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Spatial gene expression patterns enable the detection of local
covariability and are extremely useful for identifying local gene
interactions during normal development. The abundance of spatial
expression data in recent years has led to the modeling and analysis
of regulatory networks. The inherent complexity of such data makes
it a challenge to extract biological information. We developed
staNMF, a method that combines a scalable implementation of
nonnegative matrix factorization (NMF) with a new stability-driven
model selection criterion. When applied to a set of Drosophila early
embryonic spatial gene expression images, one of the largest datasets
of its kind, staNMF identified 21 principal patterns (PP). Providing a
compact yet biologically interpretable representation of Drosophila
expression patterns, PP are comparable to a fate map generated ex-
perimentally by laser ablation and show exceptional promise as a
data-driven alternative to manual annotations. Our analysis mapped
genes to cell-fate programs and assigned putative biological roles to
uncharacterized genes. Finally, we used the PP to generate local tran-
scription factor regulatory networks. Spatially local correlation net-
works were constructed for six PP that span along the embryonic
anterior–posterior axis. Using a two-tail 5% cutoff on correlation,
we reproduced 10 of the 11 links in the well-studied gap gene net-
work. The performance of PP with the Drosophila data suggests that
staNMF provides informative decompositions and constitutes a useful
computational lens through which to extract biological insight from
complex and often noisy gene expression data.
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Biological processes in multicellular organisms depend on
spatial and temporal control of gene expression. Gene prod-

ucts function in the context of other spatially localized gene
products and these interactions have been well characterized for
development and tissue differentiation. Recent studies of prenatal
(1) and adult human brain (2) revealed widespread anatomical
variability in gene networks, which is reflective of developmental
processes and of the distribution of major cell types. Spatially
resolved studies of tumors uncovered widespread intratumor
heterogeneity (3–8). Given the importance of spatiotemporal gene
expression, many efforts are underway to characterize it genome-
wide. Systematic datasets include Drosophila gene expression
during embryogenesis [Berkeley Drosophila Genome Project
(BDGP) (9)], and oogenesis (10), subcellular mRNA localization
(11), and in brain (12), imaginal discs (13), central nervous system
(14), and other developmental model systems [e.g., Xenopus (15),
Ciona (16), and mouse (17–19)].
Spatial datasets are complex and quickly surpass the human

ability to interpret them. To represent, search, and analyze such
large spatial expression datasets, they are commonly curated with
defined controlled vocabulary (9, 17–21). Curation using ontologies
is time-consuming and requires expert knowledge. Despite signif-
icant progress toward automatic computer annotation through
supervised learning based on human labels (22–26), the subtleties

inherent in spatial expression patterns are difficult to capture and
finding related patterns is challenging. An alternative, comple-
mentary to ontologies, is the spatial expression information ex-
tracted directly from images (12, 17–19, 22, 27–30). We discovered
putative gene interactions by correlating gene expression and
performing cluster analysis (27), and others have used sparse
Gaussian graphical models (30) to do the same. Due to data
complexity and the large size of image collections, image-based
approaches are not routinely used for modeling.
Organ systems develop through the combinatorial action of

gene regulatory networks (21, 31), and gene function and regu-
latory interactions can markedly differ depending on the spatial
location (32). Studies of genomic enhancer elements have shown
that wild-type spatial expression patterns are actually the product
of multiple genomic elements. These previous studies dissected
biological enhancers and discovered that complex expression
patterns could be subdivided into smaller regions (33, 34). In
Drosophila, clustering early embryonic gene expression patterns
recovered groups of cells that likely interact with one another,
contributing to the formation of organs and tissues (27, 33).
These regions are similar to those identified in studies using laser
ablation to determine cell lineage and function (35, 36). Yakoby
et al. proposed an innovative method to model spatial gene ex-
pression in Drosophila follicle cells as a Boolean combination of
smaller building blocks (10). Due to the small number of gene
expression patterns in their work, they were able to produce
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building blocks manually. Such an approach is intuitive and
conceptually supported by the aforementioned works on
genomic enhancers.
In this paper, we describe stability-driven nonnegative matrix

factorization (staNMF), a method that interprets, represents,
and analyzes comprehensive spatial gene expression datasets.
staNMF partitions biological spatial data or images into spatial
building blocks, called principal patterns (PP). Specifically, we
adapted a powerful unsupervised learning algorithm, NMF (37),
to learn data-driven representations from large and complex
datasets. We invented a new stability criterion to address the
challenge of NMF model selection to arrive at staNMF, which is
scalable, tolerates experimental noise, and moderates image
registration variance. We applied staNMF to a dataset of spatial
gene expression images during early Drosophila embryogenesis.
The output of staNMF, i.e., PP, is humanly interpretable and
biologically meaningful. Using the PP, we grouped genes into
overlapping categories corresponding to regions involved in co-
herent developmental programs. Finally, we built spatially local
networks based on the learned PP, correctly reproducing 10 of 11
links in the well-studied gap gene network. This PP-based ap-
proach can be applied to extract biological insight from other
complex and noisy spatial gene expression datasets, for example,
from the extant zebrafish and mouse brain studies.

Results
Learned staNMF PP Correspond to Biologically Important Regions.
We used a set of BDGP Drosophila lateral embryonic gene ex-
pression images at developmental stages 4–6 (1 h 20 min–3 h after
egg laying at 25°C). The 1,640 images were derived from 701 genes
with spatially restricted expression patterns. We extracted embryos
using segmentation of images taken with differential interference
contrast microscopy. The objects containing the embryos were
resized in both axes, and registered to a predefined elliptical
template. The intensities of the gene expression patterns were
determined with a least-squares approach to distinguish the dye
intensity from the background introduced by the imaging modality
(SI Appendix). Each resulting image is an ellipse of 405 pixels with
gene expression values between 0 and 1 (Fig. 1A).
In Drosophila development, cell fates are determined before

any visible morphological features become apparent (35, 36) and
are preceded by the coordinated coexpression of cohorts of
genes in defined spatial regimes that divide the embryo into
areas with unique regulatory profiles (27, 33). We model the
embryo as a topological map where genes are either absent or
expressed at a positive value. Thus, we think of each spatial gene
expression as an additive and nonnegative linear combination of
a set of regions of the embryo. To identify these additive and
positively valued regions, we used NMF (37). For a given positive
integer K, NMF finds a data-driven dictionary such that each
expression image can be represented by a nonnegative linear
combination of the K dictionary columns (Fig. 1B). We con-
verted the pixel intensities of the preprocessed expression pat-
tern into a linear vector and decomposed the vector with NMF,
aiming to solve the following nonconvex optimization problem:

min
D≥0,A≥0

kX−DAk2F ,

whereD is the sought-after dictionary, X the linearized image data,
A a linear nonnegative coefficient matrix, and k.kF the matrix
Frobenius norm. To account for replicate images of the same
gene, we introduced a weight factor (SI Appendix). The columns
of the dictionary are the PP. The nonnegativity constraints on
both the dictionary and coefficients enforce the PP to have non-
negative contributions to the gene image, resulting in a “parts-
based” representation. The constraints also implicitly impose
sparsity on both the PP and the linear coefficients.

Our aim was a generalizable method contingent only on data
and with little need of prior knowledge. NMF depends on a
single parameter, the number K of PP. We reasoned that a useful
definition of an optimal NMF-generated dictionary would be
reproducibly independent of the initialization values. To identify
the number of PP, we optimized on a metric that measures the
instability of the learned PP relative to the initial starting points.
In detail, for each K, the NMF algorithm was repeated multiple
times with an initial PP dictionary randomly sampled from the
columns of X. We measured the instability of the PP by com-
puting the average dissimilarity of all learned dictionary pairs
(D and D′) using their cross-correlation matrix (C) and a new
Amari-type quantity (38):

dissðD,D′Þ= 1
2K

 
2K −

XK
j=1

max
1≤k≤K

Ckj −
XK
k=1

max
1≤j≤K

Ckj

!
.

We repeated the process for each K and selected the K where the
learned dictionaries achieve the lowest instability (SI Appendix).
Among all dictionaries with the optimal size K, the dictionary with
the minimum NMF objective function value was chosen. We called
this stability-based NMF model selection method “staNMF” and
validated our method with multiple synthetic datasets (SI Appendix,
Figs. S4, S6, and S7). When applied to our spatial gene expression
pattern dataset with range 15≤K ≤ 30, staNMF identified the num-
ber of PP with the lowest instability at K = 21 (Fig. 1C; see also
SI Appendix).
The 21 learned PP divided the Drosophila embryo into contig-

uous pretissue and organ regions (Fig. 1D). Compared with
principal component analysis, independent component analysis
(39), and a recently proposed sparse Bayesian factor model (24),
only PP recapitulate the underlying biology of cell and tissue fate
maps (SI Appendix, Figs. S8 and S9). Each PP is spatially coherent:
The intensity is locally continuous and the regions defined by
the PP are interconnected. We grouped the 21 PP into four
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Fig. 1. Learning PP by staNMF from spatial gene expression patterns.
(A) Expression patterns of two genes, nub and salm, in Drosophila embryos.
(B) For a given number K, NMF factorizes the nonnegative data matrix X, the
columns of which are gene expression images, into the product of two non-
negative matrices: dictionary D, which contains the K PP, and coefficient matrix
A, which contains the nonnegative coefficients of the images. (C) staNMF
identified K =21 to be the optimal number of PP for 15≤K ≤ 30. (D) The
Drosophila fate map (center) (35, 36), surrounded by the 21 PP learned by
staNMF. The PP are arrayed according to the corresponding regions of the fate
map. See SI Appendix for how we mapped the PP to the fate map.
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categories: PP1–5: anterior patterns; PP6–9: vertical (gap) seg-
mentation stripes; PP10–16: horizontal ventral–dorsal patterns;
and PP17–21: posterior patterns. We compared the PP and the
categories to the Drosophila fate map (35, 36), an experimentally
determined functional mapping of spatial regions before avail-
ability of gene expression data. We associated each PP or a
group of PP with a region in the fate map of similar size and
shape (Fig. 1D; see also SI Appendix). We found that the PP
refined the fate map in the dorsal epidermal region, the ventral
neurogenic region, the mesoderm, and the hindgut. Some of the
refinements are already biologically supported. For example, the
vertical stripes are known to be the result of gap, pair-rule, po-
larity, and segmentation genes that eventually establish 14 re-
fined stripes that become morphologically distinguishable in a
later-stage embryo (40).

l1 Regularization to Provide Sparse PP Data Representations. We
evaluated the ability of PP to provide a compact representation
for spatial gene expression patterns. A sparse decomposition of
complex expression patterns into additive smaller components
offers a simple and intuitive computational representation of
spatial gene expression (Fig. 2). Whereas the nonzero coeffi-
cients of the matrix A (Fig. 1B) provided such a decomposition,
they tended to select more PP than necessary in our simulations
(SI Appendix, Fig. S11). Instead, we used the least absolute
shrinkage and selection operator (LASSO) (41) for PP selection.
Nonnegative constraints were put on the linear coefficients. For
each expression pattern, we chose the LASSO regularization
parameter using a 10-fold cross-validation and refitted the co-
efficients with nonnegative least squares on the selected PP (SI
Appendix). We call these coefficients “sparse PP” (sPP) coeffi-
cients or representation. The average number of PP chosen by
this procedure is 10.4, and the average correlation between the
original expression pattern and the reconstructed pattern is 0.854
(SI Appendix, Fig. S12 A and B). Considering the small number
of the selected PP, the correlation measure indicates that our
model selection and fitting procedure achieved a reasonably
good reconstruction quality. As expected, the correlation in-
creases as the number of PP increases (SI Appendix, Fig. S12C).
We investigated cases with poor performance and found such
gene expression patterns are either faint or have poorly defined
boundaries. In addition, nonsparse representations almost al-
ways correspond to ubiquitously expressed genes (SI Appendix,
Fig. S12D). As illustrated by the residual images, errors are most
likely to occur at expression pattern boundaries (Fig. 2).

