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Estimation Stability With Cross-Validation
(ESCYV)

Chinghway LM and Bin YU

Cross-validation (CV) is often used to select the regularization parameter in high-
dimensional problems. However, when applied to the sparse modeling method Lasso,
CV leads to models that are unstable in high-dimensions, and consequently not suited
for reliable interpretation. In this article, we propose a model-free criterion ESCV based
on a new estimation stability (ES) metric and CV. Our proposed ESCV finds a smaller
and locally ES-optimal model smaller than the CV choice so that it fits the data and
also enjoys estimation stability property. We demonstrate that ESCV is an effective
alternative to CV at a similar easily parallelizable computational cost. In particular,
we compare the two approaches with respect to several performance measures when
applied to the Lasso on both simulated and real datasets. For dependent predictors
common in practice, our main finding is that ESCV cuts down false positive rates
often by a large margin, while sacrificing little of true positive rates. ESCV usually
outperforms CV in terms of parameter estimation while giving similar performance as
CV in terms of prediction. For the two real datasets from neuroscience and cell biology,
the models found by ESCV are less than half of the model sizes by CV, but preserves
CV’s predictive performance and corroborates with subject knowledge and independent
work. We also discuss some regularization parameter alignment issues that come up in
both approaches. Supplementary materials are available online.

Key Words: Lasso; Model selection; Parameter estimation; Prediction.

1. INTRODUCTION

1.1 REGULARIZATION METHODS

There is an ever increasing amount of data in all fields of science and engineering. Often,
these data come in high dimensions relative to the sample size, posing a new challenge
to scientists, engineers, and decision makers. These problems, plagued by the curse of
dimensionality, suffer from overfitting when classical methods are applied. Regularization
methods are used to tackle this problem of overfitting head on, usually by imposing a penalty
on the complexity of the solution or through early stopping. For example, in fitting the usual
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linear regression model, the Lasso (Tibshirani 1996) and ridge regression (Tikhonov 1943;
Hoerl 1962) add an L; and L, penalty on the coefficient estimates, respectively, to the usual
least-square fit objective function. Regularization methods can also take the form of early
stopping iterative algorithms like classical forward selection or L,-Boosting (Friedman
2001; Buhlmann and Yu 2003; Zhang and Yu 2005; Zhang 2011). Common to these
methods is that they provide a family of possible estimators instead of just one estimator,
with the unregularized solution at one end of the spectrum. This family is indexed by a
regularization parameter and is commonly referred to as the solution path. For the Lasso
and ridge regression, this regularization parameter determines the extent of the respective
penalties. For the iterative algorithms, this parameter corresponds to the number of steps
they take. Despite the difference in nature, numerous works have shown these regularization
methods, at least in the context of the linear model, are intrinsically related (Efron et al.
2004; Zhao and Yu 2007; Meinshausen, Rocha, and Yu 2007). In that light, we will not
focus on the distinction between the different types of regularization parameters but instead
simply use X as a catch-all representation for them. In the same vein, we focus on the Lasso
in this chapter even though we believe the method we present will work in the general
framework.

1.2 SELECTING THE REGULARIZATION PARAMETER A

Much work has been done to show that regularization methods yield desirable solu-
tions in high-dimensional problems. For example, the popular Lasso has been shown to
be L,-consistent (Zhang and Huang 2008; Meinshausen and Yu 2009; Bickel, Ritov, and
Tsybakov 2009) and model selection consistent (Meinshausen and Bithlmann 2006; Zhao
and Yu 2006; Tropp 2006; Wainwright 2009) in the high-dimensional setting when respec-
tive conditions are met. These results guarantee the existence of the A needed, but offer
little guidance on how to find the desired X in practice. Indeed, data-driven regularization
parameter selection with guaranteed theoretical performance turns out to be a particularly
difficult problem.

One can rely on traditional model selection criteria like Akaike’s information criterion
(AIC; Akaike 1974) and Bayesian information criterion (BIC; Schwarz 1978). They are
easy to compute and have since been adapted for the high-dimensional setting in the form of
corrected AIC (Hurvich and Tsai 1989) and extended BIC (Chen and Chen 2008). However,
the validity of both the original and updated criteria rely on parametric assumptions. Fur-
thermore, they are derived from asymptotic results, so even when parametric assumptions
are satisfied, they may not work well in the finite sample case.

More commonly used today are parametric-model-free approaches like cross-validation
(CV; Allen 1974; Stone 1974) and bootstrap methods (Efron 1979; Zhang 1993; Shao
1996). Even though they too have asymptotic justifications, the heuristic rationale behind
them are clear. Further, they have become computationally feasible for increasingly large
datasets with the rapid advancements in computing power and the shift toward the parallel
computing paradigm. These methods rely on data resampling to assess prediction error of
candidate solutions and can be found in various statistics and machine learning literature
(Breiman 1995, 1996, 2001; Hastie, Tibshirani, and Friedman 2002). In particular, it is the
most popular approach used in regularization methods to select A. Doing so often leads to
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estimators with good predictive performance when the sample size is not small. However,
there are other performance metrics that are also of interest in statistics, among them
parameter estimation and variable selection metrics, with important practical connections.
Unsurprisingly, optimizing predictive performance does not necessarily translate to having
success with respect to these other performance metrics.

