ĉ) = tr
(
CĈ−1 − Ip

)2
.

• The entropy loss at the estimated precision matrix, defined as

∆e(C, Ĉ) = tr
(
CĈ−1

)
− log

(
CĈ−1

)
− n.

• The spectral norm of the deviation of the estimated precision matrix
(
Ĉ−C

)
where the

spectral norm of a square matrix A is defined as ‖A‖2 = supx
‖x′Ax‖2
‖x‖2 .

• The spectral norm of the deviation of the estimated covariance matrix
(
Σ̂− Σ

)
.
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For each of Cholesky, SPLICE and Exact PML, we compute estimates taken from their paths

using the selection criteria mentioned in 3.3: AIC, AICc and BIC. The Cholesky and SPLICE

estimates are chosen from the breakpoints of their respective regularization paths. The path trac-

ing algorithm we have used for the Cholesky estimate is sketched in Appendix B.1. The path

following algorithm for SPLICE is the one described in Section 3. The Exact ML estimate is cho-

sen by minimizing the selection criterion over an equally spaced 500-point λ-grid between 0 and

the maximum absolute value of the off-diagonal terms of the sample covariance matrix. We used

the implementation of the !1-penalized Exact log-likelihood for Matlab made available at Prof.

Alexandre D’Aspremont’s web site (http://www.princeton.edu/∼aspremon/).

Boxplots of the different accuracy measures for each of the methods and selection criteria are

shown in Figures 2, 3 and 4 for the small sample case (n = 20), and in Figures 5, 6 and 7 for

the large sample case (n = 1, 000). For larger sample sizes, the Cholesky estimates do suffer some

deterioration in terms of the entropy and quadratic losses when an inappropriate ordering of the

variables is used. As we will later see, an inappropriate ordering can also degrade the Cholesky

performance in terms of selecting the right covariance terms.

A comparison of the different methods reveals that the best method to use depends on whether

the metric used is on the inverse covariance (precision matrix) or covariance matrix.

• With respect to all the three metrics on the inverse covariance (quadratic, entropy and spectral

norm losses), the best results are achieved by SPLICE. In the case of the quadratic loss,

this result can be partially attributed to the similarity between the quadratic loss and the

pseudo-likelihood function used in the SPLICE estimate. In terms of the spectral norm on

the precision matrix (‖C− Ĉ‖2), SPLICE performed particularly well in larger sample sizes

(n = 1, 000). For the quadratic and entropy loss functions, AIC was the criterion picking the

best SPLICE estimates. In terms of the spectral norm loss, SPLICE performs better when

coupled with AICc for small sample sizes (n = 20) and when coupled with BIC in larger

sample sizes (n = 1, 000).

• In terms of the spectral norm of the covariance estimate deviation (‖Σ − Σ̂‖2), the best

performance was achieved by Exact PML. The performance of Exact PML was somewhat
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Performance Metric Recommended procedure

∆2(C, Ĉ) SPLICE + AIC

∆e(C, Ĉ) SPLICE + AIC

‖Ĉ−C‖2
SPLICE + AICc (for smaller sample size, n = 20)
SPLICE + BIC (for larger sample size, n = 1, 000)

‖Σ̂− Σ‖2 Exact penalized ML + AIC

Table 1: Suitable estimation methods for different covariance structures and perfor-
mance metrics: The results shown here are a summary of the results shown in Figures 2 through
7. For each metric, we show the best combination of estimation method and selection criterion
based on our simulations.

insensitive to the selection criterion used in many cases: this may be caused by the uniform

grid on λ missing regions where the penalized models rapidly change as λ varies. Based on

the cases where the selection criterion affected the performance of Exact PML, BIC seems to

yield the best results in terms of ‖Σ− Σ̂‖2.

For ease of reference, these results are collected in Table 1.

4.1.2 Model Selection performance of SPLICE

To evaluate the model selection performance of the different covariance selection methods, we

compare their Relative Operating Characteristic (ROC) curves defined as a curve containing in

its horizontal axis the minimal number of false positives that is incurred on average for a given

number of true number of positives, shown on the vertical axis, to be identified. The ROC curve for

a method shows its model selection performance over all possible choices of the tuning parameter

λ. We have chosen to compare ROC curves instead of the results for particular selection criterion

as different applications may penalize false positives and negatives differently.
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Figure 2: Accuracy metrics for precision matrix estimates in the Star cases for p = 15
and n = 20
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Figure 3: Accuracy metrics for precision matrix estimates in the AR-like cases for
p = 15 and n = 20
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Figure 4: Accuracy metrics for precision matrix estimates in the randomly generated
designs for p = 15 and n = 20
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Figure 5: Accuracy metrics for precision matrix estimates in the Star cases for p = 15
and n = 1, 000:
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Figure 6: Accuracy metrics for precision matrix estimates in the AR-like cases for
p = 15 and n = 1, 000
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Figure 7: Accuracy metrics for precision matrix estimates in the randomly generated
designs for p = 15 and n = 1, 000
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For a fixed number of true positives on the vertical axis, we want the expected minimal number

of false positives to be as low as possible. A covariance selection method is thus better the closer

its ROC curve is to the upper left side of the plot.

