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IMPACT OF REGULARIZATION ON SPECTRAL CLUSTERING1

BY ANTONY JOSEPH AND BIN YU

@WalmartLabs and University of California, Berkeley

The performance of spectral clustering can be considerably improved via
regularization, as demonstrated empirically in Amini et al. [Ann. Statist. 41
(2013) 2097–2122]. Here, we provide an attempt at quantifying this improve-
ment through theoretical analysis. Under the stochastic block model (SBM),
and its extensions, previous results on spectral clustering relied on the min-
imum degree of the graph being sufficiently large for its good performance.
By examining the scenario where the regularization parameter τ is large, we
show that the minimum degree assumption can potentially be removed. As
a special case, for an SBM with two blocks, the results require the maxi-
mum degree to be large (grow faster than logn) as opposed to the minimum
degree. More importantly, we show the usefulness of regularization in situa-
tions where not all nodes belong to well-defined clusters. Our results rely on
a ‘bias-variance’-like trade-off that arises from understanding the concentra-
tion of the sample Laplacian and the eigengap as a function of the regular-
ization parameter. As a byproduct of our bounds, we propose a data-driven
technique DKest (standing for estimated Davis–Kahan bounds) for choosing
the regularization parameter. This technique is shown to work well through
simulations and on a real data set.

1. Introduction. The problem of identifying communities (or clusters) in
large networks is an important contemporary problem in statistics. Spectral clus-
tering is one of the more popular techniques for such a purpose, chiefly due to its
computational advantage and generality of application. The algorithm’s generality
arises from the fact that it is not tied to any modeling assumptions on the data, but
is rooted in intuitive measures of community structure such as sparsest cut based
measures [11, 16, 21, 25]. Other examples of applications of spectral clustering
include manifold learning [4], image segmentation [25] and text mining [9].

The canonical nature of spectral clustering also generates interest in variants
of the technique. Here, we attempt to better understand the impact of regularized
forms of spectral clustering for community detection in networks. In particular, we
focus on the regularized spectral clustering (RSC) procedure proposed in Amini
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et al. [2]. Their empirical findings demonstrates that the performance of the RSC
algorithm, in terms of obtaining the correct clusters, is significantly better for cer-
tain values of the regularization parameter. An alternative form of regularization
was studied in Chaudhuri et al. [7] and Qin and Rohe [23].

This paper provides an attempt to provide a theoretical understanding for the
regularization in the RSC algorithm. We also propose a practical scheme for choos-
ing the regularization parameter based on our theoretical results. Our analysis fo-
cuses on the Stochastic Block Model (SBM) and an extension of this model. Below
are the three main contributions of the paper.

(a) We attempt to understand regularization for the stochastic block model. In
particular, for a graph with n nodes, previous theoretical analyses for spectral clus-
tering, under the SBM and its extensions, [7, 10, 24, 26] assumed that the mini-
mum degree of the graph scales at least by a polynomial power of logn. Even when
this assumption is satisfied, the dependence on the minimum degree is highly re-
strictive when it comes to making inferences about cluster recovery. Our analysis
provides cluster recovery results that potentially do not depend on the above men-
tioned constraint on the minimum degree. As an example, for an SBM with two
blocks (clusters), our results require that the maximum degree be large (grow faster
than logn) rather than the minimum degree. This is done in Section 3.

(b) We demonstrate that regularization has the potential of addressing a situ-
ation where the lower degree nodes do not belong to well-defined clusters. Our
results demonstrate that choosing a large regularization parameter has the effect of
removing these relatively lower degree nodes. Without regularization, these nodes
would hamper with the clustering of the remaining nodes in the following way: In
order for spectral clustering to work, the top eigenvectors—that is, the eigenvec-
tors corresponding to the largest eigenvalues of the Laplacian—need to be able to
discriminate between the clusters. Due to the effect of nodes that do not belong
to well-defined clusters these top eigenvectors do not necessarily discriminate be-
tween the clusters with ordinary spectral clustering. This is done in Section 4.

(c) Although our theoretical results deal with the ‘large’ τ case, it is ob-
served empirically that moderate values of τ may produce better clustering perfor-
mance. Consequently, in Section 5 we propose DKest, a data dependent procedure
for choosing the regularization parameter. We demonstrate that this works well
through simulations and on a real data set. This is in Section 5.

Our theoretical results involve understanding the trade-offs between the eigen-
gap and the concentration of the sample Laplacian when viewed as a function
of the regularization parameter. Assuming that there are K clusters, the eigengap
refers to the gap between the K th smallest eigenvalue and the remaining eigenval-
ues. An adequate gap ensures that the sample eigenvectors can be estimated well
([16, 21, 27]) which leads to good cluster recovery. The adequacy of an eigen-
gap for cluster recovery is in turn determined by the concentration of the sample
Laplacian.
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In particular, a consequence of the Davis–Kahan theorem [5] is that if the spec-
tral norm of the difference of the sample and population Laplacians is small com-
pared to the eigengap then the top K eigenvector can be estimated well. Denoting τ

as the regularization parameter, previous theoretical analyses of regularization ([7,
24]) provided high-probability bounds on this spectral norm. These bounds have
a 1/

√
τ dependence on τ , for large τ . In contrast, our high probability bounds

behave like 1/τ , for large τ . We also demonstrate that the eigengap behaves like
1/τ for large τ . The end result is that we show that one can get a good understand-
ing of the impact of regularization by understanding the situation where τ goes
to infinity. This also explains empirical observations in [2, 23] where it was seen
that performance of regularized spectral clustering does not change for τ beyond
a certain value. Our procedure for choosing the regularization parameter works by
providing estimates of the Davis–Kahan bounds over a grid of values of τ and then
choosing the τ that minimizes these estimates.

The paper is divided as follows. In the next subsection, we discuss preliminaries.
In particular, in Section 1.1 we review the RSC algorithm of [2], and also discuss
the other forms of regularization in literature. In Section 2, we review the stochastic
block model. Our theoretical results, described in (a) and (b) above, are provided
in Sections 3 and 4. Section 5 describes our DKest data dependent method for
choosing the regularization parameter.

1.1. Regularized spectral clustering. In this section, we review the regularized
spectral clustering (RSC) algorithm of Amini et al. [2].

We first introduce some basic notation. A graph with n nodes and edge set
E is represented by the n × n symmetric adjacency matrix A = ((Aij )), where
Aij = 1 if there is an edge between i and j , otherwise Aij is 0. In other words, for
1 ≤ i, j ≤ n,

Aij =
{

1 if (i, j) ∈ E,
0 otherwise.

Given such a graph, the typical community detection problem is synonymous
with finding a partition of the nodes. A good partitioning would be one in which
there are fewer edges between the various components of the partition, compared
to the number of edges within the components. Various measures for goodness
of a partition have been proposed, chiefly the Ratio Cut [11] and Normalized Cut
[25]. However, minimization of the above measures is an NP-hard problem since
it involves searching over all partitions of the nodes. The significance of spectral
clustering partly arises from the fact that it provides a continuous approximation
to the above discrete optimization problem [11, 25].