1.3 ESTIMATION STABILITY

Statistical estimation is often tied to the optimization of an empirical loss or a random
function based on data. Take, for example, when fitting a linear model for random variables
X € IR?,Y € IR, one might want to minimize the predictive L, loss,

f(B) = Exy(Y — X'B)".

However, since the underlying joint distribution of (X, Y) is unknown, we instead minimize
the empirical loss

5 1 & 5

fp=- ,;(yi —xiB)’.
where (x;,y;) for i =1,...,n, are the observed samples of (X, Y). By minimizing
f instead of f, we incur a random estimation error dependent on the sample we observed.
In the classical ideal scenario, when the sample contains independent and identically dis-
tributed observations and the sample size n is large and p is small, this estimation error
incurred is small. If we draw multiple samples from (X, Y), each resulting estimate from
minimizing the respective f’s will be close to that of minimizing f, and consequently close
to each other. This closeness across different samples can be seen as a form of stability in
the estimation procedure, and we call it estimation stability.

When the differences across different samples are measured by the L, error, the estima-
tion stability is obviously related to variance. We opt to use the term “stability” rather than
the more commonly used term “variability” in statistics. This is to recognize the fact that
stability is a concept broader than variance or variability and that it is used in other quan-
titative fields such as numerical analysis, dynamical systems, and linear analysis (La Salle
1976; Higham 1996; Ellis 1998). Stability is also not associated with a particular metric
(unlike variance) and thus allows its consideration under different metrics. In a recent article
(Yu 2013), we advocate an enhanced emphasis on stability in statistical inference, espe-
cially for large and high-dimensional data for which instability of statistical methods is
much more common than in the domain of classical statistics.

It is clear that estimation stability is a necessary property for a reasonable estimation
procedure: the solution is not meaningful if it varies considerably from sample to sample.
The converse certainly cannot be true in general: an arbitrary constant estimate will not
vary but is certainly meaningless. Concurrent with and independent of our work, Nan and
Yang (2014) proposed diagnostic measures to investigate this instability. For us, we make
use of cross-validation, and devise a model-free criterion based on estimation stability for
the selection of the regularization parameter A. Specifically, our proposed new criterion of
estimation stability cross-validation (ESCV) combines a new metric of estimation stability
(ES) with CV. For a given regularization parameter A, our new ES(}) metric is the reciprocal
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of a test statistic for testing the null hypothesis that the regression function is zero. The test
statistic is an estimate of the regression function standardized by an approximate delete-d
Jackknife standard error estimate based on the same pseudo datasets as in CV, and both
estimates are functions of A. The proposed ESCV criterion chooses a local minimum of
ES(A), which is smaller (more regularized) than the selection of A by CV. It is worth noting
that the computational cost of ESCV is similar to that of CV and that they are both well
suited to parallel computation, the dominant computing platform for big data.

1.4 GOAL FOR ESCV

We are focused on the problem of selecting a regularization parameter A, and the corre-
sponding solution from the solution path. This is a practical problem faced by practitioners,
who often turn to CV, and to a lesser extent, (extended) BIC. This may yield undesirable
results depending on the circumstances and nature of the problem. For example, as shown
in Section 3 the usual implementation of CV has good predictive performance but poor
model selection properties whereas BIC works poorly in high noise situations.

We demonstrate that our criterion ESCV provides a viable alternative to CV and (ex-
tended) BIC. We compare the three approaches with respect to several performance metrics
when applied to the Lasso on both simulated datasets with different predictor dependence
set-ups and two real datasets. These performance metrics are L, error for parameter esti-
mation, prediction error, F-measure, and model size for model selection performance.

To be clear, we acknowledge that it is unlikely for one solution in the solution path
to be optimal on all fronts. However, we find that ESCV is a strong candidate for a one
solution compromise. We find that ESCV compares favorably with CV and BIC where they
are known to excel, and outperforms them in other scenarios over different performance
criteria. In particular, ESCV obtains excellent model selection results that are substantially
better than those from CV, both in simulations and our real datasets. When the predictors
are correlated, which is often the case in practice, ESCV also often outperforms CV for
parameter estimation while at same time provides prediction errors comparable to those of
CV.

We note that previous works based on stability of solutions have shown positive results
in terms of model selection (Breiman 1996; Bach 2008; Meinshausen and Buhlmann 2010).
The work here differs from them in three substantial ways. First, we develop a different
measure of stability ES that is closely related to estimation rather than model selection,
even though our ESCV does have desirable model selection properties quantified by the
F-measure across all simulation set-ups in Section 3. Second, we restrict our attention to
selecting the regularization parameter. Even though we evaluate our choice by the perfor-
mance of the corresponding solution, our focus remains on determining the right amount
of regularization. We do not introduce any further tuning parameters as in Meinshausen
and Biihlmann (2010). Concurrent with and independent of our work, recent follow-up
articles Meinshausen and Biithlmann (2010) use model selection stability to select edges
in graphical models (Liu, Roeder, and Wasserman 2010; Haury et al. 2012) or modify
stability model selection to improve its false discovery rate theoretical properties (Shah
and Samworth 2013). The former two articles introduce further tuning parameters and they
recommend fixed values for them. Shah and Samworth (2013) employed the complemen-



Downloaded by [University of California, Berkeley] at 18:54 18 May 2016

468 C.LIM AND B. YU

tary half-sample data perturbation scheme. ESCV can work on such a scheme, but doing
so would depart from the usual implementation of CV for comparison purposes. Third, as
in Meinshausen and Bithlmann (2010), these three articles apply data perturbation schemes
such as bootstrap and subsampling with hundreds or thousands runs of model fitting. On
the contrary, the CV (and ESCV) data perturbation scheme often works well based on 5-10
runs of model fitting.