Figures 8 and 9 compare the ROC curves for the Cholesky and SPLICE covariance selection

procedures for sample sizes n = 20 and n = 1, 000 respectively. The Exact ML does not have

its ROC curve shown: the grid used to approximate its regularization path often did not include

estimates with a specific number of true positives. A finer grid can ameliorate the problem, but

would be prohibitively expensive to compute (recall we used a grid with 500 equally spaced values

of λ). This illustrates an advantage of path following algorithms over using grids: path following

performs a more thorough search on the space of models.

The mean ROC curves on Figures 8 and 9 show that SPLICE had a better performance in terms

of model selection in comparison to the Cholesky method over all cases considered. In addition,

for a given number of true positives, the number of false positives incurred by SPLICE decreases

significantly as the sample size increases. Our results also suggest that, with the exception of the

Random Design 02, the chance that the SPLICE path contains the true model approaches one as

the sample size increases for all simulated cases.

Finally, we consider the effect of ordering the variables on the selection performance of SPLICE

and Cholesky. To do this, we restrict attention to the “star” cases and compare the performance

of SPLICE and Cholesky when the variables are presented in the “correct” order (X1, X2, . . . , Xp)

and in the inverted order (Xp, Xp−1, . . . , X1). Figure 10 shows the boxplot of the minimal number

of false positives on 200 replications of the Cholesky and SPLICE paths for selected number of

true positives in the small sample case (n = 20). In addition to outperforming Cholesky by a wide

margin, SPLICE is not sensitive to the order in which the variables are presented. Cholesky, on

the other hand, suffers some further degradation in terms of model selection when the variables are

presented in the reverse order.
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4.2 Positive Semi-Definiteness along the regularization path

As noted in Section 2 above, there is no theoretical guarantee that the SPLICE estimates be positive

semi-definite. In the somewhat well-behaved cases studied in the experiments of Section 4.1 (see

Figure 1) all of the estimates selected by either AICc and BIC were positive semi-definite cases.

In only 6 out of the 1,600 simulated cases, did AIC choose a slightly negative SPLICE estimate.

This, however, tells little about the positive-definiteness of SPLICE estimates in badly behaved

cases. We now provide some experimental evidence that the SPLICE estimates can be positive

semi-definite for most of the regularization path even when the true covariance matrix is nearly

singular.

The results reported for this experiment are based on 200 replications of SPLICE applied

to a data matrix X sampled from a Gaussian distribution with near singular covariance matrix.

The number of observations (n = 40) and the dimension of the problem (p = 30) are kept fixed

throughout. To obtain a variety of near singular covariance matrices, the sample covariance Σ ∈

Rp×p of each of the 200 replications is sampled from:

Σ ∼ Wishart(n, Σ̄), with [Σ̄]ij = 0.99|i−j|.

The covariance matrices sampled from distribution have expected value Σ̄, which is itself close to

singular. We let the number of degrees of freedom of the Wishart distribution be small (equal to

the sample size n = 30) to make designs close to singular more likely to happen. Once Σ is sampled,

the data matrix X is then formed from an i.i.d. sample of a N(0,Σ) distribution.

To align the results along the path of different replications, we create an index λ̄ formed by

dividing a λ on the path by the the maximum λ at that path. This index varies over [0, 1] and lower

values of λ̄ correspond to less regularized estimates. Figure 11 shows the minimum eigenvalue of

Ĉ(λ) versus the index λ̄ for the 200 simulated replications. We can see that non-positive estimates

only occur near the very end of the path (small values of λ) even in such an extreme design.
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5 Discussion

In this paper, we have defined Sparse Pseudo-Likelihood Inverse Covariance Estimates (SPLICEs)

as a !1-penalized pseudo-likelihood estimate for precision matrices. The SPLICE loss function (6) is

obtained from extending previous work by Meinshausen and Bühlmann (2006) to obtain estimates

of precision matrix that are symmetric. The SPLICE estimates are formed from estimates of the

coefficients and variance of the residuals of linear regression models.