PP Provide a Data-Driven Alternative to Human Expert Annotations.
Expert curators annotated BDGP spatial gene expression pat-
terns with a controlled vocabulary whose terms represent ana-
tomical regions of the developing embryo, similar to the fate map

discussed above. To compare the 21 learned PP with the ana-
tomical vocabulary, we used the sPP coefficients as predictors in
a supervised learning approach and labeled each image with
annotation terms. We selected 11 stage 4–6 annotation terms
with more than 100 images: ectoderm anlage in statu nascendi
(AISN), dorsal ectoderm AISN, procephalic ectoderm AISN,
ventral ectoderm AISN, mesoderm AISN, trunk mesoderm
AISN, amnioserosa AISN, gap, hindgut AISN, pole cells, and
visual AISN. For each of the 11 terms, we labeled images an-
notated this term as “1,” the rest as “0,” and fitted an l1-penal-
ized logistic regression (L1LR) with the sPP coefficients as
predictors. A 10-fold cross-validation was performed for each
term to choose the regularization parameter in the L1LR. To
compare with sPP, we also trained L1LR using the full expres-
sion pattern with 405 pixels, and the sparse Bayesian factors (BF)
of ref. 24 (SI Appendix). We generated 21 BF to compare directly
to the 21 PP.
The prediction performance of the three methods is very

similar, as measured by the cross-validation AUC (area under
the receiver operating characteristic curve, valued between 0 and
1) (Fig. 3A). On average, the AUC value for the sPP represen-
tation is 0.772, compared with 0.787 for the pixel-based repre-
sentation and 0.767 for the BF representation. Taking into
account the SE of the AUC for each annotation term, none of
the three methods significantly outperforms the others. In
terms of model complexity, on average 17 predictors are se-
lected for the pixel-based L1LR, 7 for our sPP-based approach,
and 8 for the BF-based model (Fig. 3B).
Among the three L1LR models, the sPP-based model is the

most interpretable and most biologically meaningful (Fig. 3C).
For the pixel-based model, we created a visualization of the 405
predictors for each annotation term by plotting the L1LR co-
efficient values as pixels in our elliptic embryo shape. To com-
pare with this visualization, we selected the (top L1LR) PP and
BF corresponding to the largest L1LR coefficients for their re-
spective L1R1 models. The pixel-based predictors consist of
scattered points and the top L1LR BF contains negative values,
both of which are difficult to interpret. In contrast, the top L1LR
PP consistently showed the annotation term exactly as a curator
would annotate the gene expression (Fig. 3C; see SI Appendix,
Figs. S13–S17 for all L1R1 results as evidence for the benefits of
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the sPP models). In addition, the pixel-based and the BF-based
representations resulted in unstable predictor sets between cross-
validation runs (SI Appendix, Fig. S18). This instability further reduces
the interpretability of the two models. In the automatic label pre-
diction task, the better interpretability of the top L1LR PP and the
comparable prediction accuracy of sPP-based models provided ad-
ditional support for the PP as a biologically attractive decomposition.

PP Associated Gene Functions and Relationships Between Spatial
Regions. We use the term “function” as defined by the experi-
mentally generated fate map that describes the locations of lar-
val/adult progenitor cells in the blastoderm. These cells give rise
to particular tissues and organs during development. By sys-
tematically associating genes to PP, we can group known and
uncharacterized genes and assign putative biological roles. We
assigned a gene to PP category k if the kth sPP coefficients of the
gene exceeded 0.1. The number of genes in each of the 21 PP
categories is, on average, 300 genes ranging from 184 to 395. PP
categories 6–9 contain fewer, on average, 223 genes (Fig. 4A,
Right and SI Appendix, Fig. S19 and Tables S2 and S3). In ad-
dition, we also found a significant presence of previously
uncharacterized computed genes (CG) in all PP categories: The
average percentage of CG per PP category is 23.4%.
To directly relate genes to each other, we created a heatmap vi-

sualization of the sPP coefficients for 667 genes that belong to at least
one PP category. We ordered the genes by first associating each of
them to the PP with the maximum sPP coefficient, and then per-
forming a hierarchical clustering of the genes assigned to the same
PP (Fig. 4A, Left; see also SI Appendix). A surprisingly large fraction
of genes (17.8%) exhibit their strongest expression in PP21 (pole
cells) and have limited expression in other PP. We found that only
5.8% of the 156 transcription factors are among these PP21 specific
genes, confirming previous results (21). Of the 667 genes, 4.5% have
their strongest expression in segmentation patterns PP6–9, suggesting
that only a small number of genes are dedicated to segmentation.
Furthermore, 93.3% of these genes have been characterized, im-
plying that we know most segmentation genes. We found genes with
known roles in foregut development (croc, hkb, and kni) associated

with PP1, segmentation specific genes (Dfd, kn, Kr, and tsh) associ-
ated with PP6–9, genes essential for mesoderm/ectoderm develop-
ment (Mes2, sna, and sog) associated with PP15, genes essential for
pole-cell formation associated with posterior PP21 (lok, pgc, and rdx)
as well as previously uncharacterized genes such as CG1663,
CG8289, CG9514, and CG10479 in these PP categories (Fig. 4B).
With additional later-stage organ system annotation data (21), we
found genes expressed in PP16 (mesoderm) in stages 4–6 become
expressed in the central nervous system (CNS) starting at stage 9 (trx,
sna, Traf4, and Caf1). Early mesoderm genes with function during
CNS development have been shown before (42), but here we dem-
onstrate a systematic secondary function of mesoderm specific genes,
including previously uncharacterized genes (e.g., CG11247).
Next, we investigated the relationship between the PP that

span the anterior–posterior axis, i.e., PP1–9, PP17–21. We
plotted the fraction of common genes in a pair of PP categories,
defined as the Jaccard distance between the two categories, in
relation to the pairwise PP centroid distance (Fig. 4C and SI
Appendix, Fig. S20). Our results show that when the PP distance
is small, the fraction of common genes is high. However, after
the initial decrease, the fraction of common genes increases as
the PP distance increases. An example is the set of genes (49%
or 227) shared between the distant PP2 and PP18 that map to
anterior foregut/brain and posterior hindgut (Fig. 4C). These
genes include known foregut and hindgut development genes
such as Alh, Blimp-1, Btk29A, dm, Mkp3, and rpr. This finding
substantiates the previously identified common origins and gene
expression signatures of foregut and hindgut that were based on
manual annotations (21, 36). Similarly, 229 genes (52%) are
shared between PP3 (anterior midgut/mesoderm) and PP19
(hindgut), including known midgut and hindgut genes, ry, Ect4,
Sdc, Pcl, larp, and emc, suggesting a more general link between
the anterior and posterior patterns.

PP-Based Correlation Network Inference Leads to Accurate de Novo
Reconstruction of the Drosophila Gap Gene Network. Associations
between two genes are routinely described by their correlation to
each other (43). In terms of spatial relationships, positive gene
interactions exhibit spatial overlap whereas repressive gene in-
teractions exhibit spatial exclusivity. Below, we used the learned
PP to construct spatially local correlation networks (SLCN) for
156 transcription factors (TF) from our expression data.
The Drosophila gap gene network has been studied for decades

(40, 44, 45). It controls embryonic patterning by regulating the
genes required to establish the anterior–posterior segmentation
stripes and is primarily driven by well-studied activating and re-
pressive interactions between eight TF. To reconstruct this network
solely from our expression data of 156 spatially restricted TF, we
selected six PP (PP6–9, PP17, and PP20) corresponding to the
domains of the gap gene network.We called these six PP “gap-PP.”
For each gap-PP, we computationally constructed an SLCN. First,
we identified all TF with sPP coefficient greater than 0.1 in the gap-
PP, or its directly adjacent PP. Next we computed the weighted
correlation between all pairs of selected TF using the pixel in-
tensities in the gap-PP as weights. Finally, links of each resulting
correlation network were filtered by thresholding the weighted
correlations at a two-tail 5% cutoff, producing six SLCN with in-
teractions among known and previously uncharacterized genes (SI
Appendix, Figs. S21–S24). See SI Appendix for details of the
SLCN construction.
We evaluated our SLCN construction by comparing interac-

tions found in the six SLCN to known regulatory interactions of
selected trunk and terminal gap genes, giantðgtÞ, hunchbackðhbÞ,
knirpsðkniÞ, Kru

::
ppelðKrÞ, huckebeinðhkbÞ, and taillessðtllÞ. We

compared the subnetworks of the SLCN containing only the six
genes (Fig. 5A) to a schematic network diagram (Fig. 5B), as
originally depicted in ref. 44. Although the diagram indicates
that some gene interactions are contingent on spatial position, it
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does not provide precise locations of the interactions. To com-
pare with our networks, we devised a method to match the links
in the diagram to our SLCN. For each gap gene, we first created a
linearly ordered PP representation by placing the six gap-PP an-
terior to posterior and associating a gap-PP to the gene if the sPP
coefficient for the gap-PP exceeded a threshold of 0.1 (Fig. 5C).
The gap-PP associated with each gap gene were then merged into
one or more connected PP groups. Based on its relative location in
the diagram, we then matched each gene node in the schematic
diagram to a connected PP group for the same gene. We con-
sidered an interaction between two gene nodes in the schematic
network diagram as successfully identified by our method if the
same interaction exists in the any SLCN associated with the
overlapping PP in the connected PP groups of the two gene nodes
(SI Appendix, Fig. S25 and Table S4).
For example, the diagram depicts a repressive link between the

anterior component of gt (i.e., gt1) and Kr. Using our linearly or-
dered PP representation, we found the connected PP groups for
gt1 and Kr are PP6/7 and PP8, respectively (Fig. 5C). We searched
for the gt -Kr interaction only in the SLCN of PP7 and PP8, be-
cause PP6 and PP8 do not overlap. In both networks, we found a
repressive interaction (or negative correlation). Hence we con-
sidered the anterior gt -Kr link of the schematic gap gene network
diagram as being identified with our model. See SI Appendix, Fig.
S25 for the validation of the remaining links.
For the six gap genes, our SLCN reconstruction identified 14

interactions (Fig. 5A). Eight out of 11 links in the gap gene net-
work diagram have a one-to-one mapping with 8 of the 14 SLCN
interactions. In addition, the two gt -Kr links in the gap gene
network (link 1 and 5 in Fig. 5B) are found in the SLCN of PP7–9
(links 2, 4, and 7 in Fig. 5A). The remaining kni - gt2 link (link 6 in
Fig. 5B) has no corresponding link in the SLCN. Three of the 14
SLCN links do not correspond to any interactions in the network
diagram: the two gt - kni links in PP6 and PP17 (link 1 and link 11
in Fig. 5A), and the hb - tll link in PP9 (link 6 in Fig. 5A). There-
fore, our SLCN recovered 10 out of 11 interactions in the gap
gene network and discovered 3 interactions not described by the
diagram. In contrast, when using correlation over the whole em-
bryo to construct the TF network, we recovered only three out of
nine unique links of the gap gene network (SI Appendix, Fig. S27).

Discussion
We proposed staNMF that combines NMF with a new stability-
based model selection criterion to decompose spatial gene

expression patterns into local PP. When we applied staNMF to
Drosophila embryonic expression data at early stages 4–6, the
learned PP correspond to preorgan regions, and thus provide
an informative representation of spatial gene expression data.
We demonstrated that PP are a data-driven alternative to
manual curation and facilitate the categorization of gene ex-
pression patterns. Our PP-based sparse representations (sPP)
reduce large datasets to manageable scales. They allow suitable
human interrogation and downstream computation on desktop
computers while preserving quantitative relationships of full
datasets. In addition, staNMF’s utility was further substantiated
by the agreement between our PP-based spatially local net-
works and the well-studied gap gene network.
Model selection or identification of a well-reasoned number of

components for unsupervised learning has been a challenging
problem. staNMF’s underlying idea of stability was previously used
to identify the number of clusters in cluster analysis using NMF
(46). Our contribution is to use an Amari-type measure to eval-
uate dictionary stability, rather than clustering stability as in the
previous work. We experimented with the method of ref. 46, and
found that it failed to identify the correct number of PP in a
number of synthetic datasets (SI Appendix). Recent Bayesian
model selection approaches (47, 48) introduced additional
hyperparameters, which in practice are generally not known in
advance. We believe staNMF is an important advance because it
does not depend on tuning parameters, and has been demon-
strated to work well in both simulations and our Drosophila
spatial gene expression data.
Our SLCN identified three network links previously not de-

scribed in ref. 44. In PP6, we found a repression link between gt
and kni. Gene expression images of gt and kni revealed a clear
complementary pattern toward the anterior end with a negative
local correlation of −0.720 in PP6 (SI Appendix, Fig. S25D). In the
PP17 SLCN, an activation link between kni and gt was identified.
Because our images covered an interval of around 1.5 h, the
posterior part of kni expression pattern at the early developmental
stages 4–6 might have been aligned to the gt gene posterior end at
a later time point (SI Appendix, Fig. S25D). Experiments will be
needed to confirm or refute these predicted links. Finally, al-
though not described in ref. 44, the predicted hb - tll activation link
in PP9 is supported by ref. 49.
Given the successes of our PP-based approach in the well-

characterized early Drosophila embryo, we expect staNMF to be
broadly applicable to derive meaningful data-driven representa-
tions of spatial gene expression for other systems such as zebrafish,
Caenorhabditis elegans, and human histological samples. In con-
clusion, we have demonstrated with ample evidence the utility of
sPP as an effective computational lens to reveal hidden structures
in complex gene expression data.