We now describe the RSC algorithm [2]. Denote by D = diag(d̂1, . . . , d̂n) the
diagonal matrix of degrees, where d̂i = ∑n

j=1 Aij . The normalized (unregularized)
symmetric graph Laplacian is defined as

L = D−1/2AD−1/2.
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Algorithm 1 The RSC-τ Algorithm [2]
Input: Laplacian matrix Lτ .
Step 1: Compute the n × K eigenvector matrix Vτ .
Step 2: Use the K-means algorithm to cluster the rows of Vτ into K clusters.

Regularization is introduced in the following way: Let J be a constant matrix
with all entries equal to 1/n. Then, in regularized spectral clustering one constructs
a new adjacency matrix by adding τJ to the adjacency matrix A and computing
the corresponding Laplacian. In particular, let

Aτ = A + τJ,

where τ > 0 is the regularization parameter. The corresponding regularized sym-
metric Laplacian is defined as

Lτ = D−1/2
τ AτD

−1/2
τ .(1)

Here, Dτ = diag(d̂1,τ , . . . , d̂n,τ ) is the diagonal matrix of ‘degrees’ of the mod-
ified adjacency matrix Aτ . In other words, d̂i,τ = d̂i + τ .

The RSC algorithm for finding K communities is described in Algorithm 1. In
order to bring to the forefront the dependence on τ , we also denote the RSC algo-
rithm as RSC-τ . The algorithm first computes Vτ , the n × K eigenvector matrix
corresponding to the K largest eigenvalues of Lτ . The columns of Vτ are taken to
be orthogonal. The rows of Vτ , denoted by Vi,τ , for i = 1, . . . , n, corresponds to
the nodes in the graph. Clustering the rows of Vτ , for example, using the K-means
algorithm, provides a clustering of the nodes. We remark that the RSC-0 algorithm
corresponds to the usual spectral clustering algorithm.

Our theoretical results assume that the data is randomly generated from a
stochastic block model (SBM), which we review in the next subsection. While
it is well known that there are real data examples where the SBM fails to provide
a good approximation, we believe that the above provides a good playground for
understanding the role of regularization in the RSC algorithm. Recent works [2, 6,
10, 14, 24] have used this model, and its variants, to provide a theoretical analyses
for various community detection algorithms.

In Chaudhuri et al. [7], the following alternative regularized version of the sym-
metric Laplacian is proposed:

Ldeg,τ = D−1/2
τ AD−1/2

τ .(2)

Here, the subscript deg stands for ‘degree’ since the usual Laplacian is modified
by adding τ to the degree matrix D. Notice that for the RSC algorithm the matrix
A in the above expression was replaced by Aτ .

As mentioned before, we attempt to understand regularization in the framework
of the SBM and its extension. We review the SBM in the next section. Using recent
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results on the concentration of random graph Laplacians [22], we were able to
show concentration results in Theorem 4 for the regularized Laplacian in the RSC
algorithm. Previous concentration results for the Laplacian (2), as in [7], provide
high probability bounds on the spectral norm of the difference of the sample and
population regularized Laplacians that depends inversely on 1/

√
τ . However, for

the regularization (1) we show that the dependence is inverse in τ , for large τ . We
believe that this holds for the regularization (2) as well. We also demonstrate that
the eigengap depends inversely on τ , for large τ . The benefit of this, along with
our improved concentration bounds, is that one can understand regularization by
looking at the case where τ is large. This results in a very neat criterion for the
cluster recovery with the RSC-τ algorithm.

2. The stochastic block model. Given a set of n nodes, the stochastic block
model (SBM), introduced in [12], is one among many random graph models that
has communities inherent in its definition. We denote the number of communi-
ties in the SBM by K . Throughout this paper, we assume that K is known. The
communities, which represent a partition of the n nodes, are assumed to be fixed
beforehand. Denote these by C1, . . . ,CK . Let nk , for k = 1, . . . ,K , denote the
number of nodes belonging to each of the clusters.

Given the communities, the edges between nodes, say i and j , are chosen in-
dependently with probability depending on the communities i and j belong to. In
particular, for a node i belonging to cluster Ck1 , and node j belonging to cluster
Ck2 , the probability of edge between i and j is given by

Pij = Bk1,k2 .

Here, the block probability matrix

B = (
(Bk1,k2)

)
where k1, k2 = 1, . . . ,K

is a symmetric full rank matrix, with each entry between [0,1]. The n × n edge
probability matrix P = ((Pij )), given by (3), represents the population counterpart
of the adjacency matrix A.

Denote Z = ((Zik)) as the n × K binary matrix providing the cluster member-
ships of each node. In other words, each row of Z has exactly one 1, with Zik = 1
if node i belongs to Ck . Notice that

P = ZBZ′.(3)

Here, Z′ denotes the transpose of Z. Consequently, from (3), it is seen that the
rank of P is also K .

The population counterpart for the degree matrix D is denoted by D =
diag(d1, . . . , dn), where D = diag(P 1). Here, 1 denotes the column vector of all
ones. Similarly, the population version of the symmetric Laplacian Lτ is denoted
by Lτ , where

Lτ = D−1/2
τ PτD

−1/2
τ .
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Here, Dτ = D + τI and Pτ = P + τJ . The n × n matrices Dτ and Pτ represent
the population counterparts to Dτ and Aτ , respectively. Notice that since P has
rank K , the same holds for Lτ .

2.1. Notation. We use ‖ · ‖ to denote the spectral norm of a matrix. Notice
that for vectors this corresponds to the usual �2-norm. We use A′ to denote the
transpose of a matrix, or vector, A.

For positive an, bn, we use the notation an � bn if there exists universal con-
stants c1, c2 > 0 so that c1an ≤ bn ≤ c2an. Further, we use bn � an if bn ≤ c2an,
for some positive c2 not depending on n. The notation bn � an is analogously
defined.

The quantities

dmin,n = min
i=1,...,n

di, dmax,n = max
i=1,...,n

di

denote the minimum and maximum expected degrees of the nodes.

2.2. The population cluster centers. We now proceed to define population
cluster centers centk,τ ∈R

K , for k = 1, . . . ,K , for the K block SBM. These points
are defined so that the rows of the eigenvector matrix Vi,τ , for i ∈ Ck , are expected
to be scattered around centk,τ .

Denote by Vτ an n × K matrix containing the eigenvectors of the K largest
eigenvalues of the population Laplacian Lτ . As with Vτ , the columns of Vτ are
also assumed to be orthogonal.

Notice that both Vτ and −Vτ are eigenvector matrices corresponding to Lτ .
This ambiguity in the definition of Vτ is further complicated if an eigenvalue of Lτ

has multiplicity greater than one. We do away with this ambiguity in the following
way: Let H denote the set of all n × K eigenvector matrices of Lτ corresponding
to the top K eigenvalues. We take

Vτ = arg min
H∈H‖Vτ − H‖,(4)

where recall that ‖ · ‖ denotes the spectral norm. The matrix Vτ , as defined above,
represents the population counterpart of the matrix Vτ .