We also note the previous work on estimation stability in the computer science literature.
Bousquet and Elisseeff (2002) defined algorithmic stability, and further works including
Kutin and Niyogi (2002) and Mukherjee et al. (2006) explored the role stability has in
some M-estimators. In particular, they showed that good training stability is necessary and
sufficient for consistency. The ES metric we propose can be seen as a special form of some
of the stability metrics in the above works. However, our goal is very different. We do not
assume we have good training stability. Rather, we assert that that among all the candidate
solutions, the ES metric can help select the best solution.

2. METHODOLOGY

2.1 LASSO AND PSEUDO SOLUTIONS

Let X € IR"*P, Y € IR" be our dataset. The Lasso generates a family of solutions,

A2 = argmin {|1Y — XBIl; + AIBI} -
B[A], as a function of A > 0 is also known as the Lasso solution path for 8; (j =1, ..., p).
We want to select a solution from this solution path, that is, choose a A and take its
corresponding solution in the solution path. As alluded to earlier, we would like to make
this choice based on estimation stability and fit.

Since the notion of estimation stability is tied to the sampling distribution of the data,
it is unavoidable that we need multiple solution paths to make such an assessment. Of
course, it is often costly and infeasible to obtain extra data in practice. Thankfully, this
problem is not new, and there are well-established ways to get around it. The key is to
exploit the existing data by employing data perturbation schemes, parlaying it into multiple
datasets. Let (X*[k], Y*[k]) represents our kth pseudo dataset, derived from (X, Y). In our
case, these are the cross-validation folds: we randomly partition the data into V groups and
form V pseudo datasets by leaving out one group at a time. (See Section 2.7 for other data
perturbation schemes.) We then get pseudo solutions,

Bl 1] = arg min HIY* k] — X*[K1B113 + Al1BI11 )

fork=1...V.

2.2 ALIGNMENT

For many regularization methods, there are multiple representations for the regularization
parameter A. In the case of the Lasso above, A refers to the L penalty parameter. Other
popular choices to index the solution path are the L;-norm of the coefficient estimate, and
the L-norm expressed as a fraction of the L;-norm of the unregularized solution. Each of
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Figure 1. Empirical bootstrap distribution of maximum L;-norms of Lasso estimates on a typical simulated
dataset: a base case Gaussian simulation with n = 100, p = 150, 0 = 1, p = 0.5 in Section 3.1.1.

these representations for the solution path has its own merits and is equivalent to the others
(when nontrivial) for any single solution path. The usual penalized least-square formulation
of the Lasso as given in Section 2.1 is simply the Lagrangian form of the usual least-square
problem subject to a constraint on the L;-norm, and the L;-norm of the unregularized
solution is fixed for any single solution path.

However, care must be taken on how to most meaningfully align our solution paths,
when we reference the same A across different (pseudo) solution paths. In particular, when
n < p, the L;-norm of the unregularized solution corresponds to the saturated fit and can
vary a lot depending on which data points were sampled. This makes L;-fraction a poor
choice, as the same index may correspond to very different amounts of regularization.
The effect is more pronounced when the features are more correlated. Figure 1 shows a
histogram of the maximum L-norms for 10,000 bootstrap Lasso estimates of the base case
Gaussian simulation (with n = 100, p = 150, 0 = 1, p = 0.5) in Section 3.1.1. There is
considerable spread: in this case, the upper decile is over 20% more than the lower decile.

To highlight the effect of alignment on estimation performance, we compared the per-
formance of cross-validation with the three alignments for the low noise scenarios detailed
in Section 3.1.1. As shown in Table 1, aligning the solution paths with L;-fraction does
comparatively worse than aligning with L;-norm or the penalty parameter. Notably, in the
popular R package “lars” used in solving the Lasso efficiently, the included cross-validation
code aligns with L-fraction.

For ESCV to be proposed later, we find that there is little difference in performance
when aligning with either the penalty parameter, A or the L|-norm. In this work, we will be
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Table 1. Effect of alignment on cross-validation performance on the base case Gaussian simulation with n = 100,
p =150, 0 = 1, in Section 3.1.1. The first column corresponds to the alignment based on 1, the second based on
Lj-norm, and the third based on the L fraction. Cross-validation performs worst when aligning with L-fraction.
The numbers are based on 1000 simulations

Cross-validation estimation error (standard error)

P Regularization parameter Li-norm L -fraction
0 0.795 (0.005) 0.792 (0.005) 0.813 (0.005)
0.2 0.788 (0.006) 0.774 (0.005) 0.827 (0.006)
0.5 0.967 (0.006) 0.958 (0.006) 1.03 (0.006)
0.9 1.83 (0.01) 1.81 (0.01) 1.93 (0.01)

using the A alignment as it is seen as the canonical parameterization of the Lasso problem.
This also allows us to make use of the increasingly popular R package “glmnet” (Friedman,
Hastie, and Tibshirani 2010), which can compute Lasso solutions considerably faster than
competing methods.