Datasets and Software
Data are available as Datasets S1–S6, and code and datasets
are provided under “Principal Patterns” on our website:
insitu.fruitfly.org/downloads.
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1 Methods

1.1 Data and preprocessing

We collected images from the Berkeley Drosophila Genome Project (BDGP) database (March
2013) [2] labeled as developmental stages 4 – 6 with lateral view embryos. We removed images
corresponding to genes annotated solely with the terms “ubiquitous”, “maternal” or “no staining”.
Compared to restricted zygotic expression patterns, these images had almost uniform expression in-
tensities throughout the embryos and were therefore less meaningful for our analysis. The resulting
dataset contained 1640 images.

We used our previous segmentation algorithm [3] to detect the outline of the embryo in each
image. Based on the detected outline, we employed SPEX2 [4] to register the embryo onto an
ellipse template with a long axis of 64 pixels and a short axis of 32 pixels, contained in a rectangle
image of 64×128 pixels. We then extracted the gene expression pattern of the embryo using a least
squares (LS) approach detailed in the next section. By taking the average gene expression intensity
of every four pixels that form a square, the ellipse-registered embryo was down-sampled by a factor
of four to fit in an ellipse template with a long axis of 16 pixels and a short axis of 8 pixels. Such
an ellipse template can be embedded in a rectangle image of 16× 32 pixels for visualization. Inside
the rectangle image, there are 405 pixels within the ellipse and 16× 32− 405 = 107 pixels outside.
To validate our registration pipeline, we selected replicates of the same gene and genes with known
adjacent expression patterns, superimposed them, and visually evaluated the matches to deem them
satisfactory (Fig. S1). The dataset that contains the preprocessed expression patterns for 1640
images can be found in Dataset S1.

1.2 Expression pattern extraction

The Drosophila embryonic gene expression images were captured using differential interference
contrast (DIC) microscopy. However, the shadows induced by DIC are frequently indistinguishable
from expression patterns [3]. We developed a least squares (LS) based method using the color
channels to differentiate spatial gene expression from background. Using Adobe® Photoshop®,
we created a training set of 32 images by manually selecting the regions of the embryos with gene
expression, as detected by the blue dye (Nitro blue tetrazolium and 5,5’-dibromo-4,4’-dichloro-
indigo). For each pixel inside the ellipse template, we averaged the three RGB values as proxy
for gene expressing intensity and set the intensity outside the segmented region to zero. We then
standardized the expression intensity g of each pixel using the formula (255− g)/255. Here, 255 is
the number of possible gray-scale values. Under this standardization scheme, the maximum gene
expression intensity is one and the minimum is zero.

For i = 1, ..., 32, we represented the i-th manually processed image as a vector si ∈ [0, 1]8192.
The vector length 8192 was derived from 128× 64 – the size of the rectangle image that contained
the ellipse template. We modeled the gene expression intensity of each pixel as a linear combination
of the color information of its neighbor pixel at different scales. More specifically, for each pixel and
each color channel, we generated up to the fourth moment of the intensity at the pixel and within
a disk centered at the pixel with radius 2, 4, and 8. Denote the feature matrix by Zi ∈ R8192×49.
Each row of Zi corresponds to a pixel and each column a feature (1 column for the intercept, 4
moments × 4 radii × 3 channels = 48 features). To obtain the linear coefficients b ∈ R49, an LS
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was used based on the 32 images:

b̂ = arg min
b∈R49

32∑
i=1

‖si − Zib‖22.

The correlation between the predicted gene expression and the manually extracted gene expression
was 0.9832. This number was quite high considering the fact that we had in our training data
8192× 32 = 262144 pixels in total but only 48 features.

To extract the gene expression pattern for a new image, we first computed the feature vector
Znew and set snew = Znewb̂. Since the gene expression intensity should value between zero and one,
we further truncated each entry of snew to be in [0, 1]. We then used the resulting vector as the
extracted gene expression pattern for further analysis. We tested our gene expression extraction
procedure on a number of images not in the training set. The results indicated that our method
performed very well in terms of the correlation between the gene expression pattern extracted by
the curator and the one predicted by the LS method (Fig. S2).

1.3 Nonnegative matrix factorization (NMF)

Nonnegative Matrix Factorization, or NMF, is a popular unsupervised learning algorithm that can
learn parts-based representation from the input data [5]. NMF has been applied to many fields
such as image processing and computer vision [6], text mining [7], audio signal separation [8] and
bioinformatics [1], see [9] for a recent review of applications of NMF. Recently, a new nonnegative
tensor factorization algorithm similar to NMF was developed and applied to parts of the BDGP gene
expression data [10]. However, they did not address the issue of model selection and their derived
dictionary lacked biological interpretability. Here, we designed an NMF model selection method
and our dictionary (PP) can be validated using the Drosophila fate map and human annotations.

Denote by R+ the nonnegative real line. Let X = [x1, ...,xN ] ∈ Rd×N be the data matrix
where each column represents a data vector. For a given positive integer K, NMF finds a dic-
tionary D ∈ Rd×K+ under which each vector xi has nonnegative representations: i.e. xi ≈ Dai
for a nonnegative vector ai ∈ RK+ . More precisely, NMF aims at solving the following nonconvex
optimization problem:

min
D,A=[a1,...,aN ]

‖X−DA‖2F =

N∑
i=1

‖xi −Dai‖22,

subject to D ≥ 0, ‖D[, k]‖∞ ≤ 1 for k = 1, ..,K,

and ai ≥ 0, for i = 1, ..., N .

Here, D[, k] is the k-th column of the dictionary D. Note that the above formulation of NMF does
not require the data matrix X to be nonnegative in every entry. For some numerical examples, X
is the product of two nonnegative matrices plus noise and hence can be negative in some entries.
See, e.g. our Simulation Experiment 1 in the below section. In our Drosophila data application, xi
is a vector of length 405 that corresponds to the i-th preprocessed spatial gene expression pattern.
The columns of the dictionary D are the Principal Patterns (PP). To account for the possibility
of multiple replicates for one gene, we used a weighted version of NMF by changing the objective
function to the following form:

N∑
i=1

w[i]‖xi −Dai‖22,

5



where the weight for the i-th image w[i] is the reciprocal of the number of replicates of the gene
that corresponds to the i-th image (from now on, we will denote the j-th entry of a vector v ∈ Rm
as v[j]). Note that the above objective function can be rewritten as w[i]‖xi−Dai‖22 = ‖

√
w[i]xi−

D(
√

w[i]ai)‖22. Therefore we can simply set x′i =
√

w[i]xi and use any algorithm that solves

original NMF formulation, with X′ = [x′1, ...,x
′
N ] as the new data matrix. Denote by (D̂, Â′) the

output of the NMF algorithm. The nonnegative coefficient matrix Â can be retrieved by the scaling
the i-th column of the matrix Â′ by the factor w[i]−1/2.

To compute NMF, we used the SPAMS package with the MATLAB interface [11]. SPAMS
implemented a number of online algorithms for dictionary learning and matrix factorization. The
package is fast, and scales to large numbers of data points. The NMF algorithm in this package
required the input of an initial guess for the dictionary, which we constructed by randomly sampling
K columns from the data matrix X. To compute the dictionary, SPAMS performed alternating
minimization: given the current iteration of the dictionary D, update the nonnegative coefficients
ai’s using nonnegative least squares (NLS); and given the nonnegative coefficients, update the
dictionary D by solving another NLS. We ran the algorithm until convergence, which took about
200 to 300 iterations for the Drosophila spatial gene expression dataset. Since the optimization
problem is nonconvex, the output dictionary D̂ depended on the initial dictionary. In the next
section, we will explain how we made use of this property to choose the number K of dictionary
columns.

1.4 StaNMF: stability based NMF model selection

In this section, we will address the issue of choosing the number K of dictionary columns in NMF.
As discussed in the previous section, SPAMS solved NMF by an alternating minimization algorithm.
As a result, the output dictionary depended on the initial value. We reasoned that the K should be
chosen such that the output dictionary is most reproducible, or stable, for different initializations.
We proposed staNMF, a model selection procedure that combined multiple runs of NMF with a
new Amari-type criterion to measure the instability of the output dictionaries.

For each K, we ran the NMF algorithm B times. Typically, B = 100 for the Drosophila gene
expression data and other simulated examples. For each NMF run, we chose an initial dictionary
whose columns were randomly sampled from those of X. The B runs of NMF generated output
dictionaries D̂b for b = 1, ..., B. Now we introduce a measure that quantifies the stability of the B
dictionaries. Let C ∈ RK×K be the cross correlation matrix between the columns of two dictionaries
D1 and D2 having the same number of columns K. For a matrix H ∈ Rm×n, denote by H[j, k] its
(j, k)-th entry. Since the columns of a dictionary are permutation invariant, to measure dissimilarity
between D1 and D2, we designed the following Amari-type quantity:

diss(D1,D2) =
1

2

 1

K

K∑
j=1

(
1− max

1≤k≤K
C[k, j]

)
+

1

K

K∑
k=1

(
1− max

1≤j≤K
C[k, j]

)
=

1

2K

2K −
K∑
j=1

max
1≤k≤K

C[k, j]−
K∑
k=1

max
1≤j≤K

C[k, j]

 .

Note that when D2 can be transformed into D1 by column permutation, diss(D1,D2) = 0. Such
a definition was inspired by Amari et al. [12], who used a comparable quantity to measure the
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performance of their blind signal separation algorithm. The discrepancy of all B dictionaries for K
was measured by the average Amari-type error of all B(B − 1)/2 pairs of dictionaries:

Υ(K) =
2

B(B − 1)

∑
1≤b<b′≤B

diss(D̂b, D̂b′).

We selected K that achieved a small Υ(K), i.e. a small discrepancy or instability. Once the
parameter K was determined, we selected the learned dictionary with the minimum NMF square
loss among all B dictionaries.

The idea of using stability for NMF model selection was first introduced by Brunet et al. [1].
However, their stability metric was substantially different from ours. In their paper, NMF was
used for cluster analysis. They proposed to choose K such that their NMF cluster assignment is
most stable. Given a dictionary D with K columns, they assigned the data vector xi to the k-th
cluster, if the nonnegative coefficient for the k-th dictionary column has the highest value among
all K coefficients. If more than one dictionary column share the same coefficient value, the data
point is assigned to any of the corresponding clusters with equal probability. For the clustering
defined by NMF, they constructed the connectivity matrix S, whose (i, j)-th entry is set to one
if the i-th and the j-th data points belong to the same cluster, and zero otherwise. Based on the
B NMF runs, they computed the consensus matrix, S̄, which was defined as the average of all
connectivity matrices. They then used the cophenetic correlation coefficient based on S̄ to measure
the clustering stability of NMF. In their paper, the cophenetic correlation coefficient was defined
as the Pearson correlation coefficient of (1) the distance between the i-th and j-th data points as
measured by 1− S̄[i, j] and (2) the distance between the i-th and j-th data points induced by the
average linkage hierarchical clustering using S̄ as the similarity matrix, for all 1 ≤ i < j ≤ N (recall
that N is the number of data points). The closer the cophenetic correlation coefficient to 1, the
more stable the clustering assignment. To compare with our method, we used the equivalent one
minus the cophenetic correlation coefficient, which is now a measure for clustering instability, and
strived for a minimum value.