Let Vi,τ denote the ith row of Vτ . Notice that since the set H is closed under
the ‖ · ‖ norm, one has that Vτ is also an eigenvector matrix of Lτ corresponding
to the top K eigenvalues. Consequently, the rows Vi,τ are the same across nodes
belonging to a particular cluster (see, e.g., Rohe et al. [24] for a proof of this fact).
In other words, there are K distinct rows of Vi,τ , with each row corresponding to
nodes from one of the K clusters.

Notice that the matrix Vi,τ depends on the sample eigenvector matrix Vτ through
(4), and consequently is a random quantity. However, the following lemma shows
that the pairwise distances between the rows of Vi,τ are non-random and, more
importantly, independent of τ .
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LEMMA 1. Let i ∈ Ck and i ′ ∈ Ck′ . Then

‖Vi,τ − Vi′,τ‖ =
⎧⎪⎨
⎪⎩

0 if k = k′,√
1

nk

+ 1

nk′
if k �= k′.

The above lemma is proved in the supplementary material [13]. From the above
lemma, there are K distinct rows of Vτ corresponding to the K clusters. We de-
note these as cent1,τ , . . . , centK,τ . We also call these the population cluster centers
since, intuitively, in an idealized scenario the data points Vi,τ , with i ∈ Ck , should
be concentrated around centk,τ .

2.3. Cluster recovery using K-means algorithm. Recall that the RSC-τ Algo-
rithm 1 works by performing K-means clustering on the rows of the n×K sample
eigenvector matrix, denoted by Vi,τ , for i = 1, . . . , n. In this section, in particu-
lar Corollary 3, we relate the fraction of mis-clustered nodes using the K-means
algorithm to the various parameters in the SBM.

In general, the K-means algorithm can be described as follows: Assume one
wants to find K clusters, for a given set of data points xi ∈ R

K , for i = 1, . . . ,K .
Then the K-clusters resulting from applying the K-means algorithm corresponds
to a partition T̂ = {T̂1, . . . , T̂K} of {1, . . . , n} that aims to minimize the following
objective function over all such partitions:

Obj(T ) =
K∑

k=1

∑
i∈Tk

‖xi − x̄Tk
‖2.(5)

Here, T = {T1, . . . , TK} is a partition {1, . . . , n}, and x̄Tk
corresponds to the vector

of component-wise means of the xi , for i ∈ Tk .
In our situation, there is also an underlying true partition of nodes into clus-

ters, given by C = {C1, . . . ,CK}. Notice that C = T̂ iff there is a permutation π

of {1, . . . ,K} so that Ck = T̂π(k), for k = 1, . . . ,K . In general, we use the follow-
ing measure to quantify the closeness of the outputted partition T̂ and the true
partition C: Denote the clustering error associated with T̂1, . . . , T̂K as

f̂ = min
π

max
k

|Ck ∩ T̂ c
π(k)| + |Cc

k ∩ T̂π(k)|
nk

.(6)

The clustering error measures the maximum proportion of nodes in the sym-
metric difference of Ck and T̂π(k).

In many situations, such as ours, there exists population quantities associated
with each cluster around which the xi’s are expected to concentrate. Denote these
quantities by m1, . . . ,mK . In our case, mk = centk,τ . If the xi ’s, for i ∈ Ck , con-
centrate well around mk , and the mk’s are sufficiently well separated, then it is
expected the K-means algorithm recovers the clusters with small error f̂ .
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Denote X as the n × K matrix with xi ’s as rows. In our case, the xi = Vi,τ ,
and X = Vτ . Further, denote as M the n × K matrix with the mk’s as rows. In our
case, M = Vτ . Recent results on cluster recovery using the K-means algorithm, as
given in Kumar and Kannan [15] and Awasthi and Sheffet [3], provide conditions
on X and M for the success of K-means. The following lemma is implied from
Theorem 3.1 in Awasthi and Sheffet [3].

LEMMA 2. Let δ > 0 be a small quantity. If for each 1 ≤ k �= k′ ≤ K , one has

‖mk − mk′‖ ≥
(

1

δ

)√
K‖X − M‖

(
1√
nk

+ 1√
nk′

)
(7)

then the clustering error f̂ = O(δ2) using the K-means algorithm.

REMARK. In general, minimizing the objective function (5) is not computa-
tionally feasible. However, the results in [3, 15] can be extended to partitions T̂
that approximately minimize (5). The condition (7), called the center separation
condition in [3], provides lower bounds on the pairwise distances between the
population cluster centers that depend on the perturbation of data points around
the population centers (represented by ‖X − M‖) and the cluster sizes.

Let

1 = μ1,τ ≥ · · · ≥ μn,τ

be the eigenvalues of the regularized population Laplacian Lτ arranged in de-
creasing order. The fact that μ1,τ is 1 follows from standard results on the spec-
trum of Laplacian matrices (see, e.g., [27]). As mentioned in the Introduction, in
order to control the perturbation of the first K eigenvectors the eigengap, given by
μK,τ − μK+1,τ , must be adequately large, as noted in [16, 21, 27]. Since Lτ has
rank K one has μK+1,τ = 0. Thus the eigengap is simply μK,τ . For our K-block
SBM framework, the following is an immediate consequence of Lemma 2 and the
Davis–Kahan theorem for the perturbation of eigenvectors.

COROLLARY 3. Let τ ≥ 0 be fixed. For the RSC-τ algorithm the clustering
error, given by (6), is

O

(
K‖Lτ − Lτ‖2

μ2
K,τ

)
.

PROOF. Use Lemma 2 with mk = centk,τ , X = Vτ , M = Vτ , and notice that
from Lemma 1 that ‖mk − mk′‖ is

√
1/nk + 1/nk′ .

Consequently, using 1/
√

nk + 1/
√

nk′ ≥ √
1/nk + 1/nk′ one gets from (7) that

if

‖Vτ − Vτ‖ ≤ δ√
K

,(8)
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for some δ > 0, then at most O(δ2) fraction of nodes are misclassified with the
RSC-τ algorithm.

From the Davis–Kahan theorem [5], one has

‖Vτ − Vτ‖� ‖Lτ − Lτ‖
μK,τ

.(9)

Consequently, if we take δ = (
√

K‖Lτ − Lτ‖)/μK,τ then relation (8) is satisfied
using (9). This proves the corollary. �

3. Regularization in the K block SBM. In this section, we will use Corol-
lary 3 to quantify improvements in clustering performance via regularization. If
the number of clusters K is fixed (does not grow with n), then the quantity

‖Lτ − Lτ‖
μK,τ

,(10)

in Corollary 3 provides an insight into the role of the regularization parameter τ .
Clearly, an ideal choice of τ would be the one that minimizes (10). Note, however,
that this is not practically possible since Lτ ,μK,τ are not known in advance.