2.3 CONVERGENCE OF PSEUDO SOLUTIONS

Given p-dimensional pseudo solutions /§ [k;A] for k =1,...,V, we want to measure
their differences or see how similar or stable they are. Computing their pair-wise L, errors
was a natural first attempt. However, we found that these errors vary too wildly to be useful
even after normalization by means when there is high dependence between the components
in the vector and this happens often especially when p is large. Notice that the components
of an estimate of B8 are combined in a linear fashion through Xg to achieve our primary
goal of estimating the linear regression function. Therefore, we propose to compute the
estimates

Ylk; 1] = X Blk; Al

and study their stability.

To evaluate such stability, as mentioned earlier we need a measure for how far apart
the estimates are at each A: stable pseudo solutions should give similar estimates. One
possibility is to look at the average pairwise squared Euclidean distance between the V
estimates:

1 S .
AR = = DY T A1 = Y5 Al
(2) k)
It is not hard to see that this is proportional to the more familiar “sample variance” formu-
lation,

R 1 =
Var(Y ) = ; > IV Ik 21 = YIAIE,
k=1

where Y[A] = % Zlyzl Pliz Al

Figure 2 shows two examples of this sample variance metric. Here, the metric is in-
dexed by L;-norm of the original solution path for better visualization. The left panel is
particularly illuminating: the pseudo solutions diverge as they grow at first but converge
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"sample variance"
"sample variance"

11-norm 11-norm

Figure 2. Examples of the sample variance metric. The left panel shows an example where the metric exhibits
a “dip,” representing the “convergence” of the pseudo solutions. The right panel shows an example with a much
muted “dip.” It is difficult to use the sample variance metric to select a solution on the right.

somewhat before diverging again. Here, convergence and divergence simply refer to the
sample variance metric (which is really just the average pairwise distance) decreasing and
increasing, respectively. Heuristically, this behavior is exactly what one would expect if
there is a “correct” amount of regularization. Different samples would take different paths
toward the “correct” solution before moving away from one another due to overfitting.
Hence, we might select the A corresponding to the minimum point after the first negative
slope. That is, we want to choose A corresponding to the “dip.”

By doing this, we incorporate fit into our selection even though our criterion is based on
stability. The convergence of the solution paths is key: not only does it suggest we are close
to the truth, we are also gifted with estimation stability. Note that this helps us automatically
exclude A’s where the solution paths trivially agree. We see this trivial effect in Figure 2,
where the global minimum for the sample variance metric occurs where the solutions are
close to zero.

However, this convergence effect is not always clear. The “dip” is not always present as
shown in the example on the right panel. There you can still see the drop in gradient, but
it is not clear which A we should pick. Notice, however, that in a solution path, the norm
of the solution varies with the amount of regularization (by definition in our case). Since
larger solutions naturally varies more, using the sample variance metric skews the choice
toward solutions with small norms. We need to bring in the concept of normalization to
account for this effect.

2.4 HYPOTHESIS TESTING AND THE ESTIMATION STABILITY METRIC

In hypothesis testing, a test statistic based on data is computed and its correspond-
ing p-value is calculated by matching the test statistic with its model-specific theoretical
distribution. This test statistic often takes the form of a mean value over its estimated
standard deviation, for example, the student’s #-test. The desired outcome for the #-test, as
is often the case regardless of the assumed model and p-value computation, is to have the
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m
w
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Figure 3.  Examples of the sample variance metric (as in Figure 2) and the corresponding ES metric. We see that
the ES metric preserves the local minimum from the sample variance metric on the left panel, and introduces one
on the right panel where there was no local minimum from the sample variance metric.

test-statistic away from 0. The heuristic there is clear: if the hypothesized effect is real, the
size of the mean value should be large compared to its estimated standard deviation.

In the same vein, our sample variance metric should be relative to the squared mean size
of the corresponding solution. We define the estimation stability metric,

var(Y [A])

ES(A) = — s
4vallE

the normalized version of the sample variance metric. Figure 3 shows the corresponding
ES metrics in dashed lines superimposed on the old sample variance metric. On the left, the
“dip” from the sample variance metric is preserved by the ES metric. On the right, there is
now a pronounced minimum we can select.

A related instability measure is defined in Yuan and Yang (2005). It is a function of the
size of the data perturbation, and is not normalized by the solution size as in ESCV, but
instead by an estimate of the noise in the model. This is applied in the context of a small
number of models to be used in model averaging. In our case, we have a large number of
candidate A’s, and our goal is to find one best solution in the solution path.