As defined earlier, our proposed criterion Υ(K) measured the instability of the output dictio-
naries with respect to different initial inputs. We tested our staNMF as well as Brunet et al.’s
method on a number of synthetic data with a known ground truth dictionary. While both methods
identified the same K for some examples (Simulation Experiment 1 and 3), it is not surprising
that Brunet et al.’s method failed on the others (e.g. Simulation Experiment 2), as their method
was designed for the purpose of cluster analysis. Our staNMF performed consistently well, demon-
strating the reliability of our method to identify the dictionary for applications with data similar
to ours. When applied to the Drosophila spatial gene expression data, both methods agreed on
K = 21, which, gave additional supporting evidence that the number of PP suggested by staNMF
was optimal for our dataset. In what follows, we will detail our simulation experiments and the
real data application.

Simulation Experiment 1
In this experiment, we investigated how the above-mentioned stability based methods behave for

dictionary with different coherence and linear coefficients with various sparsity. It has been shown
in the dictionary learning literature that increased dictionary coherence, or collinearity between
dictionary columns, might lead to ill-posedness of the dictionary learning formulation [13–16].
Empirically, we also found it hard to use NMF to recover the dictionary if the columns were highly
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collinear. Therefore, we suspected that it is difficult for the stability-based methods to identify the
correct K as the coherence of the dictionary increases.

We generated our data in the following way. Let coh ∈ {0, 1, ..., 10}. We constructed the ground
truth dictionary D0 ∈ R200×20 as:

D0[j, k] =

{
1, for 1 + (k − 1)(10− coh) ≤ j ≤ 10 + (k − 1)(10− coh),

0, otherwise.

See Fig. S3 for an illustration of the above dictionary construction. Under this construction,
each dictionary column has exactly 10 entries equal to one and the remaining 190 entries equal to
zero. Furthermore, two consecutive dictionary columns share coh entries that are equal to one in
common. Thus, the parameter coh controls the coherence of the dictionary, which is defined as the
maximum absolute inner product between dictionary columns. Next, we generated the entries of
the coefficient matrix A0 ∈ R20×1000 as independent and identical Bernoulli random variable with
success probability 0 < p ≤ 1. Set the data matrix X = D0A0 + E, where E ∈ R200×1000 was a
noise matrix with entries drawn independently and identically from a Gaussian distribution with
mean zero and standard deviation 0.1.

For each combination of (p, coh), we ran NMF B = 100 times for 10 ≤ K ≤ 30 and then
applied our stability criterion. The results shown in the Fig. S4 indicated that when the dictionary
coherence was low, the measure for dictionary instability, Υ(K), had a clear minimum at K = 20
which was the true number of dictionary columns. However, as the dictionary coherence increased,
for example, coh = 6, Υ(K) as a function of K changed shape and multiple local minima emerged.
This observation supported our previous conjecture that a higher dictionary coherence made it
more difficult for the stability-based method to identify the correct number of K. It is unclear how
the sparsity parameter p affected our stability criterion.

Brunet et al.’s method behaved similar on the same data (Fig. S4) . However, we found that
the clustering instability measure was versatile across the range of K and had too many abrupt
local minima. On the other hand, our measure of dictionary instability Υ(K) was much more
continuous and predictable. For example, for p = 1 and coh = 2, Brunet et al.’s stability curve
had two almost identical local minima: one at K = 10 and the other at K = 20. In this case, their
method was not robust: slight contamination of the data might mislead their method to consider
K = 10 as the best number of dictionary columns. For the same example, staNMF gave a very
clear minimum at K = 20.

Simulation Experiment 2: the Swimmer data
In this example, we evaluated staNMF with a dataset that has been widely applied in the NMF

literature: the Swimmer data [17–19]. The dataset contained 256 images each of 32 × 32 pixels
depicting all possible gestures of an artificial swimmer (Fig. S6A and B). For each image, each limb
of the swimmer was chosen from one of four gestures for that limb. The true dictionary therefore
consisted of 4 × 4 = 16 columns and so the number of all possible combinations of the swimmer
gestures was 44 = 256.

For this data, our method recovered the correct K = 16 (Fig. S6C). However, Brunet et al.’s
method chose K = 14 (Fig. S6D). To elucidate the reason, we noted that each swimmer image had
equal contribution from four dictionary columns. Thus under the ground truth dictionary, each
image should be assigned to the corresponding four clusters simultaneously. However, Brunet et
al.’s approach forced the image to belong to only one cluster. As a result, it would select any one
of the four clusters with equal probability. The randomness of an image falling into one of the four
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clusters resulted into clustering instability at K = 16. In contrast, staNMF never assumed any
clustering structure and so it also succeeded for a dataset like the Swimmer data.

Real Data: Drosophila gene expression patterns
We applied both stability-based criteria to our Drosophila spatial gene expression data for

15 ≤ K ≤ 30. The dictionary learned with K < 15 resulted in PP that were in general too
broad, as compared to the pre-organ partitions in the Drosophila fate map. These PP also led to
poor reconstruction quality when using them to represent the gene expression patterns. Dictionary
learned with K > 30 resulted in PP that were too unstable. For 15 ≤ K ≤ 30, both staNMF and
Brunet et al.’s method identified K = 21 as the optimal number of PP (Fig. S7A).

We noticed that our stability criterion, Υ(K) had similar values for K = 21 and K = 22. When
comparing the K = 22 dictionary with the K = 21 dictionary, we found that three PP from the
K = 22 dictionary, PP4, PP5 and PP6, were different from the corresponding PP4 and PP5 of the
K = 21 dictionary (Fig. S10). In particular, PP5 (brain) in the K = 21 dictionary was split into
PP5 and PP6 (both recognized as brain region) in the K = 22 dictionary. The remaining 19 PP
were essentially unchanged. Thus the PP learned using the two different K were very similar. For
simplicity we chose K = 21.

The learned dictionary for K = 21 can be found in Dataset S3.

Simulation Experiment 3: the denoised Drosophila data
In Simulation Experiment 1, we demonstrated that dictionary coherence might affect the two

stability based model selection criteria. As a sanity check for our real data application, we generated
a dataset using the 21 PP learned from the Drosophila data and investigated whether staNMF can
recover the correct number of PP from this artificial data. Specifically, denote by D̂ ∈ R405×21

+

the learned dictionary which contains the 21 PP and Â ∈ R21×1640
+ the corresponding nonnegative

coefficient matrix. We generated the data matrix X̂ ∈ R405×1640
+ as the “denoised” version of the

original data matrix: X̂ = D̂Â. For this dataset, both staNMF and Brunet et al.’s method selected
K = 21 as the optimal number of PP (Fig. S7B).

1.5 Aligning PP on the Drosophila fate map

The Drosophila fate map [20,21] is a schematic diagram depicting pre-organ regions of a Drosophila
embryo. To map the computationally derived PP to the fate map, we first identified a few PP which
we are confident belong to certain regions of the schematic map and assigned the rest according
to their relative positions and shapes. Additionally, we validated our assignments by finding genes
with known biological roles using the PP categories (Table S2 and S3) and later stage annotation
data [22]. For example, PP1 can be easily mapped to foregut, PP10 to dorsal epidermis, PP16
to ventral mesoderm and PP21 to pole cells as these PP occupy the four corners of the embryo.
Next, for the anterior patterns, we identified PP4 and PP5 from their locations and shapes as the
brain region of the fate map. These assignments were further substantiated by a number of nervous
system genes associated with the two PP (e.g. numb, oc, D and Doc1). PP2 is between the brain
and the foregut region and we found genes expressed in PP2 associated with either organ, e.g. hb
and tll in brain and oc and hbn in foregut. Therefore we labeled it as either brain or foregut. PP3
is most likely to be the anterior midgut or anterior ventral mesoderm regions because it is directly
beneath PP1 (foregut) and overlaps with PP16 (mesoderm). Genes expressed in PP3 include
known midgut genes (e.g. egg and ry) and known mesoderm genes (e.g. croc and Mes4). PP6–9
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are vertical segmentation patterns that were hinted in the fate map. These vertical patterns are
known to be the result of gap, pair-rule, polarity and segmentation genes that eventually establish
14 refined stripes. For the horizontal patterns, PP11 and PP12 are both above the midline of the
embryo and hence can be treated as dorsal epidermis region. The below embryo midline PP14 and
PP15 can be either the ventral neurogenic region or mesoderm, and there is evidence supporting
that parts of the later central nervous system is derived from the mesoderm [23]. PP13 is most
often associated with the ventral neurogenic regions (e.g. SoxN and ind) and the yolk region of the
embryo (not part of the fate map) (e.g. aay and llp4). For the posterior patterns, PP20 is directly
to the left of PP21 (pole cells) and so we labeled it as midgut. This mapping is also supported by
the fact that many midgut genes are expressed in PP20, including sc, Bgb, esg and Moe. PP17 is
labeled as hindgut since it is similar in shape and size to the hindgut region of the fate map. PP18
and PP19 are directly above and below PP17 respectively and so they were labeled as hindgut as
well. Moreover, we found hindgut genes such as Abd-B, Mkp3 and D19A in PP17, Doc1, ebi and
dm in PP18 and byn, apt and twi in PP19, further supporting our mapping of PP17–19 to the fate
map.

1.6 Representing spatial expression patterns by the learned PP

Using nonnegative least squares (NLS), the NMF algorithm gave a nonnegative linear representation
matrix of the data under the learned dictionary. With the nonnegativity as an implicit sparsity
penalty, NLS can be treated as a method to perform model selection [24]. However, empirically
we found that NLS selected more covariates than necessary. To demonstrate this, we generated
1000 data vectors using the model discussed in Simulation Experiment 1 with dictionary coherence
coh = 2 and random linear coefficient sparsity p = 0.2. For each of the data vector generated,
we applied NLS to estimate the nonnegative linear coefficients with the ground truth dictionary as
the covariate matrix. The resulting NLS coefficients contained many more nonzeros than the true
nonnegative linear coefficients used to generated the data (Fig. S11A and B). The average support
difference between the estimated coefficient and the true coefficient was 7.29, out of a maximum of
40.

To address this issue, we employed the following LASSO+NLS procedure. Let x ∈ Rd+ be
a data vector and D ∈ Rd×K the dictionary or covariate matrix. We first used the LASSO, or
least absolute shrinkage and selection operator [25], with the nonnegative constraints on the linear
coefficients:

(µ̂, β̂(λ)) = arg min
µ∈R+,β∈RK

+

‖x−Dβ − µ‖22 + λ‖β‖1.

With a 10-fold cross-validation, the LASSO regularization parameter λ was chosen to be the largest
among all parameters whose cross-validation error was within one standard error of the minimum
cross-validation error. Denote by β̂lasso the nonnegative linear coefficient at the selected λ.

Due to the l1-penalty term, the LASSO estimator is biased towards zero for finite samples.
Similar to [26], in order to reduce the bias, we fitted NLS on the dictionary columns selected by
the LASSO. Let S = {k : β̂lasso[k] 6= 0} ⊂ {1, ...,K} be the nonzero set of coefficients and D[, S]
be the submatrix of D with columns indexed by S. We solved the following NLS problem:

(ν̂, γ̂) = arg min
ν∈R+,γ∈R|S|

+

‖x−D[, S]γ − ν‖22,

where |S| is the size of the set S. The sparse PP (sPP) representation or sPP coefficient for the
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data vector x, denote by the vector α ∈ RK+ , is such that the entries indexed by S, α[S] = γ̂ and
the entries indexed by the complement of S, α[Sc] = 0.

We applied the LASSO+NLS procedure to our previous simulation example. The distribution of
number of nonzero estimated coefficients per observation now matched that of the true coefficients
(Fig S11C). The average support difference between the two reduced significantly to 0.3.

We used the R package glmnet [27] for the computation.