Increasing τ will ensure that the Laplacian Lτ will be well concentrated around
Lτ . This is demonstrated in Theorem 4 below. However, increasing τ also has the
effect of decreasing the eigengap, which in this case is μK,τ , since the popula-
tion Laplacian becomes more like a constant matrix upon increasing τ . Thus, the
optimum τ results from the balancing out of these two competing effects.

Independent of our work, a similar argument for the optimum choice of regular-
ization, using the Davis–Kahan theorem, was given in Qin and Rohe [23] for the
regulariztion proposed in [7]. They do suggest that choosing τ to be the average
degree (times a multiplicative constant) would be good (see Remark 1 on page 6
of their paper). However, a quantification of the benefit of regularization—in terms
of a choice of τ , along with a theoretical demonstration of the clustering improve-
ment resulting from this choice, as given in this section and Section 4—was not
provided in this work.

Theorem 4 provides high-probability bounds on the quantity ‖Lτ − Lτ‖ ap-
pearing in the numerator of (10). Previous analysis of the regularization (2), in [7,
23], show high-probability bounds on the aforementioned spectral norm that have
a 1/

√
dmin,n + τ dependence on τ . However, for large τ , the theorem below shows

that the behavior is
√

dmax,n/(dmax,n + τ). We believe this holds for the regular-
ization (2) as well. Thus, our bounds has a 1/τ dependence on τ , for large τ , as
opposed to the 1/

√
τ dependence shown in [7]. This is crucial since the eigen-

gap μK,τ also behaves like 1/τ for large τ which implies that (10) converges to
a quantity as τ tends to infinity. In Theorem 6, we provide a bound on this quan-
tity. Our claims regarding improvements via regularization will then follow from
comparing this bound with the bound on (10) at τ = 0.
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FIG. 1. Plot of ετ,n‖Lτ −Lτ ‖ against the regularization parameter τ . Note that the y-axis values
converges for large τ thereby demonstrating that ετ,n, when viewed as a function of τ , provides the
right order of magnitude for large τ .

THEOREM 4. With probability at least 1 − 2/n, for all τ satisfying

max{τ, dmin,n} ≥ 32 logn,(11)

we have

‖Lτ − Lτ‖ ≤ ετ,n.(12)

Here,

ετ,n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

10
√

logn√
dmin,n + τ

if τ ≤ 2dmax,n,

10
√

max{dmax,n,32 logn} logn

dmin,n + τ/2
if τ > 2dmax,n.

Notice that in the above result the minimum degree could be of constant order,
provided τ � logn. Independent of this work, a similar concentration result in
[23] removes the assumption on minimum degree that is traditionally made in
spectral clustering results [7, 19, 24] on random graphs. However, as mentioned
earlier, their concentration bounds have a 1/

√
τ dependence on τ , instead of the

1/τ dependence that is shown in the above theorem for τ > 2dmax,n.
Figure 1 demonstrates that ετ,n provides the right order of approximation for

large τ when n is fixed. For the figure, we take n = 3000,K = 2 and the block
probability matrix B given by

B =
(

0.01 0.0025
0.0025 0.003

)
.(13)
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We use Theorem 4, along with Corollary 3, to demonstrate improvements from
regularization over previous analyses of eigenvector perturbation. Our strategy for
this is a follows: Take

δτ,n = ετ,n

μK,τ

.

Notice that from Corollary 3 and Theorem 4, one gets that with probability at least
1 − 2/n, for all τ satisfying (11), the clustering error is O(δ2

τ,n). Consequently, it
is of interest to study the quantity δτ,n as a function of τ . Define

δn = lim
τ→∞ δτ,n.(14)

Although we would have ideally liked to study the quantity,

δ̃n = min
max{τ,dmin,n}�logn

δτ,n

we study δn since it is easy to characterize as we shall see in Theorem 6 below.
Section 5 introduces a data-driven methodology that is based on finding an approx-
imation for δ̃n.

Before introducing our main theorem quantifying the performance of RSC-τ
for large τ we introduce the following definition.

DEFINITION 1. Let {τn, n ≥ 1} be a sequence of the regularization parameters.
For the K-block SBM, we say that RSC-τn gives consistent cluster estimates if the
error (6) goes 0, with probability tending to 1, as n goes to infinity.

Throughout the remainder of the section, we consider a K-block stochastic
block model with the following block probability matrix:

B =

⎛
⎜⎜⎝

p1,n qn . . . qn

qn p2,n · · · qn

· · · · · · · · · · · ·
· · · · · · qn pK,n

⎞
⎟⎟⎠ .(15)

Without loss, assume that the within block probabilities given by p1,n, . . . , pK,n

satisfy p1,n ≥ p2,n ≥ · · · ≥ pK,n. The between block probabilities are taken to
be a fixed quantity qn. The number of communities K is assumed to be fixed.
Denote wk = nk/n, for k = 1, . . . ,K . The quantity wk represents the proportion
of nodes belonging to the kth community. Throughout this section, we assume that
{τn : n ≥ 1} is a sequence of regularization parameters satisfying

(
∑K

k=1 1/wk)dmax,n logn

τn

= o(1).(16)

Notice that if the cluster sizes are of the same order, that is wk � 1, then the above
condition simply states that τn should grow faster than dmax,n logn.
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The following theorem shows that for the stochastic block model regularized
spectral clustering would work even when the minimum degree is of constant or-
der. This is an improvement over recent works on unregularized spectral clustering,
such as [7, 19, 24], which required the minimum degree to grow at least as fast as
logn.

THEOREM 5. Let the block probability matrix B be as in (15). Let {τn, n ≥ 1}
satisfy (16). Then RSC-τn gives consistent cluster estimates under the following
scenarios:

(i) For the K-block SBM if wk � 1, for each k = 1, . . . ,K , and

(pK−1,n − qn)
2

p1,n

grows faster than
logn

n
.(17)

(ii) For the 2-block SBM if p2,n = qn and

(p1,n − qn)
2

w1p1,n + w2qn

grows faster than
logn

n(min{w1,w2})2 .(18)

REMARK. Regime (i) deals with the situation that the clusters sizes are of the
same order of magnitude. Regime (ii), where p2,n = qn mimics a scenario where
there is only one cluster. This is a generalization of the planted clique problem
where p1,n = 1 and p2,n = q = 1/2. For the planted clique problem, (18) translates
to requiring that min{w1,w2} grow faster that

√
logn/

√
n for consistent cluster

estimates, which is similar to results in [19].

Notice that in both (17) and (18) the minimum degree could be of constant
order. For example, for the two-block SBM if qn,p2,n = O(1/n) then the mini-
mum degree is of constant order. In this case, ordinary spectral clustering using
the normalized Laplacian would perform poorly. RSC performs better since from
(17) it only requires that the larger of the two within block probabilities, that is
p1,n, growing appropriately fast. Figure 2 illustrates this with n = 3000 and block
probability matrix as in (13). The figure provides the scatter plot of the first two
eigenvectors of the unregularized and regularized sample Laplacians. Figure (a)
corresponds to the usual spectral clustering, while plots (b) & (c) corresponds to
RSC-τ , with τ = 26.5, 3000, respectively. Here, τ = 26.5 was selected using our
data-driven methodology for selecting τ proposed in Section 5. The fraction of
mis-classified are 48%,17.6%,26.2% for the cases (a), (b), (c), respectively.