The main advantage of the estimates proposed here is algorithmic. The regularization path

for SPLICE estimates can be efficiently computed by alternating the estimation of coefficients and

variance of the residuals of linear regressions. For fixed estimates of the variance of residuals, the

complete path of the regression coefficients can be traced efficiently using an adaptation of the

homotopy/LARS-LASSO algorithm (Osborne et al., 2000; Efron et al., 2004) that enforces the

symmetry constraints along the path. Given the path of regression coefficients, the variance of the

residuals can be estimated by means of closed form solutions. An analysis of the complexity of the

algorithm suggests that early stopping can reduce its computational cost further. A comparison

of the pseudo-likelihood approximation to the exact likelihood function provides another argument

in favor of early stopping: the pseudo-likelihood approximation is better the sparser the estimated

model. Thus moving on to the lesser sparse stretches of the regularization path can be not only

computationally costly but also counterproductive to the quality of the estimates.

We have compared SPLICE with !1-penalized covariance estimates based on Cholesky decom-

position (Huang et al., 2006) and the exact likelihood expression (Banerjee et al., 2005, 2007; Yuan

and Lin, 2007; Friedman et al., 2008) for a variety of sparse precision matrix cases and in terms of

four different metrics, namely: quadratic loss, entropy loss, spectral norm of C − Ĉ and spectral

norm of Σ − Σ̂. SPLICE estimates had the best performance in all metrics with the exception

of the spectral norm of Σ − Σ̂. For this last metric, the best results were achieved by using the

!1-penalized exact likelihood.

In terms of selecting the right terms of the precision matrix, SPLICE was able to pick a given

number of correct covariance terms while incurring in less false positives than the !1-penalized

Cholesky estimates of Huang et al. (2006) in various simulated cases. Using an uniform grid
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for the exact penalized maximum likelihood provided few estimates with a mid-range number

of correctly picked covariance terms. This reveals that path following methods perform a more

thorough exploration of the model space than penalized estimates computed on (pre-determined)

grids of values for the regularization parameter.

While SPLICE estimates are not guaranteed to be positive semi-definite along the entire regu-

larization path, they have been observed to be such for most of the path even in a almost singular

problem. Over tamer cases, the estimates selected by AIC, BIC and AICc were positive semi-

definite in the overwhelming majority of cases (1,594 out of 1,600).

A Proofs

A.1 Positive Semi-definiteness of !2-penalized Pseudo-likelihood estimate

We now prove Theorem 1. First, we rewrite the !2-norm penalty in a more convenient form:

p + tr
[
B̃′B̃

]
= p +

p∑

j=1

p∑

k=1

(−bjk)2 =
p∑

j=1

(1− bjj)2 +
p∑

j=1

p∑

k=1

(−bjk)2 = tr
[
(Ip − B̃)′(Ip − B̃)

]

Hence, the !2-penalized estimate defined in (15), can be rewritten as:

ˆ̃B2(λ2) = arg min
B̃

tr
[
(Ip − B̃)

(
X̃′X̃ + λ2Ip

)
(Ip − B̃′)

]

s.t.






b̃jj = 0, for j = 1, . . . , p

b̃jk = b̃kj for j = 1, . . . , p, k = j + 1, . . . , p

(19)

Using convexity, The Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient to

characterize a solution of problem (19):

(
X̃′X̃ + λ2Ip

)
(Ip − ˆ̃B2(λ2)) + Θ + Ω = 0, (20)

where Θ is a diagonal matrix and Ω is an anti-symmetric matrix. Given that b̃jj = 0 and ωjj = 0
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(anti-symmetry), it follows that, for λ2 > 0:

θjj = −
(
X̃′

jX̃j + λ2

)
< 0, (21)

that is, −Θ is a positive definite matrix.

From (20), we can conclude that
(
Ip − ˆ̃B2

)
satisfies:

(
X̃′X̃ + λ2Ip

) (
Ip − ˆ̃B2(λ2)

)
+

(
Ip − ˆ̃B2(λ2)

)′ (
X̃′X̃ + λ2Ip

)
= −2Θ.

Theorem 1 then follows from setting U = (Ip − ˆ̃B2(λ2)), V = (X′X + λ2Ip) and W = −Θ and

applying the following lemma:

Lemma 1. Let U, V and W be p × p symmetric matrices. Suppose that V is strictly positive

definite and W is positive semi-definite and:

UV + VU = W.

It follows that U is positive semi-definite.

Proof. Since V is symmetric positive semi-definite, we can write it as V = AΛA′. Take a vector

z ∈ Rp and rewrite it as z =
∑p

k=1 γkak where ak are eigenvectors of V (no need for uniqueness).