1.7 Predicting annotation terms

We used l1-penalized sparse logistic regression models (L1LR) (see, e.g. [28]) to predict the 11
annotation terms. For each term, denote by L[i] the label of the i-th image for i = 1, ..., 1640: L[i] =
1 if the gene corresponding to the image was labeled as expressed in this term and L[i] = 0 otherwise.
To predict the label vector L, we fitted L1LR using three different covariate sets: (1) the 405 pixels
for the pixel-based representation, (2) the 21 sPP coefficients based on the LASSO+NLS procedure,
and (3) the 21 sparse Bayesian Factor (BF) coefficients based on [29]. For each annotation term,
the observations in each class are weighted by the reciprocal of the corresponding class size so
that the two classes are of the same importance. A 10-fold cross-validation was performed and the
l1-penalization parameter was chosen such that it was the largest among all parameters whose cross-
validation Area Under the ROC Curve (AUC) was within one standard error of the maximum AUC.
As before, we used the R package glmnet [27] for computation. The annotation data is available
as Dataset S2.

1.8 PP associated gene functions: heatmap visualization of sPP coefficients

We created a heatmap visualization of the sPP coefficients for 667 genes that belong to at least
one PP category (Fig. 4A). First, for k = 1, ..., 21, we defined the k-th sPP coefficient of a gene to
be the maximum k-th sPP coefficient among all the replicate patterns of the same gene. We then
assigned a gene to the k-th cluster if its k-th PP has the maximum sPP coefficient. Within each of
the 21 clusters, we performed a hierarchical clustering using the correlation of the sPP coefficients
as similarity measure. We arranged the genes in each cluster linearly using the order returned by
the hierarchical clustering algorithm and assembled all clusters to produce the heatmap.

1.9 Constructing spatially local correlation networks (SLCN)

We selected six PP, namely PP6-PP9, PP17 and PP20, which we referred to as gap-PP in the main
text, to model the gap gene segmentation networks. For each of the six gap-PP, we identified its
directly adjacent PP by visual inspection. The PP neighbors are summarized in the following Table
S1:

For each of the six gap-PP, we found all transcription factors (TF) expression patterns in the
category of the gap-PP, or its directly adjacent PP, with sPP coefficient greater than 0.1. This
excluded TF with low or no expression in the gap-PP and its nearby regions and hence reduced
the possibility of spurious correlations. Denote this set of patterns by T . We then computed
the weighted correlations for the expression patterns in T with the l1-normalized PP intensity as
the weight vector. Specifically, let u ∈ Rd be a nonnegative vector whose entries sum up to 1
and x1,x2 ∈ Rd represent two data vectors, e.g. two gene expression patterns in T . The local
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Adjacent PP

PP6 PP4, PP7

PP7 PP6, PP8

PP8 PP7, PP9

PP9 PP8, PP17

PP17 PP9, PP20

PP20 PP17, PP21

Table S1: The adjacent PP for the six gap-PP.

correlation between x1 and x2 with weight u is defined as:

coru(x1,x2) =
covu(x1,x2)

varu(x1)1/2varu(x2)1/2
,

where

varu(x1) =
d∑
j=1

u[j](x1[j]− xT1 u)2, and

covu(x1,x2) =
d∑
j=1

u[j](x1[j]− xT1 u)(x2[j]− xT2 u).

Note that when the u[j] = 1/d for all 1 ≤ j ≤ d, the above correlation is the same as the sample
correlation between data vectors x1 and x2.

As mentioned, many genes had multiple replicate images. For a pair of genes, we defined
the local correlation of the two genes to be the local correlation with the maximum magnitude
between replicate images of one gene and replicate images of the other. For simplicity, we called
this correlation the maximum correlation, but we note that it can be the most positive or the
most negative correlation. By computing this maximum correlation, we stated that two genes
were highly correlated if any of the replicates of the two genes were highly correlated. Spatial
expression patterns for some genes changes rapidly within the stage range considered in this paper.
For example, significant differences in gene expression were observed for the replicate expression
patterns of hb and kni (Fig. S1). Using maximum local correlation can therefore help to identify
those highly variable genes that were likely to interact at some point in the developmental timeline.

For each gap-PP, we computed the local correlation for all pairs of genes in the gene set T
defined earlier. The distribution of the correlations was bimodal, with one peak corresponding to
positive correlations and the other to negative correlations (Fig. S21). This is due to the way we
defined local correlation of two genes, which excluded image pairs that had low correlations.

To construct the spatially local network for each gap-PP, we set a positive edge between two
genes if their local correlation is above the upper 5 percentile of all local correlations for the PP
and set a negative edge between two genes if their local correlation is below the lower 5 percentile.
See Figs. S22 – S24 for the six spatially local correlation networks for the gap-PP. To validate our
network construction, we compared the sub-networks of the six SLCN containing the six gap genes
to the schematic gap gene network (main text Fig. 5 and in expanded detail in SI Appendix Fig.
S25). The six sub-networks are robust for different sPP coefficient thresholds (Fig. S26).
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1.10 Correlating genes on the whole embryo

We compared our PP-based local network results to those obtained by correlating the expression
patterns over the whole embryo, or global correlation analysis. Similar to local correlation, the
global correlation of the two TF is defined as the largest correlation between the replicates of the
two. Next, we specified a cutoff value for the global correlation in order to form network links.
We first combined the six PP-based SLCN into a single network such that two TF share a link
in the new network if they share a link in at least one of the six SLCN, regardless of the sign of
the link. For fair comparison between the global and local approaches, the cutoff values for the
global correlation network was chosen such that (1) the resulting network has the same number
of links as in the previous combined network and, (2) the number of positive links is the same
as the number of negative links. We converted the original schematic gap gene network to the
“global version” without the spatial information accordingly: two gap genes share a link if they
share a link in the schematic gap gene network diagram regardless of the location of the interaction
(Fig. S27C). Only three links out of nine links in the global version of the gap gene network were
recovered (Fig. S27D). An analysis of the relationship between the local and global correlations
indicated that, while for some gene-gene interactions global correlation is positively correlated with
local correlation, many others have negative correlations (Fig. S27A). For example, gt and hb
are known to be mutual repressors of one another towards the posterior end of the embryo. The
global correlation was unable to detect this relationship whereas the local correlation succeeded
(Fig. S27B).
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2 List of Datasets

The following datasets are available as SI Datasets:

1. Dataset S1: the 1640 preprocessed expression patterns, corresponding to 701 unique genes.
The gene symbols associated with the patterns are in the first row of the dataset. Each gene
expression pattern is stored as a numeric column vector with 405 entries.

2. Dataset S2: the manual annotation data for the 1640 expression patterns. Each column
contains the 11 annotation terms for one expression pattern. The 1640 patterns are arranged
in the same order as in Dataset S1. The names of the 11 annotation terms are in the first
column of the file. For each expression pattern and annotation term, we indicated by “1” if
the pattern was labeled by the annotation term and “0” otherwise.

3. Dataset S3: the 21 principal patterns (PP) learned using staNMF. The first row of the dataset
are names of the PP. Each PP is stored as a numeric column vector with 405 entries.

4. Dataset S4: the sPP coefficients for the 1640 expression patterns. The first row of the dataset
are the gene symbols. Each column stores the 21 sPP coefficients and the intercept term.

5. Dataset S5: the sPP coefficients for the 701 genes. The first row of the dataset stores the
gene symbols. As described in SI Appendix Methods, we defined the k-th sPP coefficient of
a gene to be the maximum k-th sPP coefficient among all the replicate patterns of the same
gene.

6. Dataset S6: this file indicates which expression patterns correspond to transcription factors
(TF). The first row of the dataset stores the gene symbols. TF are indicated as “1” and the
remaining genes are as “0”.

The above datasets are also available at http://insitu.fruitfly.org/downloads.
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3 Supporting Figures and Tables

A B

C D
hb v.s. hb

kni v.s. Kr

kni v.s. kni

hb v.s. kni

hb

hb
kni

kni
hb

kni kni

Kr

Fig. S1: Visual evaluation of embryo registration. By overlaying two gene expression patterns
with different colors, in this case, red and green, virtual double staining was performed between the
replicates of the same gene (i.e. (A) hb v.s. hb and (C) kni v.s. kni), and between the replicates
of genes one of which is known to be repressor of the other (i.e. (B) kni v.s. Kr and (D) hb v.s.
kni). In both cases, the boundaries of the genes match, indicating that our registration approach
performed reasonably well in transforming a Drosophila embryo into a common frame of reference.

15



0.4   0.3  0.2    0.1     0    -0.1 -0.2   -0.3  -0.4

Original image Gene expression 
extracted by curator

Gene expression 
extracted by our method Residuals

A B C D

corr = 0.96

corr = 0.99

corr = 0.93

corr = 0.99

Fig. S2: Extracting gene expression patterns from images obtained through differential interference
contrast (DIC) microscopy. (A) The original image was standardized to an image of 64×128 pixels.
(B) A curator used the selection tool in Adobe ® Photoshop® to extract regions of the Drosophila
embryo deemed as having the blue dye. Since we averaged the three color channels to yield a proxy
for gene expression intensity, this resulting image is displayed in gray scale, with white being the
region of low expression, and black the region of high expression. (C) We extracted gene expression
using a linear combination of the RGB features from the original image (see SI Appendix Methods).
For each example, the correlation indicated in red is the correlation between the gene expression
extracted by curator and that extracted by our method. (D) The difference between the predicted
pattern and the pattern extracted by the human curator is shown in the residual plot.
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Fig. S3: Construction of the dictionary in Simulation Experiment 1. In the above illustration,
each vertical bar represents a column of the dictionary. The black region of a bar indicates the
entries that are ones and gray region the entries that are zeros. The parameter coh ∈ {0, 1, ..., 10}
is the number of common entries that are ones between two consecutive dictionary columns. It
measures also the coherence of the dictionary. From the i-th bar to the (i + 1)-th bar, the black
region is shifted down by the constant amount 10− coh.
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K selected by our criterion
True K

Simulation Experiment 1
staNMF

p = 0.1, coh = 0 p = 0.1, coh = 2 p = 0.1, coh = 6

p = 0.5, coh = 0 p = 0.5, coh = 2 p = 0.5, coh = 6

p = 1, coh = 0 p = 1, coh = 2 p = 1, coh = 6

Fig. S4: NMF model selection using staNMF: Simulation Experiment 1. For each (p, coh) ∈
{0.1, 0.5, 1} × {0, 2, 6}, we generated the data matrix X from the model described in Simulation
Experiment 1. For each parameter configuration, we ran NMF B = 100 times for every 10 ≤ K ≤ 30
and then applied our stability criterion. For each plot, the vertical axis represents the dictionary
instability as measured by Υ(K) defined in SI Appendix Methods. The lower the value, the more
stable the dictionaries with respect to random initial values.
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Fig. S5: NMF model selection using Brunet et al.’s clustering instability criterion [1]: Simulation
Experiment 1. The synthetic data are exactly the same as those in Fig S4. For each plot, the vertical
axis represents the clustering instability as measured by one minus the cophenetic correlation
coefficient of the NMF cluster consensus matrix (SI Appendix Methods). The lower the value, the
more stable the cluster assignment with respect to random initial values.
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Simulation Experiment 2: the Swimmer Data
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Fig. S6: NMF model selection: Simulation Experiment 2 – the Swimmer dataset [17]. (A) A
sample of 25 images containing the artificial swimmers. (B) The 16 dictionary columns recovered
by NMF. The dark blue region of each basis image corresponds to a limb of the artificial swimmer,
whereas the light blue region indicates the torso of the swimmer. (C) StaNMF identified correctly
K = 16. (D) Brunet et al.’s method selected K = 14.
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Real Data: the Drosophila gene expression patterns