From the scatter plots, one sees that there is considerably less scattering for the
darker blue points with regularization. This results in improvements in clustering
performance. Also, note that the performance in case (c), in which τ is taken to
be very large, is only slightly worse than case (b). For case (c), there is almost no
variation in the first eigenvector, plotted along the x-axis. This makes sense since
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FIG. 2. Scatter plot of first two eigenvectors with B as in (13). The x, y axes provides values for
the first, second eigenvectors, respectively. The colors corresponds to the cluster memberships of the
nodes. Here, the block probability matrix B is as in (13). Plot (a) corresponds to τ = 0. (b) τ = 26.5,
selected using our data-driven DKest methodology proposed in Section 5. (c) τ = n.

the first eigenvector is proportional to (

√
d̂1,τ , . . . ,

√
d̂n,τ ) and for large τ one has√

d̂i,τ ≈ √
τ .

It may seem surprising that in Theorem 5, claim (17), the smallest within block
probability, that is pK,n does not matter at all. One way of explaining this is that
if one can do a good job identifying the top K − 1 highest degree clusters then the
cluster with the lowest degree can also be identified simply by eliminating nodes
not belonging to this cluster.

Theorem 5 follows from the following more general theorem for cluster recov-
ery in the SBM. Theorem 5 and its more general version, Theorem 6 below, will
be proved in the supplementary material [13].

Denote γk,n = nk(pk,n − qn). The following is a more general result regarding
the impact of regularization in the K-block SBM.
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THEOREM 6. For the K block SBM, with block probability matrix (15),

δn � (m̃1,nm1,n − m2,n)

m1,n

√
dmax,n logn.(19)

Here, δn is given by (14) and

m1,n =
K∑

k=1

wk

γk,n

,(20)

m̃1,n =
K∑

k=1

1

γk,n

,(21)

m2,n =
K∑

k=1

wk

γ 2
k,n

.(22)

Further, let {τn, n ≥ 1} satisfy (16). If δn goes to 0, as n tends to infinity, then
RSC-τn gives consistent cluster estimates.

Theorem 5 and Theorem 6 will be proved in the supplementary material [13].

4. Regularization in SBM with strong and weak clusters. In many prac-
tical situations, not all nodes belong to clusters that can be estimated well. As
mentioned in the Introduction, these nodes interfere with the clustering of the re-
maining nodes in the sense that none of the top eigenvectors might discriminate
between the nodes that do belong to well-defined clusters. As an example of a
real life data set, we consider the political blogs data set, which has two clus-
ters, in Section 5.2. With ordinary spectral clustering, the top two eigenvectors do
not discriminate between the two clusters (see Figure 3 for explanation). In fact,
it is only the third eigenvector that discriminates between the two clusters. This
results in bad clustering performance when the first two eigenvectors are consid-
ered. However, regularization rectifies this problem by ‘bringing up’ the important
eigenvector thereby allowing for much better performance.

We model the above situation—where there are main clusters as well as outlier
nodes—in the following way: Consider a stochastic block model, as in (15), with
K + Kw blocks. In particular, let the block probability matrix be given by

B =
(

Bs Bsw

B ′
sw Bw

)
,(23)

where Bs is a K × K matrix with (p1,n, . . . , pK,n) in the diagonal and qn in the
off-diagonal. Further, Bsw,Bw are K × Kw and Kw × Kw dimensional matrices,
respectively. In the above (K + Kw)-block SBM, the top K blocks corresponds
to the well-defined or strong clusters, while the bottom Kw blocks corresponds to
less well-defined or weak clusters.
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FIG. 3. Depiction of the political blog network [1]. Instead of discriminating between the red and
blue nodes, the second eigenvector discriminates the small cluster of 4 nodes (circled) from the
remaining. This results in bad clustering performance.

We now formalize our notion of strong and weak clusters. The matrix Bs models
the distribution of edges between the nodes belonging to the strong clusters, while
the matrix Bw has the corresponding role for the weak clusters. The matrix Bsw

models the interaction between the strong and weak clusters. For ease of analysis,
we make the following simplifying assumptions: Assume that pk,n = ps

n, for k =
1, . . .K , and that the strong clusters C1, . . . ,CK have equal sizes, that is, assume
nk = ns for k = 1, . . . ,K .

Let nw be the number of nodes belonging to a weak cluster. In other words,
Kns + nw = n. We make the following three assumptions:

(ps
n − qn)

2

ps
n

grows faster than
logn

n
,(24)

nw = O
(√

ps
nn logn

)
.(25)

Assumption (24) ensures recovery of the strong clusters if there were no nodes
belonging to weak clusters (See Theorem 5 or McSherry [19], Corollary 1). As-
sumption (25) simply states that the total number of nodes belonging to the weak
clusters does not grow faster than

√
ps

nn logn.
We only assume that the rank of Bs is K . Thus, the rank of B is at least K . As

before, we assume that K is known and does not grow with n. The number of weak
clusters, Kw , need not be known and could be as high as nw . We do not even place
any restriction on the sizes of each weak cluster. Indeed, we even entertain the case
that each of the Kw clusters has one node. Consequently, we are only interested in
recovering the strong clusters.

Theorem 7 presents our theorem for the recovery of the K strong clusters using
the RSC-τn Algorithm, with {τn, n ≥ 1}, satisfying

nps
n logn

τn

= o(1).(26)
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In other words, the regularization parameter is taken to grow faster than nps
n logn,

where notice that nps
n is of the same order of the expected maximum degree of the

graph. Let T̂1, . . . , T̂K be the clusters outputted from the RSC-τn algorithm. Let

f̂ = min
π

max
k

|Ck ∩ T̂ c
π(k)| + |Cc

k ∩ T̂π(k)|
nk

,

be as in (6). Notice that the clusters C1, . . . ,CK do not form a partition of
{1, . . . , n}, while the estimates T̂1, . . . , T̂K do. However, since the total size of the
weak clusters is o(n) from assumption (25), the quantity f̂ still represents a good
measure of accuracy of cluster recovery.

THEOREM 7. Let assumptions (24) and (25) be satisfied. If {τn, n ≥ 1} sat-
isfies (26), then the clustering error f̂ for RSC-τn goes to zero with probability
tending to one.

For convenience, we relegate the proof of the theorem to the supplementary
material [13]. The theorem states that under assumptions (24) and (25) one can get
the same results with regularization that one would get if the nodes belonging to
the weak clusters were not present.

Spectral clustering (with τ = 0) may fail under the above assumptions. This is
elucidated in Figure 4. Here, n = 2000 and there are two strong clusters (K = 2)
and three weak clusters (M = 3). The first 1600 nodes are evenly split between
the two strong clusters, with the remaining nodes split evenly between the weak
clusters. The matrix Bs and Bw are as in (27) and Bsw is a matrix with all entries
0.015.