From positive semi-definiteness of W and the assumed identity:

0 ≤ z′Wz = z′UVz + z′VUz

=
p∑

j=1

p∑

k=1

γjγk

(
a′kUVaj + a′kVUaj

)

= 2
p∑

j=1

γ2
j a′kUVak

where the second follows from the cross products being zero:

a′jUVak = trace(a′jUVak) = trace(aka
′
jUV) = 0, whenever j %= k.
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Now, taking in particular z = ak we have, for every k = 1, . . . , p:

2a′kUVak = 2λka
′
kUak = a′kWak ≥ 0

We can conclude that for every k having λk > 0, a′kUak ≥ 0 and the result follows.

B Algorithms

B.1 Appendix: A Path-Following Algorithm for the Cholesky estimate

In this section, we describe a path tracing algorithm for the precision matrix estimate based on

Cholesky decomposition introduced in Huang et al. (2006). The algorithm can be understood as a

block-wise coordinate optimization in the same spirit as Friedman et al. (2007).

For a fixed diagonal matrix D2 = diag
(
d2

1, . . . , d
2
p

)
, the sparse Cholesky estimate of Huang et al.

(2006) is:

Û(λ) = arg min
U∈UUT

XUD−2U′X′ + λ‖U‖1,

where UUT denotes the space of upper triangular matrices with unit diagonal. This is equivalent

to solving:

β̂(λ) = arg min
β

∑p
j=1

‖Xj−
Pj−1

k=1 Xkβjk‖2
d2

j
+ λ

∑p
j=1

∑j−1
k=1 |βjk| .

It is not hard to see that the objective function can be broken into p − 1 uncoupled smalled

components. As a result, the optimization problem can be separated into p− 1 smaller problems,

that is, β̂(λ) =
(
β̂2(λ), . . . , β̂p(λ)

)
with:

β̂j(λd2
j ) = arg min

β
‖Xj −

∑j−1
k=1 Xkβjk‖2 + λd2

j

∑j−1
k=1 |βjk| .

Each of these p−1 subproblems can have its path regularization traced by means of the homotopy/LARS-

LASSO algorithm in Osborne et al. (2000); Efron et al. (2004). The β̂(λ) parameter estimate is
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recovered by
(
β̂2(λd2

2), . . . , β̂p(λd2
p)

)
. All is needed is a little care in merging the p−1 paths together

as the scaling of the regularization parameter changes from one subproblem to the next.

An alternative way to understand how the problem can be broken into these smaller pieces

stems from the representation of program in (22) as a linear regression. A little manipulation can

be used to show that (22) can be represented as a linear regression of Ỹ against Z̃ as below:

Ỹ =





X2
d2
2

X3
d2
3

X4
d2
4
...

Xp−1

d2
p−1

Xp

d2
p





and,

Z̃ =





X̃1
d2
2

0 0 0 0 0 · · · 0 · · · 0 0 · · · 0

0 X̃1
d2
3

X̃2
d2
3

0 0 0 · · · 0 · · · 0 0 · · · 0

0 0 0 X̃1
d2
4

X̃2
d2
4

X̃3
d2
4

· · · 0 · · · 0 0 · · · 0
...

...
...

...
...

... . . . ... . . . ...
... . . . ...

0 0 0 0 0 0 · · · X̃1
d2

p−1
· · · X̃p−2

d2
p−1

0 · · · 0

0 0 0 0 0 0 · · · 0 · · · 0 X̃1
d2

p
· · · X̃p−1

d2
p





The separability of the program (22) into the subprograms (22) follows from the block diagonal

structure of the matrix Z̃′Z̃. The application of the homotopy/LARS-LASSO algorithm to each of

the problems and the subsequent merging of the resulting paths into a single path can be seen as

a path version of the coordinate wise algorithms described in Friedman et al. (2007).

C Appendix: Sampling sparse precision matrices

In Section 4, we use three randomly selected precision matrices in the simulation studies presented

therein. These random precision matrices are sampled as follows.

• A random sample containing 20 observations of X is sampled from a zero-mean Gaussian
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distribution with precision matrix containing 2 along its main diagonal and 1 on its off-

diagonal entries;

• A random precision matrix is formed by computing G = (XT X)−1;

• The number of off-diagonal terms N is sampled from the a geometric distribution with pa-

rameter λ = 0.05 conditioned to be between 1 and 15×14
2 = 105;

• A new matrix H is formed by setting all off-diagonal of the matrix G are set to zero, except

for N randomly selected entries (all entries are equally likely to be picked);

• Since H may not be positive definite, the precision matrix is formed by adding H + I15 ·

max(0, 0.02− ϕ(H)) where ϕ(H) is the smallest eigenvalue of H.
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