Simulation Experiment 3: the denoised Drosophila data
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Fig. S7: Using StaNMF and Brunet et al.’s stability criterion on (A) the Drosophila spatial gene
expression data and (B) the corresponding denoised data. The two methods agreed on K = 21 in
both examples. Note that for the real data we do not know the true number of PP and so only the
red dash lines were drawn for the two plots in (A). The denoised data was constructed as X̂ = D̂Â,
where (D̂, Â) is the output dictionary and the nonnegative coefficient matrix from the NMF. See
SI Appendix Methods for more details.
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Fig. S8: A comparison between the 21 principal patterns (PP) and the 21 sparse Bayesian Factors
(BF) [29]. (A) The 21 learned PP. This is the dictionary that achieved the minimum mean square
loss in the NMF optimization among the 100 runs of NMF with K = 21. Every PP was normalized
to have maximum intensity equal to 1. (B) The 21 learned BF. The BF are arranged in a way
such that they correspond to the layout of PP in (A). Blue intensity indicates positive value and
red indicates negative values. Every BF was normalized to have maximum absolute intensity equal
to 1. For some of the BF, e.g. BF1, 2, 3, 10, 13, 20 and 21, the intensity in the negative region
is rather uniform and the BF can be associated with the corresponding PP, e.g. PP1, 2, 3, 11,
16, 20 and 21. However, the biological meaning of the remaining BF is not immediately clear.
For example, BF4 splits the mesoderm region into a positive half and a negative half, with other
positive and negative regions scattering around the embryo. BF9 seems to be made up from the
positive PP8 and the negative PP9. By allowing negative values in the sparse linear coefficients,
some of the BF also appeared to be much broader than the PP, e.g. BF5, 8 and 16. We used the
MATLAB code from [29] to obtain the BF. Since their program involved MCMC computation, we
did not perform model selection. Instead, we simply set the number of BF to be K = 21 as in
NMF for direct comparison.
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Fig. S9: Principal component analysis (PCA) and independent component analysis (ICA) for
the Drosophila gene expression data. The components are not as biologically meaningful as the
PP. (A) The top 24 principal components as ranked by the corresponding eigenvalues. As a
consequence of the orthogonality of the PC, the derived components show oscillating patterns and
are extremely difficult to interpret. (B) The 21 independent components. Similar to BF, the
negative components in the IC make them less interpretable. For the computation of ICA, we used
the R package FastICA [30].
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Fig. S10: The PP learned with parameter K = 22 instead of the optimal K = 21. This is the
dictionary that achieved the minimum mean square loss in the NMF optimization among the 100
runs of NMF with K = 22. The learned PP are similar to those with K = 21. The only major
differences from the K = 21 dictionary are PP4, PP5 and PP6 in the K = 22 dictionary. PP4 for
K = 22 appears to be smaller than the PP4 in the K = 21 dictionary. The PP5 in the K = 21
dictionary splits into PP5 and PP6 in the K = 22 dictionary. Other PP are highly similar for both
cases.
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Fig. S11: Effectiveness of the LASSO+NLS model selection and fitting procedure. We generated
1000 data vectors according to the model described in Simulation Experiment 1, with dictionary
parameter coh = 2 and random linear coefficient sparsity p = 0.2. For each data vector, using
the ground truth dictionary as the covariate matrix, both nonnegative least squares (NLS) and
LASSO+NLS were applied to estimate the linear coefficients. Shown are the histograms of the
number of nonzeros in the linear coefficients of (A) the true model, (B) the NLS estimates and (C)
the LASSO+NLS estimates. If model selection is performed properly, the resulting distribution
of number of nonzeros should match with that of the true coefficients. Here, we can see that the
distribution of the number of nonzeros for NLS shifted significantly to the right (B), indicating
that NLS tended to overselect covariates. The LASSO+NLS fitting procedure, on the other hand,
produced number of nonzeros distribution almost identical to histogram for the true coefficients
(C).
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Fig. S12: Spatial gene expression reconstruction quality of the sparse PP (sPP) representation.
(A) Histogram of the number of selected PP per expression pattern. (B) Histogram of the cor-
relation between a gene expression pattern and the reconstructed pattern (linear combination of
the 21 learned PP using the sPP representation as coefficients). (C) The relationship between the
number of selected PP and the correlation. (D) A sample of expression patterns represented with
more than 20 PP (black box) and a sample of expression patterns with poor reconstruction quality,
i.e. correlation less than 0.35 (red box).
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Fig. S13: Interpretability of the L1LR under the pixel-based, the sPP and the BF representa-
tions. Shown is the complete version of Fig. 3C. The pixel-based full image representation: all
L1LR coefficients are shown as pixel values within the embryo; the sPP-based and the BF-based
representations: only the top L1LR PP or BF that corresponds to the largest L1LR coefficient
is shown. The scale goes from -1 to 1 and is color coded respectively from red to blue. For the
PP and BF, “+” indicates that the largest L1LR coefficient is positive, and “-” indicates that the
largest L1LR coefficient is negative. For some annotation terms, the positive predictors for the
pixel based model, the top L1LR PP and the positive part of the top L1LR BF overlapped with
the regions in the embryo described by the controlled vocabulary terms. However, only the top PP
consistently showed the annotation term exactly as a curator would annotate the gene expression.
For example, for the annotation terms such as “dorsal ectoderm”, “mesoderm”, “trunk mesoderm”
and “pole cells”, the top PP corresponds to the areas of the embryo that can be easily recognized
as those anlagen. On the other hand, the selected predictors for the pixel-based representation are
predominantly isolated pixels at locations associated with the specific annotation term. Of the 11
annotation terms, all of the top L1LR PP but only nine of top L1LR BF-based components have
positive fitted L1LR coefficients. For some of the nine terms with positive association for both PP
and BF (e.g. “dorsal ectoderm”, “mesoderm” and “pole cells”), the top L1LR PP and the positive
part of the top L1LR BF have similar shapes and sizes. For other terms such as “hindgut” and
“visual”, the positive part of the top L1LR BF pattern appears to be much broader than the top
L1LR PP. We refer readers to Fig. S14 and S16 for more PP and BF with high L1LR coefficients.
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Fig. S14: Top L1LR PP for all 11 annotation terms. For each term, the PP with the three most
positive and three most negative L1LR coefficients are shown. The PP name and the corresponding
L1LR coefficient are under each PP. For each annotation term, the top positive L1LR PP are likely
to be PP that are directly adjacent to each other. For example, for the term “hindgut”, the three
top PP, PP17–19, correspond to the three adjacent parts of the hindgut pre-organ system. As for
the three most negative L1LR PP, we note that the pole cells pattern PP21 show up in nine out
of the 11 terms. This indicates that if a gene is expressed in the pole cells, it is unlikely that it
will be annotated with any other terms. In fact, a large number of genes exhibit their strongest
expression in pole cells and have limited expression in other PP (main text Section “PP associated
gene functions and relationships between spatial regions”). See Fig. S15 for the full PP L1LR
coefficients.
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Fig. S15: The full L1LR coefficients for annotation prediction using the sPP representation. For
all 11 terms, the L1LR coefficients are sparse and the largest L1LR coefficients are always positive.
Furthermore, the top L1LR coefficient is much larger than the second largest L1LR coefficient in
magnitude. These facts indicate that the top L1LR PP is the dominating factor in determining
whether a gene expression pattern is labeled with an annotation term. This provides evidence why
we can consider only the top L1LR PP when associating PP with annotation terms.
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Fig. S16: Top L1LR BF for all 11 annotation terms. For each term, the BF with the three most
positive and three most negative L1LR coefficients are shown. The BF name and the corresponding
L1LR coefficient are under each BF. Similar to the PP case, the top positive BF are usually the
BF with adjacent positive regions, but the negative regions make them harder to interpret. For the
term “gap”, all L1LR coefficients are non-positive, indicating that no BF is positively associated
with the term. The three most negative L1LR BF are rather consistent with the L1LR PP, with
BF21, the BF version of pole cells, appearing frequently in the top list. The scale goes from -1 to
1 and is color coded respectively from red to blue. See Fig. S17 for the full BF L1LR coefficients.
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Fig. S17: The full L1LR coefficients for annotation prediction using the BF representation. The
L1LR coefficients are sparse. But unlike the PP case in Fig. S15, the largest L1LR coefficients
are not always positive (“ventral ectoderm” and “gap”). In addition, some of the largest L1LR
coefficients are much closer to the second largest L1LR coefficients than in the PP case: e.g. the
terms “mesoderm” and “visual”. This is because the positive regions of some BF have a significant
amount of overlap, e.g. BF12 versus BF13, and BF5 versus BF6. The overlap between PP is much
smaller.
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Fig. S18: Stability analysis of the set of selected L1LR predictors for three representations. As
described in the text, for each annotation term and representation, the l1-penalization parameter
was chosen such that it was the largest among all parameters whose cross-validation AUC was
within one standard error of the maximum AUC. For this plot, instability is measured by the
Jaccard distance between the supports of two L1LR coefficients, averaged over all 45 coefficient pairs
in the 10-fold cross-validation. The higher the Jaccard distance, the more unstable the support of
the L1LR coefficients. The plot indicates that the selected L1LR model for the sPP representation
is most stable among the three representations, except for two terms: “dorsal ectoderm” and
“hindgut”, for which the BF approach is slightly better. The pixel-based approach selects highly
unstable predictor sets.
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PP category Gene symbols
croc ImpE2 kni CG9514 fd102C knrl hkb twi toc CG1663 CG8289 Mdr49 fd19B CG14427 pnt Pka-C3 sc Adgf-A rdx Ndae1

Sep5 Cad74A Btk29A CycB h Alh dm CG2915 CG12581 ird5 CG31909 CG12420 retn CG16815 drm Mkp3 Mitf rib CG11652 pxb
PP1 Zasp52 rad50 Xpc Akap200 CG10365 Hsp83 Optix Blimp-1 Acn noc roX1 dpn oc hbn bai chif milt egg nerfin-1 Ilp4

RnrS Caf1 CG2941 CG11208 ry Neu2 Set2 Moe CG2469 Aatf sala wg Best2 fu2 srp CG8788 wisp CG8388 CG31038 term
Prx5 ftz CG14814 CG12702 pros GH06606 CG33116 ind Sec61beta Tao Ocho CG5888 Mink BicD Asph RhoGEF3 velo 18w dap Pcl

hbn danr Blimp-1 nuf path pcs Bili Mitf dan Ppa CG3097 Nek2 seq h CG8289 fd19B CG16815 aos Alh pdm2
CG12420 CG1663 CG14427 apt CG2915 retn p115 zen Six4 fj CG11652 CG5059 CG14711 gukh bbg Hsp83 Akap200 numb Optix CG31909

PP2 CG5888 oc Adgf-A Ocho CG42342 rad50 ASPP tld CG11208 exex RhoGEF3 dm rdx tkv Btk29A Sec61beta egr CG14805 Xpc Su(H)
CG43394 dpn pnt Ndae1 jigr1 Acn Neu2 ird5 Asph pros Sep5 18w CG10479 Cad74A tll term LManII hb CG7800 Bsg25D

Prx5 Elba2 noc Cyp6v1 wisp chif cnc bai Tao dnk Set2 CG13653 Caf1 CycB velo CD98hc CG10338 CG9514 Aatf CG11417
CG5346 Mdr49 CG5888 CG31909 kni sprt Ndae1 vnd knrl CG14427 rdx 26-29-p Zasp52 ry egg edl CG11208 wisp slp2 Elba2

Cyp310a1 Mes2 Pcl NetA fd19B hb twi Mitf oc Pka-C3 E5 Mes4 sna dm neur CG12177 slp1 term srp numb
PP3 ems htl Sdc gukh dan roX1 gcm CG10479 Bsg25D pros siz Ppa Xpc CycB Sep5 Coop stumps croc CaMKII Asph

CG11652 Akap200 bou Cad74A milt CG8788 T-cp1 sog bowl CG2941 Lk6 CG33099 Ilp4 ind Dg seq Sec61beta Hsp83 Poc1 noc
danr lama Acn RhoU CG32982 CG5059 CHOp24 CG9514 chif zfh1 Bub3 CG6654 bai btd vls hrg Prx5 Tao CG2469 CG43394

numb SoxN D siz oc phyl hb CG14427 tld danr dan CG5346 fd19B Elba2 slp2 yellow-e3 pros Akap200 ems E5
Sec61beta Ppa jigr1 CG12581 Tao esg CG14814 Bsg25D CG14805 CG16815 Nek2 18w CG5888 fj Acn CG5059 lok term Miro Aatf