Bs =
(

0.025 0.015
0.015 0.025

)
, Bw =

⎛
⎝0.007 0.015 0.015

0.015 0.0071 0.015
0.015 0.015 0.0069

⎞
⎠ .(27)

The nodes in the weak clusters have relatively lower degrees, and consequently,
cannot be recovered. Figures 4(a) and 4(b) show the first 3 eigenvectors of the
population Laplacian in the regularized and unregularized cases. We plot the first
3 instead of the first 5 eigenvectors in order to facilitate understanding of the plot.
In both cases, the first eigenvector is not able to distinguish between the two strong
clusters. This makes sense since the first eigenvector of the Laplacian has elements
whose magnitude is proportional to square root of the population degrees (see, e.g.,
[27] for a proof of this fact). Consequently, as the population degrees are the same
for the two strong clusters, the values for this eigenvector is constant for nodes
belonging to the strong clusters.

The situation is different for the second population eigenvector. In the regular-
ized case, the second eigenvector is able to distinguish between these two clusters.
However, this is not the case for the unregularized case. From Figure 4(a), not even
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FIG. 4. First three population eigenvectors corresponding to Bs and Bw in (27). In both plots, the
x-axis provides the node indices while the y-axis gives the eigenvector values. The regularization
parameter was taken to be n. The shaded blue and pink regions corresponds to the nodes belonging
to the two strong clusters. The solid red line, solid blue line and −×− black lines correspond to the
first, second and third population eigenvectors, respectively.

the third unregularized eigenvector is able to distinguish between the strong and
weak clusters. Indeed, it is only the fifth eigenvector that distinguishes between the
two strong clusters in the unregularized case.

In Figure 5(a) and 5(b), we show the second sample eigenvector for the two
cases in Figure 4(a) and 4(b). Note, we do not show the first sample eigenvector
since from Figure 4(a) and 4(b), the corresponding population eigenvectors are not
able to distinguish between the two strong clusters. As expected, it is only for the
regularized case that one sees that the second eigenvector is able to do a good job
in separating the two strong clusters. Running K-means, with K = 2, resulted in

FIG. 5. Second sample eigenvector corresponding to situation in Figure 4. As before, in both plots,
the x-axis provides the node indices, while the y-axis gives the eigenvector values. As before, the
shaded blue and pink regions corresponds to the nodes belonging to the two strong clusters. For plots
(a) and (b), the blue line correspond to the second eigenvector of the respective sample Laplacian
matrices.
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a mis-classification of 49% of the nodes in the strong clusters in the unregularized
case, compared with 16.25% in the regularized case.

5. DKest: Data dependent choice of τ . The results Sections 3 and 4 theo-
retically examined the gains from regularization for large values of regularization
parameter τ . Those results do not rule out the possibility that intermediate val-
ues of τ may lead to better clustering performance. In this section, we propose a
data dependent scheme to select the regularization parameter. We compare it with
the scheme in [8] that uses the Girvan–Newman modularity [6]. We use the mea-
sure f̂ , given by (6), to quantify the closeness of the estimated clusters to the true
clusters.

Our scheme works by directly estimating the quantity in (10) by providing,
for each τ in grid, an estimate L̂τ of Lτ . The intuition behind this estimate is
as follows: Given knowledge of the true clusters, one can get estimates of the
within and between block probabilities, assuming that the graph is drawn from
an SBM. However, since the clusters are not known, we use the clusters provided
by RSC-τ algorithm and then use these to estimate the within and between block
probabilities. The Laplacian L̂τ is simply the Laplacian corresponding to these
estimated probabilities.

In particular, let Ĉ1,τ , . . . , ĈK,τ be the estimates of the clusters C1, . . . ,CK pro-
duced from running RSC-τ . The estimate L̂τ is taken as the population regularized
Laplacian corresponding to an estimated block probability matrix B̂ and clusters
Ĉ1,τ , . . . , ĈK,τ . More specifically, the (k1, k2)th entry of B̂ is taken as

B̂k1,k2 =
∑

i∈Ĉk1,τ ,j∈Ĉk2,τ
Aij

|Ĉk1,τ ||Ĉk2,τ |
.(28)

The above is simply the proportion of edges between the nodes in the cluster esti-
mates Ĉk1,τ and Ĉk2,τ . The following statistic is then considered:

DKestτ = ‖Lτ − L̂τ‖
μK(L̂τ )

,(29)

where μK(L̂τ ) denotes the K th smallest eigenvalue of L̂τ . The τ that minimizes
the DKestτ criterion is then chosen. Since this criterion provides an estimate of the
Davis–Kahan bound, we call it the DKest criterion.

We compare the above to the scheme that uses Girvan–Newman modularity
[6, 20], as suggested in [8]. For a particular τ in the grid, the Girvan–Newman
modularity is computed for the clusters outputted using the RSC-τ algorithm. The
τ that maximizes the modularity value over the grid is then chosen.

Notice that the best possible choice of τ would be the one that simply minimizes
the clustering error f̂ over the selected grid. However, this cannot be computed in
practice since calculation of f̂ requires knowledge of the true clusters. Neverthe-
less, this provides a useful benchmark against which one can compare the other
two schemes. We call this the ‘oracle’ scheme.



REGULARIZED SPECTRAL CLUSTERING 1783

TABLE 1
Performance of spectral clustering as a function of τ for SBM for λ values of 30,20 and 10

Mean f̂ (std. f̂ )

n λ K w β Oracle DKest Girvan–Newman

1200 20 3 [1 5 5] 0.70 0.044 0.078 0.108
(0.015) (0.028) (0.032)

1200 20 3 [1 5 10] 0.30 0.000 0.003 0.010
(0.001) (0.003) (0.006)

1200 30 3 [1 5 5] 0.70 0.014 0.019 0.026
(0.003) (0.004) (0.007)

1200 30 3 [1 5 10] 0.70 0.006 0.016 0.023
(0.003) (0.010) (0.011)

2000 10 3 [1 5 10] 0.50 0.007 0.077 0.097
(0.003) (0.066) (0.065)

2000 10 3 [1 5 10] 0.70 0.008 0.277 0.119
(0.005) (0.129) (0.119)

2000 20 3 [1 5 10] 0.70 0.012 0.068 0.045
(0.013) (0.030) (0.020)

2000 20 4 [1 5 5 10] 0.60 0.001 0.018 0.021
(0.001) (0.011) (0.017)

2000 30 4 [1 5 5 10] 0.60 0.001 0.008 0.013
(0.001) (0.008) (0.008)

5.1. Simulation results. Table 1 provides results comparing the three
schemes, namely, DKest, Girvan–Newman and ‘oracle’ schemes. We perform sim-
ulations following the pattern of [2]. In particular, for a graph with n nodes we take
the K clusters to be of equal sizes. The K × K block probability matrix is taken
to be of the form

B = fac

⎛
⎜⎜⎝

βw1 1 · · · 1
1 βw2 · · · 1
· · · · · · · · · · · ·
· · · · · · 1 βwK

⎞
⎟⎟⎠ .