The ES metric’s reciprocal has exactly the form of a test-statistic. We can view the
ES selection of A as a set of hypothesis tests. For each A, we are testing if the fit (f’[k])
is statistically different from fitting the null model (E(Y) = 0), albeit without a specified
theoretical distribution. Our ES criterion of choosing the A corresponding to the convergence
of pseudo solutions is exactly choosing ¥ [A] with locally minimal normalized variance.
This in turn, is exactly choosing the solution whose ES metric has the largest reciprocal, or
in our analogy, the most statistically significant solution along the path.
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2.5 ESCV: INCORPORATING CROSS-VALIDATION

There is no guarantee that our ES metric would have only one local minimum. Unless
the multiple solution paths match up perfectly, there will be a local minimum or multiple
local minima. Hence, even in the case where Y bears no relation to X at all, an inadvertent
minimum on the ES metric will falsely suggest the pseudo solutions are converging toward
a meaningful solution. To prevent scenarios like this where ES fails, we incorporate cross-
validation into our selection. We have already limited our choice of minimum ES to local
minima. Here we further limit it to the local minimum of A that gives a smaller solution than
the cross-validation choice. We call this improved criterion estimation stability with cross-
validation (ESCV). In Section 3 on experimental results, we use a grid-search algorithm to
find such a local minimum of ES as commonly done for CV. Thus, ESCV’s computational
cost is similar to that of CV and they are both easily parallelizable.

We are exploiting the fact that cross-validation overselects (Leng, Lin, and Wahba 2006;
Wasserman and Roeder 2009). (Please see Section 2.8 for more details.) When ES gives a
meaningful local minimum, cross-validation will likely overselect. Hence, ESCV behaves
like ES above. However, when Y bears no relation to X, or when the noise overwhelms
the signal, cross-validation will likely choose the trivial solution correctly. In this case,
ESCV will follow suit and pick up the trivial solution. Note that this has negligible additional
computation cost, as we are essentially getting the cross-validation choice for free. The
bulk of the computation lies in computing the multiple solution paths we already have.

2.6 ESCV: THE METHOD
To sum up, we have devised an ES metric that measures estimation stability:

S NPTk A = PIAIR

ES(L) = =
: I1P[A113

where Y[A] = %Ziv:l Pli; Al

We would like to select a A that minimizes ES()), but at the same time encompass the
convergence effect of pseudo solutions as well as leverage the CV choice for fit information.
Our choice Agscy is a local minimum of ES()A) that gives a smaller solution than the
CV choice. That is,

Agscv = arg min ES(}),
relA
where

A= {k > Xlcv | ES(A) = min  ES(w), for some e > O} .
we(l—e€,A+€)

Note that Agscy > Acy is equivalent to || B[Agscv]lli < ||B[Acv]l]1). If there exist multiple
local minima, our choice corresponds to the minimal value of ES(A) among the local
minima. In the rare case where there is no local minima (A = @), we drop the condition
and simply choose Agscvy = arg miny>j., ES(A).

Our method assumes there is no intercept term in the linear model. If this is not a
reasonable assumption, we should first center the data.
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2.7 DISCUSSION ON ESCV

Our ES metric is based on assessing the stability of the fitted values YA = XB[A]
instead of the estimates ,3 [A]. This seems counter-intertuitive since we are interested in a
variety of performance measures, most of which are based on the quality of A[A] itself.
However, we note that these performance measures only make sense if the underlying
B is identifiable. To that end, there is a large volume of work showing the Lasso is model
selection consistent under regularity conditions including that the smallest nonzero true
parameter value is not too small compared to a rate decaying in n (Meinshausen and
Biihlmann 2006; Tropp 2006; Zhao and Yu 2006; Wainwright 2009). In particular, it
assures us the asymptotic recovery of the underlying true 8 under appropriate conditions.

However, in the finite sample case, and especially when the features are highly correlated,
different linear combinations of features (of a given sparsity) may give approximately
equivalent fits. Under data perturbation, it is not surprising that the different solution paths
choose different features. This makes any metric based on B[] statistically unstable since
V is small. Note that this does not contradict the assessment of the eventual ,3 [A] picked
since ESCV and CV, picking from the same solution path, would both suffer from any
failure of the original Lasso.

In ESCV, we have used cross-validation folds to compute our pseudo-solutions. There
are of course many other ways to generate pseudo datasets. One related approach would be
to apply bootstrap sampling (Bach 2008). Here, simply sample with replacement from the
original dataset to generate multiple datasets. These two approaches are obvious choices,
and can be applied to any estimation procedure (even those without an optimization for-
mulation). A third choice, which applies only to penalized M-estimators such as the Lasso,
is based on perturbations of the penalty (Meinshausen and Bithlmann 2010). Note that
such perturbations of the penalty amount to perturbing (indirectly) the samples, but in a
different way than bootstrapping. Finally, we can simply perturb the data directly by adding
noise to X and/or Y. For example, we can add random Gaussian noise to the response
(Breiman 1996). We find in our experimental results that the choice of data perturbation
scheme (within reason) does not change our narrative of how ESCV behaves. The same
convergence effect is observed, and the resulting ESCV pick is reasonable in terms of the
performance metrics.