PP4 p115 path CG13894 CG11652 slp1 chif tll CG42666 rdx Prx5 CG17786 CG12702 Blimp-1 bai sala toc Poc1 CG2915 Caf1 CG11208
dnk velo gt Vha68-2 Btk29A CG42516 Cad74A Ocho Su(H) ASPP Meltrin Set2 dbo Alh hrg Egm retn Xpc ftz Aldh-III

salm milt dm vls CD98hc E2f1 janA ind sog neur seq Neu2 Asph Hsp83 Usp5 Cyp1 bwa CG14915 pnt ifc
Pepck Doc1 Doc2 lov CG7800 aos Ance Gbs-70E oc tll Dl Coop numb fd19B hb Sec61beta zen tkv otk slp1

toc slp2 chn CG5888 jigr1 wg CG5346 seq SoxN CG13894 egr dm CG17786 bai CG14427 dan grn MESR3 siz jing
PP5 CG42516 rdx T-cp1 yellow-e3 Hsp83 Blimp-1 Nek2 Dll Elba2 18w tmod bmm danr shn CG11208 nuf Sema-5c E2f1 Su(H) Atet

salm pros E5 CG12420 path CG13868 CG5532 bowl esg tok Ppa lok ind milt Xpc Gsc ems corto Prx5 link
Akap200 p115 CG11652 brat sala CG4199 Srp68 CG3838 CG14814 tld chif vfl term nAChRalpha2 Cyp6v1

retn GH06606 Eip71CD CG14711 CG14805
btd Blimp-1 prd Dfd CG10479 kn CG13894 path slp1 fj bmm danr slp2 pxb knrl ems rdx toc hb tmod

salm h Dl CG10979 CG30431 CG10176 Akap200 jbug chn dan Coop CaMKII dpn Ppa CG14814 CG43394 eve Pepck CG5888 18w
PP6 D Nek2 CG2469 bai GH06606 chif tutl link rpr Aatf jigr1 nuf CG14805 siz Traf4 Xpc CG11696 Set2 Pvf3 Prx5

Poc1 CG42666 yem kni dnk CG5059 CG11652 MESR3 Elba2 Cys CHOp24 gt Zasp52 Acn Vha68-2 Miro CG5346 E5 wisp Adf1
CG14657 term Aldh-III MFS14 Moe CG7800 CycT ZnT63C run htl Sema-5c Caf1 milt velo srp retn CG14915 CG42516 CG2915 p115

odd salm hb dan rpr CG5888 sala path danr lok 18w Sema-5c CG13894 CenB1A jigr1 bmm Cad74A prd pxb bai
sob CG14814 ftz fj corto Akap200 Ppa opa D lama CG8147 run Dfd Alh chif CG14657 MESR3 fz2 Dll CG11696

PP7 eve wg Cys gt yem Eip71CD Elba2 Btk29A CG11652 CG14805 Moe tex Set2 Nek2 jbug CG2915 CG12420 Poc1 Prx5 tmod
CG10176 janA Aatf Coop CG7800 CHOp24 Miro velo rdx CG45186 exex CG5059 CG10979 Sep5 chn comm Cyt-b5 toc Meltrin CG5346

Aldh-III h Caf1 link siz pdm2 hrg Atg18a Mkp3 CG14915 DnaJ-1 wisp E5 milt CycT nuf CG10479 CG9505 sad aay
Kr tsh Blimp-1 lok Sema-5c Btk29A dpn cad pxb D Glut4EF mtd E2f1 Ppa Alh CG1146 CG14814 CG8147 jigr1 Sodh-1
dbo lov Bsg25D Elba2 danr Eip71CD yem Cad74A opa prd Atg18a pdm2 sob corto chif Akap200 stwl gk CG14805 Ect4

PP8 mas ftz CG11696 CG7800 Moe nuf h GH06606 Set2 Cys jbug RnrS Poc1 vfl CD98hc fz2 MFS14 CG5888 CG5059 hb
Miro Prx5 dan DnaJ-1 Acn run janA lama CG14657 Aatf sprt CG12702 Sep5 ara CG45186 tex Atg1 velo pros Pino

term Caf1 step Su(H) Aldh-III ird5 phm CG12581 Gbs-70E vls Mcm3 Gdi gukh trx CaBP1 Fbxl7 esg CHOp24 slp1 Adf1
nub pdm2 tsh gk Glut4EF kni Atg1 CG8147 D cad pxb Btk29A danr Ppa h CG14814 opa Alh gt dpn

jigr1 exex Moe prd dbo nuf vfl GH06606 mas sc whd lov phm CG14657 Akap200 ftz Bsg25D chif CG14805 CaBP1
PP9 CG11696 esg fz2 ird5 corto Atg18a trx CG1146 CG11652 18w Prx5 run Gdi Poc1 janA toc DnaJ-1 CG11134 Acn Elba2

velo htl eve RhoBTB CG3838 CG10631 CG10176 pcs CG5059 CG8668 hrg CHOp24 CycT Fbxl7 chn CG1910 Nek2 rad50 odd Imp
bai nerfin-1 Caf1 E2f1 Set2 path CD98hc CG12391 milt step 26-29-p Miro Sdc CG7800 Mnt Cys D19A wde E(spl)m8-HLH CG14915

CG13653 ASPP link zen CG14427 bun shn Doc1 dpn egr esg toc lov CG12581 CG10479 pan Cen CG1146 ftz fz2
corto Caf1 D19A GH06606 CG14915 Dok Cys slmb CycB chn trx Doc2 CG16815 RapGAP1 net gcm2 Not10 Adf1 Eip71CD Aldh-III

PP10 ush rho pcs Dl Set2 Bsg25D croc inv Ect4 milt hth bel Prx5 zen2 Fbxl7 CycA Sodh-1 Pcl Xpc 18w
tmod C15 CG10176 Patj Atg18a eve Alh mtd Sema-5c mew D CG4702 dap mid Pino h lok tutl tld velo

lama vvl bou Sep5 CG8147 CG5498 CG5532 CG42516 larp CG5346 CG34383 Cad74A tex l(1)G0255 danr dbo Pvf3 Hmx CG30431 CG42232

Table S2: Genes in PP categories 1-10. For the k-th PP category, k = 1, ..., 21, genes are sorted
in decreasing order according to their k-th sPP coefficients. Recall that for a gene, its k-th sPP
coefficient is defined as the maximum k-th sPP coefficients across all the replicate expression pattern
of the same gene. Only the top 100 genes are shown for each PP category. The entire list can be
derived from Dataset S5.
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PP category Gene symbols
ush net bun Ama Dl egr Doc1 zen C15 CG13653 Doc2 D CG10479 CG8147 toc rho esg CG45186 CG9505 Ect4

pan dbo scat CG2941 CG11076 Nrt Eip71CD tld tmod bel zen2 CG6885 CG2162 gk Dys Egfr nuf mew CycE CG42516
PP11 gwl CG7800 hth E2f1 CG14427 Sema-5c Fbxl7 CG11151 shn CG17698 Adf1 numb Acn CG11791 CG10176 jing MFS14 slmb pyd3 tutl

brat CG5498 CG5888 Piezo Cys mas Vha68-2 mtd CG14915 ara CG34383 sprt lov CG11417 Srp68 ASPP dap chn CG32982 Bsg25D
CG13784 CG4455 CG5059 Doc3 hyx CG8668 tex CG4080 Sep5 CG12420 Pino pcs GH06606 CG3838 vls Bap55 fz2 dpn neur CG11652

zen toc Doc3 link bun ASPP mor Z600 CG6885 Bub3 wisp tld CG42666 shn milt CG16815 CG10176 E5 CG14915 Tao
Mlf CG14427 Su(H) Prx5 Eip71CD CG42516 bou Cys CG12581 Ama dpn Poc1 BEAF-32 Srp68 CG5059 CG2162 Acn CD98hc aay net

PP12 CG11791 CG14657 CG12420 fz2 CycE Caf1 T-cp1 Cyp1 Btk29A Dl GH06606 hrg exex lov GILT1 tmod RhoGAP1A Pino Ocho h
Akap200 ftz fu2 dnk Fbxl7 CG3838 Miro gk Ect4 janA CaBP1 pcs ifc CG8668 chif Alh Set2 CG11418 Mfap1 numb

CG12702 jbug CG11652 esg 18w egg Oaz CG14712 pros MESR3 cmb Aldh-III Bsg25D CenB1A CG11007 Adf1 CG34383 nuf CG7182 danr
SoxN CG42666 CG16815 CG14427 Meltrin CG34383 aay ASPP CG18446 ind zen E5 neur MESR3 tld milt Tao CG14657 CG42516 srp

Dl MFS14 CG12702 dpn CG14915 CG11417 hrg CG10176 slp1 Pino CG2941 Cys CG12581 Ama CG5059 Btk29A dnk mor Acn Mlf
PP13 CycB eIF-4E janA fz2 Su(H) pros Usp5 h BEAF-32 CG10082 ifc wisp Neu2 Miro Bub3 fu2 CG11791 Lsd-2 Bsg25D Ilp4

lov RnrS ftz Mink Poc1 toc CD98hc Cad74A D19A Cyp1 Aldh-III comm2 Set2 Imp chif CG10075 Caf1 Adf1 BicD Prx5
CG14805 tutl CG11652 Mnt eve CG5888 larp jbug mnd Mkp3 CG42232 Alh GH06606 danr Traf4 CG14814 SCOT Ocho CG5027 yem

rho sog NetA Ilp4 ASPP Ama trx Dg Pka-C3 CG42666 CG2941 CycB gukh neur Egm Mes4 E2f1 Asph dm bou
aay milt Cys Adf1 Bub3 MFS14 toc Tao vnd twi Btk29A CG14657 Acn CG32982 sala Prx5 Usp5 RnrS dpn CG5027

PP14 CG5059 CG11070 CG2469 Aldh-III CG14427 phm fz2 mor hrg Set2 Meltrin CaMKII Elba2 Sdc CG8001 ftz CHOp24 CG11652 phyl Poc1
Caf1 CG14805 Cct5 CG8312 E5 sna MESR3 janA Bsg25D wntD h CG12702 CG42516 Cyp310a1 tld CG10176 htl Traf4 Su(H) eve

Alh Lk6 Neu2 path Mnt Mcm3 Cad74A E(spl)m8-HLH egg chif CG11417 CG6983 Ocho term Sep5 pnt slp1 Mlf rdx ind
htl Ama NetA Cyp310a1 neur CG9005 CycE Mes2 CG12177 mor Ndae1 egg CG32982 sna Mlf Fbxl7 hyx CG8312 Lk6 Pka-C3

Sdc gukh T-cp1 dm CG5027 milt sala Tao CG8066 CG14427 Vha68-2 Ilp4 CG2941 shn CG11791 wntD RnrS Bub3 trx flr
PP15 Mdr49 CG42666 bou twi Aatf Bap55 CG1910 CG11652 Mes4 Gapdh1 Asph CG10075 dpn Mfap1 CG11076 Dg roX1 CD98hc cmb CG8788

E2f1 CG12702 CG12391 CG8230 toc CG10413 Mcm3 brat phm CG8001 phyl Egm ttm50 wisp Prx5 CycA CG14805 CG2469 CG11444 CG10984
Piezo Adf1 Dl CycB Cct5 CG11418 tmod BEAF-32 ASPP CG14657 Cad74A ry CG42516 E(spl)m8-HLH CG11417 CG2915 vnd aay Acn Poc1

NetA Mes2 Traf4 Pka-C3 CG12177 sna CG32982 stumps Cyp310a1 wntD twi gukh Fbxl7 CycB Ilp4 Ndae1 milt CG3036 CG11247 Asph
Mdr49 sala CG14427 Shroom step trx GEFmeso phm neur CG1416 Sep5 Cys rad50 Btk29A CycA bou Alh htl Caf1 Acn

PP16 CG8312 CG11652 prd opa CG9005 brat eve danr ftz tkv fj fz2 run CG11696 ry CG5346 rdx CG42232 CycT emc
Bsg25D chif net mtd RnrS CG10631 18w CG10075 term h Mnt D Mink Ama bai pan mor Poc1 dpn CG31909

shn Cen phyl CG11007 Cad74A Adf1 E2f1 CG11076 Lk6 CG2941 roX1 BEAF-32 osk wde nerfin-1 CG8001 fu2 CG8319 CycE CG33116
Blimp-1 hb cad fj Ppa Alh CG5888 Mkp3 pcs Atg1 D CG8147 lov ftz Nek2 CG43394 bai salm toc Moe

run CG14814 dpn Imp Set2 CycE CG14805 Btk29A CG11652 ken Usp5 milt CG30431 sala Acn tld CG14915 ird5 E5 chif
PP17 hrg Akap200 gk Bsg25D Pepck sprt siz Cys p115 Abd-B CG14427 CG11696 eve whd Ama wde CG12702 Vinc jigr1 sc