Here, the vector w = (w1, . . . ,wK), which are the inside weights, denotes the rel-
ative degrees of nodes within the communities. Further, the quantity β , which is
the out-in ratio, represents the ratio of the probability of an edge between nodes
from different communities to that of probability of edge between nodes in the
same community. The scalar parameter fac is chosen so that the average expected
degree of the graph is equal to λ.

Table 1 compares the two methods of choosing the best τ for various choices
of n,K,β,w and λ. For each of these choices of parameters, a random graph is
generated according to an SBM with block probability matrix given by (28). Reg-
ularized spectral clustering is conducted for τ ranging from 0 to λ, in steps of
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FIG. 6. Second eigenvector of the unregularized and regularized Laplacians for the political blogs
data set [1]. The shaded blue and pink regions corresponds to the nodes belonging to the liberal and
conservative blogs, respectively.

0.5. Next, the regularization parameter τ is selected using the DKest and Girvan–
Newman methodologies, and the corresponding clustering error f̂ is computed.
For comparison purposes, we also compute f̂ using the optimal, though imprac-
tical, oracle scheme. The above process is repeated 10 times, and the mean and
standard deviations of the clustering error f̂ using the oracle, DKest and Girvan–
Newman procedures are reported in Table 1.

In general, we see that the DKest selection procedure performs comparably,
and in some cases much better, than the procedure that used the Girvan–Newman
modularity. The performance of the two methods is much closer when the average
degree is small.

5.2. Analysis of the political blogs dataset. Here, we investigate the perfor-
mance of DKest on the well studied network of political blogs [1]. The data set
aims to study the degree of interaction between liberal and conservative blogs over
a period prior to the 2004 U.S. Presidential Election. The nodes in the networks
are select conservative and liberal blog sites. While the original data set had di-
rected edges corresponding to hyperlinks between the blog sites, we converted it
to an undirected graph by connecting two nodes with an edge if there is at least
one hyperlink from one node to the other.

The data set has 1222 nodes with an average degree of 27. Spectral clustering
(τ = 0) resulted in only 51% of the nodes correctly classified as liberal or conser-
vative. The oracle procedure, with τ = 0.5, resulted in 95% of the nodes correctly
classified. The DKest procedure selected τ = 2.25, with an accuracy of 81%. The
Girvan–Newman (GN) procedure, in this case, outperforms the DKest procedure
providing the same accuracy as the oracle procedure. As predicted by our theory,
the performance becomes insensitive for large τ . In this case, 70% of the nodes are
correctly clustered for large τ .
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FIG. 7. Third eigenvector of the unregularized Laplacian.

We remark that the DKest procedure does not perform as well as the GN proce-
dure most likely because our estimate L̂τ in (29) assumes that the data is generated
from an SBM, which is a poor model for the data due to the large heterogeneity
in the node degrees. A better model for the data would be the degree corrected
stochastic block model (D-SBM) proposed by Karrer and Newman [14]. If we use
D-SBM based estimates in DKest, then the selection of τ matches that of the GN
Newman and the oracle procedure. See Section 6 for a discussion on this.

The results of Section 4 also explain why unregularized spectral clustering per-
forms badly (see Figure 3). The first eigenvector in both cases (regularized and
unregularized) does not discriminate between the two clusters. In Figure 6, we
plot the second eigenvector of the regularized and unregularized Laplacians. The
second eigenvector is able to discriminate between the clusters in the regularized
case, while it fails to do so in without regularization. Indeed, it is only the third
eigenvector in the unregularized case that distinguishes between the clusters, as
shown in Figure 7.

6. Discussion. The paper provides a theoretical justification for regulariza-
tion. In particular, we show why choosing a large regularization parameter can
lead to good results. The paper also partly explains empirical findings in Amini
et al. [2] showing that the performance of regularized spectral clustering becomes
insensitive for larger values of regularization parameters. It is unclear at this stage
whether the benefits of regularization, resulting from the trade-offs between the
eigengap and the concentration bound, hold for the regularization in [7, 23] as
they hold for the regularization in Amini et al. [2] (as demonstrated in Sections 3
and 4).

Recent results in [17] demonstrates that it is possible to remove the
√

logn

appearing in the numerator of the concentration bound (12). Although the concen-
tration bound of [17] has a 1/

√
τ dependence on τ , it is very likely that one could

combine the techniques in [17], along with our results, to improve the concentra-
tion bound in (12).
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Even though our theoretical results focus on larger values of the regularization
parameter it is very likely that intermediate values of τ produce better clustering
performance. Consequently, we propose a data-driven methodology for choosing
the regularization parameter. We hope to quantify theoretically the gains from us-
ing intermediate values of the regularization parameter in a future work.

We remark that community detection in not all datasets can be improved via
regularization. Note, our theoretical results do not demonstrate improvement using
regularization for block models where the within block probabilities are all equal,
and the between block probabilities are equal as well. This is confirmed by simu-
lation results we conducted. This suggests that regularization only has an effect in
block models with heterogeneous degrees. It would be interesting to characterize
the scenarios where regularization has a dramatic effect.

For the extension of the SBM proposed in Section 4, if the rank of B , given by
(23), is K then the model encompasses specific degree-corrected stochastic block
models (D-SBM) [14] where the edge probability matrix takes the form

P = 
ZBZ′
.

Here, 
 = diag(θ1, . . . , θn) models the heterogeneity in the degrees. In particular,
consider a K-block D-SBM with 0 < θi ≤ 1, for each i. Assume that θi = 1 for the
most of the nodes. Take the nodes in the strong clusters to be those with θi = 1.
The nodes in the strong clusters are associated to one of K clusters depending on
the cluster they belong to in the D-SBM. The remaining nodes are taken to be in
the weak clusters. Assumption (25) states that the number of nodes i with θi < 1
is o(n). It would be interesting to investigate the effect of regularization in more
general versions of the D-SBM, especially where there are high as well as low
degree nodes.

The DKest methodology for choosing the regularization parameter works by
providing estimates of the population Laplacian assuming that the data is drawn
from an SBM. From our simulations, it is seen that the performance of DKest does
not change much if we take the matrix norm in the numerator of (29) to be the
Frobenius norm, which is much faster to compute.

It is seen that the performance of DKest improves for the political blogs data
set by taking L̂τ to be the estimate assuming that the data is drawn from the more
flexible D-SBM. Indeed, if we take L̂τ to be such an estimate then the performance
of DKest is seen to be as good as the oracle scheme (and the GN scheme) for this
data set. We describe how we construct this estimate in the supplementary material
[13].