With high-dimensional data, computation can be costly. In the case of the Lasso, even
with efficient algorithms, the computation quickly gets expensive with larger datasets
(Efron et al. 2004; Mairal and Yu 2012). Using the estimation stability metric to select the
regularization parameter incurs only as much computation as using cross-validation. This
is because the bulk of the computation in both cases rests in computing the solution paths
of the V perturbed datasets. V in this case can be small as demonstrated in Section 3. This is
in contrast to related work (Bach 2008; Meinshausen and Biithimann 2010), which requires
a much larger V.

2.8 DISCUSSION ON CHOICE OF V IN CV

Arlot and Lerasle (2012) investigated the effect of V on CV performance. They found
that the variance of the solution decreases as you increase V but asymptotes quickly. This
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coincides with the conventional wisdom of choosing V' = 10. In our experience with ESCV,
perhaps unsurprisingly given we are using the same pseudo datasets, we have found the
same effect when varying V from 2 to 20. Note that this variance reduction is of the final
solution, not the fits of the pseudo datasets.

Shao (1993) was motivated by the model inconsistency of leave-one-out cross-validation.
He showed that this can be rectified by using a validation set of size n,, satisfyingn, /n — 1.
Note that this condition is not met for any fixed choice of V. We refer the reader to Yang
(2007) for more on the data splitting ratio. As pointed out by Yang (2007), Zhang (1993)
showed that V-fold CV, among other variations of CV, is inconsistent for any fixed splitting
ratio. Nevertheless, these works suggest that a smaller V for CV will result in better model
selection. We find this to be true in our simulations; CV overselects less with a smaller V,
but overselects nonetheless.

For all our results in Section 3, we will present the results with the conventional choice
of V = 10 for both ESCV and CV. We also compare CV with different choices of V along
with ESCV in our fMRI example in Section 3.2.1, as it offers an unique opportunity where
the predictive performance is similar over a large range of model size.

3. EXPERIMENTAL RESULTS FOR LASSO

In this section, we evaluate ESCV’s performance relative to the cross-validation (CV)
across a variety of data examples. In each problem, we fit a linear model using the Lasso.
We focus our attention on the comparison with CV as it is the most popular criterion in
practice. The R code for all the simulations is included as supplementary material.

In all the data examples, we use the same grid-search algorithm to evaluate our ES
and CV metrics. For our algorithm, we first run Lasso on the original data using the R
package “glmnet,” which determines the grid of 100 candidate A’s. As documented in
Friedman, Hastie, and Tibshirani (2010), the grid starts with the smallest A, that gives
[| ,3 [Amax]ll1 = 0, and decreases uniformly on a log scale. The minimum A on the grid
depends on the relationship of n and p. The A grid is then used on all pseudo datasets to
evaluate our ES and CV metrics.

We start with simple sparse Gaussian linear model simulations with our focus on the
high-dimensional data set-up. We will vary the simulation parameters such as correlation
strength within features and signal strength, as well as explore popular correlation structures
of the design matrix, to cover a wide range of data scenarios in practice. We compare the
solutions picked by ESCV and CV with regard to parameter estimation, prediction, and
model selection performance measures such as F-measure and model size. We also include
the extended BIC choice, and follow the suggestions by the authors (Chen and Chen 2008)
on the choice of its tuning parameter y . For most of the simulations, we use y = 0.5 as they
fall under the high-dimensional setting. The only exception is the n = 100, p = 50 case,
where we use the original BIC, corresponding to y = 0.

We also explore the performance of our method on two real datasets from neuroscience
and bioinformatics. We use a combination of objective predictive performance and subject
knowledge on plausible models to illustrate the efficacy of ESCV over CV. In all cases, note
that we are comparing different choices of A on the same solution path (from the original
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data). Furthermore, we use the same data splits to make comparable results of CV and
ESCV.

3.1 GAUSSIAN SIMULATION

Let X; € IR? fori = 1, ..., n be independent identically distributed Gaussian variables
with mean O and covariance X. We have the usual linear model Y; = X|8 + ¢;, where
B € IR? is the unknown parameter, and €; € IR is independent Gaussian noise with standard
deviation o. B; are drawn from U[%, 1]for j = 1,..., 10 and O otherwise. The separation
from zero is for model selection to make sense. This is a common assumption in theoretical
work. We have found that other patterns of coefficients behave similarly as long as the
smallest coefficient is well-separated from O relative to the average coefficient size.

The reported estimation and prediction errors are defined as

18 = Bll2 and \/Ex(1X — XBIR) = /(B — BY=(B — B).

respectively. For model selection, we use the F-measure that balances false positive and
false negative rates of identifying nonzero coefficients of §. The higher the F-measure
the better it is. Each simulation is repeated 1000 times and the performance measures are
aggregated across them.

3.1.1 A Base Case. Within the Gaussian linear model set-up, there are many problem
scenarios that favor one method over others. In particular, the following problem settings
are known to affect the performance of the Lasso: correlation strength between features,
strength of signal (size of coefficients) relative to the noise levels, dimension of the problem
(p), and the correlation structure of the features. This is of course not an exhaustive list but
is sufficient to cover a wide range of problems. As the strength of the correlation and signal
are key to the behavior of the Lasso solution, we will include a full complement of these
problem settings to illustrate when and why ESCV works well.