D19A dbo 26-29-p Mnt ifc ASPP CG11417 CG5059 mas gukh Sep5 Caf1 danr exex Z600 DnaJ-1 CG32982 comm2 fz2 18w
h janA cmb Mink RhoBTB vfl CG12391 Gdi Sdc Atet Poc1 Ptx1 Cct5 grn rau CG16815 Prx5 CG11791 CG14712 phm

rau scw MESR3 tipE CG3036 Atet CG8147 Doc2 Pepck hb sprt Doc1 mRpS34 mas Atg1 Blimp-1 CG32982 cad CycA Nek2
net dm CG2941 CG2469 exex ebi mnd CG4080 CG14427 CG1910 Patj sc CG10479 Mkp3 CG30118 disco tutl CG13653 tup CG5888

PP18 salm veil vfl Pino pyd3 18w jigr1 CG11151 CG7182 CG10082 CD98hc Bsg25D CG34383 CG3838 htl CG2162 Abd-B whd T-cp1 mspo
p115 rpr phm shn CG8654 dpn link GH06606 slmb Eip71CD egr run aay pcs CG14814 Srp68 gk Poc1 ttm50 CG42666

Prx5 siz CG10341 Ptx1 ara nst CG11076 Vinc mor larp CG4455 lama zen2 E2f1 bel CG10924 CG11652 rib sob nAChRalpha2
GEFmeso ry CG31909 Ndae1 MESR3 twi yem emc sala Fbxl7 Mitf apt GH06606 trx tll RH48922 Mkp3 CG1146 byn bel Pepck Lk6

Pka-C3 Zasp52 salm step disco cad hb CycB Cyp310a1 Ama HLH54F fkh CHOp24 Poc1 wde Mes4 whd CG2941 E(spl)m8-HLH Eip71CD
PP19 CG11247 zen bou CG10924 CycT gukh pcs bmm roX1 CG11007 CG8147 CG9005 Mnt CG10365 CG14427 Bsg25D CG42232 htl

CG5888 Cys CycA CG1416 Sep5 CG11652 sim CG12723 bai rad50 mRpS34 CG14814 E(spl)m7-HLH osk larp milt Acn zfh2 phm tmod
mor CycE RnrS Traf4 CG12177 BicD CG12581 Sdc CG11418 Atg1 Elba3 E5 CG11696 Asph Acf1 Adf1 Set2 Nek2 Dip-C Mdr49
bbg exex MFS14 apt tll dm Pepck zen Pino Mkp3 srp zen2 janA mRpS34 Sema-5c sprt CG16815 CG11417 milt Doc3 mor Acn

byn bai CG11652 CG12702 aay CG32982 Elba3 Eip71CD Usp5 CG14805 CG8147 Cys RhoBTB CG10365 CG10924 Cct5 Moe DnaJ-1
PP20 cmb CG1146 hkb ifc hrg Ptp4E ird5 sala Ptx1 Gdi Atg1 Vinc tld CG30118 CG10338 scw CG11151 Set2 ASPP CG14814 Nek2 CG14712

MESR3 CG12420 26-29-p whd vfl Dip-C CG14915 CG12391 cad Aldh-III Srp68 Argk CG2941 rib GH06606 E5 CG1416 CG1434
bmm CG11696 wisp p115 mnd CG10082 Mink Btk29A velo Caf1 Cyp1 yip2 CG8654 esg Sep5 CG11791 disco Mat89Ba Akap200 dnk

lok RhoGAP1A 26-29-p rdx yem Hsp83 dap bel Pi3K21B cup CycB CG14814 exex CG8915 gwl pgc PpD3 DnaJ-1 wisp Dok
Cyp1 CG14712 Hsp27 Cen dnk Cctgamma DyakGE19022 Rpn8 Tif-IA c(3)G Gapdh1 CG32473 CBP Tao Moe Sema-5c Atg1 Mitf

PP21 CG10462 Wee1 l(1)G0255 gcl fu2 ird5 srp Mnt mtd DNaseII CG9925 Cct5 ebi CG10979 rl CG42232 NK7.1 jigr1 Dip-B MFS14 bun osk
fkh aay cib Bsg25D ifc CG14427 Vha68-2 CG10365 zen2 shu flr CG10924 CG5292 whd CG33158 Z600 msk Hsp26 Acf1 Elba3

zpg tll eIF-4E MESR3 UGP Doc1 Pepck ovo CG10631 BicD CG12581 CG8036 lqfR dm CG2941 GH06606 Lsd-2 Gdi CHOp24 yip2

Table S3: Genes in PP categories 11-21. See the caption of Table S2 for details. The entire list
can be derived from Dataset S5.
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Fig. S20: The relationship between the fraction of common genes in a pair of PP categories and the
centroid distance of the two PP. The fraction of common genes in a pair of PP categories is defined
as the Jaccard distance between the two categories. Shown are the scatter plots of the fraction and
the PP distance for different sPP coefficient threshold values in {0.05, 0.1, 0.2, 0.3}. As described
in the main text, we thresholded the sPP coefficients to assign genes to PP categories. The plots
show that although the absolute fraction changes as we increase the threshold, the down-up trend
remains the same.
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Fig. S21: Histograms of local correlations for the six gap-PP. The two red vertical lines in each
histogram indicate the lower and upper five percentiles of the local correlations, respectively. The
distribution of the correlations is bimodal, with one peak corresponding to positive correlations and
the other to negative correlations. This is a direct consequence of our definition of local correlation:
we used the maximum correlation of all pairwise local correlations between the replicate images of
one gene and the replicate images of another gene (SI Appendix Methods). This procedure excluded
image pairs that had low correlations.
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Fig. S22: Spatially local correlation networks (SLCN) for transcription factors (TF): PP6 and
PP7. To better visualize each network, we performed a hierarchical clustering using one minus the
thresholded local correlation matrix as the distance matrix. The clustering generated an order of
data points, which was the same order used in producing a hierarchical clustering dendrogram. We
then used the order to arrange TF on the circumference of a circle and added edges according to
the network adjacency matrix. A blue edge indicates a positive correlation whereas red indicates
a negative correlation. As a results, neighbor TF on the circle tend to have positive correlations
and distant TF tend to have negative correlations. Furthermore, under this TF layout, edges start
from similar locations on the circle are mostly likely to end in similar locations. The names of the
six gap genes are highlighted in red.
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Fig. S23: Spatially local correlation networks (SLCN) for transcription factors (TF): PP8 and
PP9. See the caption of Fig. S22 for more details.
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Fig. S25: Validating the SLCN with the gap gene network. Sub-figures A-C are the same as Fig
5A-C in the main text. (A) The six spatially local correlation networks for the six gap genes with
each link labeled from 1 to 14. (B) The gap gene network depicting repressive interactions of six
genes, as originally described in [31]. Links are numbered from 1 to 11 and multiple occurrence of
the same gene are subscripted by numbers (e.g. hb1 and hb2). The directions of the interactions
are not indicated. (C) Schema showing the composite mapping of gap gene expression to the six
PP arranged in a linearly ordered way from anterior to posterior. For each of the six gap genes, the
regions diagrammed in blue are the PP with sPP coefficient greater than or equal to 0.1 for at least
one of the replicate images, while the regions diagrammed in white are the PP with a coefficient less
than 0.1 for all replicate images. To evaluate the prediction performance of the SLCN in (A), we
first mapped each node in (B) to a connected PP group in (C). According to (C), gt has two major
components, the anterior part which has expression in PP6 and PP7, and the posterior part that
has expression in PP9. The anterior gt1 and the posterior gt2 symbols in (B) can be mapped to
these two components respectively. hb also has two major connected PP components, the anterior
part which has expression in PP6-8 that corresponds to hb1 in (B), and the posterior part that has
expression in PP17 and PP20 that corresponds to hb2 in (B). For hkb, the only expression in PP20
corresponds to the hkb gene symbol in (B). kni has two components. The first one in PP6 does not
correspond to any node in (B) (the ∗ symbol indicates a region of gene expression with no match
in (B)), whereas the second one in PP8 and PP9 corresponds to the kni symbol in (B). Similarly,
the first component of Kr in PP8 corresponds to the symbol Kr in (B), whereas the posterior part
in PP20 does not appear in (B). Finally, the only component of tll in PP17 and PP20 correspond
to the only tll symbol in (B). We considered an interaction between two gene nodes G1 and G2
in the schematic network as successfully identified by our method, if the same interaction exists
in the any SLCN associated with the overlapping PP in the connected PP groups corresponding
to G1 and G2. We examined each link in (B) and the results are summarized in Table S4. Our
SLCN recovered 10 out of 11 interactions in the gap gene network and discovered three interactions
not described by the network. (D) Overlaying gene expressions for gt and kni. There are four
replicate images for kni and one for gt. A clear complementary patterns in the anterior region
(PP6) between the two genes can be seen in D2 and D3. Moreover in D2, the two genes have a
significant amount of overlap in the posterior region (PP17).
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Link in gap gene network G1 G1 PP G2 G2 PP Overlapping PP Link(s) in SLCN

1 gt1 PP6,7 Kr PP8 PP7,8 2,4

2 hb1 PP6-8 Kr PP8 PP7,8 3

3 hb1 PP6-8 kni PP8,9 PP7-9 5

4 kni PP8,9 Kr PP8 PP8,9 8

5 gt2 PP9 Kr PP8 PP8,9 4,7

6 gt2 PP9 kni PP8,9 PP8,9 No link

7 hb2 PP17,20 kni PP8,9 PP9,17 12

8 gt2 PP9 hb2 PP17,20 PP9,17 9

9 kni PP8,9 tll PP17,20 PP9,17 13

10 gt2 PP9 tll PP17,20 PP9,17 10

11 hb2 PP17,20 hkb PP20 PP17,20 14

Table S4: Validating the SLCN with the gap gene network. Link in gap gene network: link number
in the schematic gap gene network (Fig. S25B). G1 and G2: gene nodes in the schematic gap gene
network. G1 PP and G2 PP: the connected PP group in the linearly ordered PP representation
that correspond to G1 and G2 respectively (Fig. S25C). Overlapping PP: the overlapping PP
of G1 PP and G2 PP. Link(s) in the SLCN: the link(s) in the predicted SLCN (Fig. S25A) that
correspond to a link in the schematic gap gene network. Out of 11 links in the schematic gap gene
network, there is one (i.e. Link 6) that has no corresponding link in the SLCN. There are three
links out of 14 in the SLCN that have no corresponding links in the gap gene network diagram.
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Fig. S26: Sub-networks of the six SLCN that contain the six gap genes, for sPP coefficient
threshold in {0.05, 0.1, 0.2, 0.3}. As described in the main text and in SI Appendix Methods, we
thresholded the sPP coefficients to filter TF for SLCN construction. The reconstructed gap gene
networks are nearly identical for these threshold values.
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Fig. S27: Correlating transcription factors (TF) over the whole embryo (global correlation). (A)
Scatter plots of the global correlation vs. the local correlations for PP7, PP9 and PP17. The
dashed lines correspond to the lower and upper cutoffs for the local correlations (vertical lines) and
global correlations (horizontal lines). See SI Appendix Methods for how we determined the cutoffs
for the global correlations. The four branches of each plot are due to the fact that the distributions
of both global correlations and local correlations are bimodal. Highlighted in the scatter plots are
the gap-gene links correctly identified by the local networks but missed by the global network. (B)
The PP-based correlation approach detected locally complementary patterns whereas the global
correlation approach failed. The scatterplot showed the pixel-wise intensity relationship between
a pair of expression images of gt and hb. The green dots corresponded to the pixels in the region
defined by PP17, with dot size proportional to the pixel intensity of PP17. We observed a clear
negative association between the two TF in PP17. However, this association disappears when
we consider the scatterplot of all 405 pixels of the embryo. (C) The gap gene network without
the spatial information. Here, two gap genes share an link if they share an link in the schematic
gap gene network (Fig. S25B) regardless of the location of the interaction. (D) The gap gene
constructed based on correlation measurements over the whole embryo identified only three out of
nine links of the global version of gap gene network in (C).
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