APPENDIX: ANALYSIS OF SBM WITH K BLOCKS

Throughout this section, we assume that we have samples from a K block SBM.
Denote the sample and population regularized Laplacian as Lτ ,Lτ , respectively.
For ease of notation, we remove the subscript τ from the various matrices such as
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Lτ ,Lτ ,Aτ ,Dτ ,Dτ . We also remove the subscript τ in the d̂i,τ , di,τ ’s and denote
these as d̂i , di , respectively. However, in some situations we may need to refer to
these quantities at τ = 0. In such cases, we make this clear by writing them as d̂i,0,
for i = 1, . . . , n and di,0 for i = 1, . . . , n.

The following lemma provides high probability bounds on the degree. Let τ be
of the form max{dmin,n, c logn} and δi,c = max{di,0, c logn}.

LEMMA 8. On a set E1 of probability at most 1 − 2/nc1−1, one has

|d̂i,τ − di,τ | ≤ c2

√
δi,c logn for each i = 1, . . . , n,

where c1 = 0.5c2
2/(1 + c2/

√
c).

The above is proved in the supplementary material [13].

A.1. Concentration of Laplacian. Below we provide the proof of Theo-
rem 4. Throughout this section we assume that the quantities c, c2 appearing in
Lemma 8 are given by c = 32 and c2 = 2

√
2. Notice that this makes c1 > 2, where

c1 as in Lemma 8.
From Lemma 8, with probability at least 1 − n−1,

max
i

|d̂i − di |/di ≤ max
i

c2

√
δi,c logn/di.

We claim that the right-hand side of the above is at most 1/2. To see this, notice
that √

δi,c logn/di ≤
√

δi,c logn/δi,c

=
√

logn/
√

δi,c

≤ 1/
√

c.

Here, the first inequality follows from noting that di = di,0 + τ , which is at most
max{di,0, c logn}, using τ ≥ c logn. The third inequality follows from using δi,c ≥
c logn. Consequently, maxi |d̂i − di |/di ≤ 1/2 using c2 = 2

√
2 and c = 32.

PROOF OF THEOREM 4. Our proof has parallels with the proof in [22]. Write
L̃ = D−1/2AD−1/2. Then

‖L − L ‖ ≤ ‖L − L̃‖ + ‖L̃ − L ‖.
We first bound ‖L − L̃‖. Let F = D1/2D−1/2. Then L̃ = FLF . Correspondingly,

‖L − L̃‖ ≤ ‖L − FL‖ + ‖FL − L̃‖
≤ ‖I − F‖‖L‖ + ‖F‖‖L‖‖I − F‖(30)

≤ ‖I − F‖(
2 + ‖I − F‖)

.
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Notice that

F − I = (
I + (D − D)D−1)1/2 − I.

Further, using maxi |d̂i − di |/di ≤ 1/2, and the fact that
√

1 + x − 1 ≤ x for x ∈
[−3/4,3/4], as in [22], one gets that

‖F − I‖ ≤ c2
maxi

√
δi,c logn

di

with high probability. Consequently, using (30), one gets that

‖L − L̃‖ ≤ c2 max
i

√
δi,c logn

di

(
2 + c2 max

i

√
δi,c logn

di

)
(31)

with probability at least 1 − 1/nc1−1.

max
i

√
δi,c

di

≤ ε̃τ,n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
dmin,n + τ

if τ ≤ 2dmax,n,

√
max{dmax,n, c logn}

dmin,n + τ/2
if τ > 2dmax,n.

To see this notice, that δi,c ≤ di,0 + τ = di , using max{τ, di,0} ≥ c logn. Conse-
quently,

√
δi,c/di ≤ 1/

√
di,0 + τ , which is at most 1/

√
dmin,n + τ .

Further,

max
i

√
δi,c

di

= max
{

max
i

{ √
di,0

di,0 + τ
,

√
c logn

di,0 + τ

}}
.

Now,

max
i

{ √
di,0

di,0 + τ

}
≤

√
dmax,n

dmax,n + τ
for τ > dmax,n

and di,0 + τdmin,n + τ . Consequently,

max
i

√
δi,c

di

≤
√

max{dmax,n, c logn}
dmin,n + τ

for τ > dmax,n. Consequently, from (31), one gets that

‖L − L̃‖ ≤ c2ε̃τ,n

√
logn(2 + c2/

√
c)(32)

with probability at least 1 − 1/nc1−1.
Next, we bound ‖L̃ − L ‖. We get high probability bounds on this quantity

using results in [18, 22]. In particular, as in [22],

L̃ − L = ∑
i≤j

Yij ,
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where Yij = D−1/2XijD
−1/2, with

Xij =
{

(Aij − Pij )
(
eie

T
j + ej e

T
i

)
if i �= j ,

(Aij − Pij )eie
T
i if i = j .

Further, ‖Yij‖ ≤ 1/(dmin,n + τ). Let σ 2 = ‖∑
i≤j E(Y 2

ij )‖. We claim that σ 2 ≤
ε̃2
τ,n. As in [22], page 15, notice that

∑
i≤j

E
(
Y 2

ij

) =
n∑

i=1

1

di,0 + τ

(
n∑

j=1

Pij (1 − Pij )

dj,0 + τ

)
eie

T
i .(33)

Clearly, (
n∑

j=1

Pij (1 − Pij )

dj,0 + τ

)
≤ di,0

dmin,n + τ
.

Consequently, for each i the right-hand side of (33) is at most 1/(dmin,n + τ) lead-
ing to the fact that σ 2 ≤ 1/(dmin,n + τ).

For τ > 2dmax,n, we can get improvements in the bound for σ 2. By using the
fact that dj,0 + τ > dmax,n + τ/2 for τ > 2dmax,n, one gets that(

n∑
j=1

Pij (1 − Pij )

dj,0 + τ

)
≤ di,0

dmax,n + τ/2

for τ > 2dmax,n. Consequently, using di,0/(di,0 + τ) ≤ dmax,n/(dmax,n + τ), one
gets that σ 2 ≤ dmax,n/(dmax,n + τ/2)2 for τ > 2dmax,n. Thus, σ ≤ ε̃τ,n.

Applying Corollary 4.2 in [18], one gets

P
(‖L̃ − L ‖ ≥ t

) ≤ ne−t2/2σ 2
.

Consequently, with probability at least 1 − 1/nc1−1 one has

‖L̃ − L ‖ ≤ σ

√
2c1 logn

dmin,n

.

Thus, with probability at least 1 − 1/nc1−1, one has

‖L̃ − L ‖ ≤
√

2c1 lognε̃τ,n.(34)

As a result, combining (32) and (34), one gets that with probability at least
1 − 2/nc1−1, one has

‖Lτ − Lτ‖ ≤
√

lognε̃τ,n

[√
2c1 + c2

(
2 + (c2/

√
c)

)]
.

Substituting the values of c2, c, and noting that c1 > 2 one gets the expression in
the theorem. �
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SUPPLEMENTARY MATERIAL

Supplementary Material: Supplement to “Impact of regularization on
spectral clustering” (DOI: 10.1214/16-AOS1447SUPP; .pdf). The supplemen-
tary file contains the proof of the claims in the paper that were not included in the
main body.
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