We start with a base case scenario. Here, ¥ has entries 1 down the diagonal and
constant p on the off-diagonal. We vary p =0,0.2,0.5,0.9 and o = 0.5, 1, 2. We set
n = 100 and p = 300 to emulate the high-dimensional data setting. Note that this implies
that the columns of X are empirically correlated even when the features they represent are
independent.

As expected, CV does well in terms of prediction error (see Table 2). However, observe
that this does not necessarily translate to success in terms of other performance measures.
With estimation error, we find that once we leave the orthogonal case p = 0 where estima-
tion and prediction error are equivalent, ESCV has lower estimation error than CV despite
having comparable prediction error.

For model selection, we use the F-measure, the harmonic mean of the precision and
recall rates, which are inversely proportional to false positive rate and false negative rate,
respectively. A high F-measure is achieved when both false positive and false negative
rates are low. Recall that we are selecting solutions from the same solution path. The Lasso
solution path corresponds roughly to a nested family of models in terms of features picked
since features seldom get dropped as we relax the penalty term. Hence, having a low false
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Table 3. Standard errors (SE) for performance numbers in Table 2

Estimation Prediction Model selection
error SE error SE F-measure SE
P o ESCV Cv BIC ESCV CV BIC ESCV (&\% BIC
0 0.5 0.003 0.003 0.005 0.003 0.003 0.005 0.004 0.003 0.006
0 1 0.008 0.006 0.02 0.008 0.006 0.02 0.005 0.003 0.01
0 2 0.008 0.008 0.007 0.008 0.008 0.007 0.004 0.004 0.005
0.2 0.5 0.004 0.004 0.004 0.005 0.005 0.005 0.002 0.003 0.003
0.2 1 0.005 0.005 0.01 0.005 0.005 0.02 0.002 0.003 0.004
0.2 2 0.007 0.008 0.01 0.008 0.007 0.02 0.003 0.003 0.009
0.5 0.5 0.008 0.008 0.008 0.009 0.009 0.01 0.002 0.002 0.002
0.5 1 0.007 0.007 0.008 0.006 0.006 0.01 0.002 0.002 0.002
0.5 2 0.008 0.009 0.009 0.006 0.006 0.04 0.002 0.003 0.004
0.9 0.5 0.01 0.01 0.01 0.01 0.01 0.01 0.003 0.003 0.003
0.9 1 0.009 0.009 0.01 0.008 0.008 0.01 0.003 0.003 0.003
0.9 2 0.009 0.01 0.009 0.005 0.004 0.01 0.003 0.003 0.003

negative rate (high recall) typically comes at the cost of a high false positive rate (low
precision). The F-measure balances these two objectives.

By this measure, ESCV often outscores CV by a considerable margin. CV picks more
true variables, but in the process picks up a disproportionately large number of noise
variables. This is in line with theory that CV often overselects (Wasserman and Roeder
2009). ESCV cuts down the false positive rate, but not too much at the expense of the false
negative rate.

The extended BIC, designed to achieve model consistency, does well in terms of model
selection, but poorly in estimation and prediction. It does exceptionally well in the low
noise setting, but progressively worse as we increase the noise. This is not unexpected since
BIC’s model selection consistency is an asymptotic result, and high noise levels can be
seen as the nonasymptotic case. Comparatively, ESCV maintains its good model selection
performance and overtakes BIC in the higher noise settings.

The results are summarized in Table 2 and the standard errors (SE) are given in
Table 3. Note that the performance measures are highly correlated since for each sim-
ulation run, the selections by ESCV, CV, and BIC are from the same solution path. Hence,
the SEs for paired differences in performance measures are actually lower than the SEs for
each of the values as reported in Table 3.

3.1.2 Effect of Ambient Dimension. We repeat the simulations but this time for p =
50 and p = 500 to investigate the effect of the ambient dimension. Note that only the
number of nonrelevant features is changing; the number of nonzero coefficients remain at
10, the sample size n remains at 100. The comparison of ESCV and CV from the base case
extends here: CV does well in prediction error, especially in the independent predictors
case, but loses out to ESCV in the other scenarios with dependence more relevant to practice
and in terms of parameter estimation and model selection metrics that are important for
scientific applications. The results are summarized in Tables 4 and 5.

As noted above, we use the original BIC for the p = 50 case and the extended BIC for
p = 500. Again, the results from the base case extends. BIC does well in terms of model



ESTIMATION STABILITY WITH CROSS-VALIDATION (ESCV)

8CI 6°Gl 424! 8S¥°0 SSv'0 891°0 ¥¥8°0 8L°0 L9L0 yoe €€°C 17T (4 60
€Ll S6l 8l 86570 0LS°0 €650 7850 §96°0 7950 6v'1 11 8Y'L I 60
981 el el 9%9°0 9¢9°0 L€9°0 ss0 9Ie0 8¥S°0 1{IN¢ o'l 1{IN¢ 0 60
891 L'0T 781 9€9°0 6LS°0 0290 SOl 001 1860 el 9¢'1 0€'T C S0
881 8'1¢C 96l €890 129°0 8990 8960 LSS0 €SS0 0CL0 €eL0 TIL0 1 S0
S8l 9°0¢ 6'81 00L°0 €59°0 069°0 yro 10 120 LEY'O 0¥¥°0 Per'o 0] S0
49! 9'1¢ T8l $89°0 0650 590 1Tl LO'T LO'T STl 40! oT't (4 0
081 8'CC 06l TIL0 609°0 8890 6LS°0 1SS0 65S°0 L8S0 065°0 9LE°0 I 0
SLT SIe 6'LI LTLO §€9°0 91L0 9¢€’0 Peeo Pee0 02¢0 0Ce0 8I€°0 0 0
Iv'e x4 T8l 00 09¢°0 €650 81 IT'T w1 81 II'T 'l [4 0
¥'S1 £'6C 181 0LL'0 §9¢°0 6690 ¥69°0 86S°0 9690 ¥69°0 86S°0 9590 1 0
091 81T 091 TLLO SLS0 0LLO weo 10€°0 8¥¢0 weo 10€°0 87¢°0 0] 0
o1d AD ADSH o1d AD ADSH o1d AD ADSH o1d AD ADSH 0 d
9Z1S [9POIN amseaw-,f 10119 I0IId
UonI9[3s [OPOJA uonoIpalg uonewnsy

‘poyrewr Sururojrad 3seq 9y 03 puodsariod s1equunu paplog ‘¢ UOIB[OLI0d

JUBISUOD ‘0] = ¥ UOPE[NWIS UBISSNED) 2SBD aseq ) m (G = d 10J osseT ) JoJ 1owered uonezuendar oy Suryord ur DIg pue ‘AD ‘ADSH JO duewLIONRd ‘¢ 2[qeL

9102 Ae N 8T +5:8T e [Aepyieg eluioyieD Jo Aiseaiun] Aq pepeojumoq



C.LM AND B. YU

480

91 99¢ L'ce €C1o €e1'0 6€1°0 (£ 060 9680 ¥9°C ILc 19T [4 60
9'9¢ 9¢e 6'C¢ SET0 €vT0 €VT0 096°0 SSL'0 L9L0 yI'e 20T 20T I 60
8'CE €'LE TLe £0€°0 S0€°0 S0€°0 81780 0SL°0 Lo eL'1 P91 P91 S0 60
186 8'6¢ 9'¢e LTTO 0ST°0 1820 see oWl o1 80C S6'l 68’1 C S0
I'ce [494 rov L8E'0 0€e’0 9¢°0 61l 160 1160 €e'l €Tl wl 1 S0
8'6¢ 81y L'6g 91¥°0 9LE0 76¢£°0 sLo 859°0 199°0 ¥28°0 €8L°0 8L0 S0 S0
88°0 ey (43 6L80°0 SLTO 61€°0 e 091 8S'1 €1'e L1 89’1 [4 0
91 8Ly 6¢ 9Tr'0 °€ee0 68¢°0 861 ST6'0 €60 SY'l 10'1 $66°0 I 0
gce A 44 L'Le P¥'0 L9€°0 8170 029°0 eSO wso 8650 €5S°0 €5S°0 S0 0
¥61°0 (43 L9t SLEOO 7620 Pog0 9I'C bL'T LL'T 91T PLT LL'T C 0
SL'e 01§ 1'6c €0 11eo (2 4] (4! SO'T SI'I (4! SO'T SI'1 I 0
191 S¢S §'8¢C TIL°0 SI€0 91S°0 €080 so 6090 €080 s0 609°0 0] 0
o1d AD ADSH old AD ADSH old AD ADSH o1d AD ADSH o d
9ZIS [OPOIN QINSeIW-,f I0IId 10119
UOT)O3[3S [OPOIN uonoIpaIg uonewWnSH

‘poyrow Surwroyrad 1s9q oY) 0 puodsaliod srequinu papog "¢ UOIR[ALIOD

JURISUOD ‘)] = ¥ UOTB[NUITS UBISSNEL) ISBD 3seq ) M )OS = d 10 osseT Y 1o} Iejourered uonezirendar oy Suryord ur DIg papualxa pue ‘AD ‘ADSH JO 20ULWLIONJ S 9[qeL

9102 Ae N 8T +5:8T e [Aepyieg eluioyieD Jo Aiseaiun] Aq pepeojumoq



Downloaded by [University of California, Berkeley] at 18:54 18 May 2016

ESTIMATION STABILITY WITH CROSS-VALIDATION (ESCV) 481

selection, but its performance drops off quickly across all performance metrics as the noise
level increases.

3.1.3 Other Correlation Structures. The constant correlation structure can be seen
as a simple one latent variable model. Here we introduce other correlation structures
corresponding to more complex models and run the same simulations (n = 100, p = 300,
and varying o and p). First, block correlation: all p features are randomly grouped into 10
blocks, and within each block, the features have correlation p while features from separate
blocks are independent. Here, we let p =0.3,0.5,0.9. Second, Toeplitz design: %;; =
,o”’f‘, with p = 0.5, 0.9, 0.99. In both cases, the 10 true variables indices are randomly
distributed among the p variables so that they are not all strongly correlated with each other.
The results for the two designs are summarized in Tables 6 and 7, respectively.

Despite the different correlation structures, the qualitative results from the prior section
hold again in both variations. For prediction error, CV almost always outperforms ESCV,
but ESCV’s predictive performance can be quite close to CV’s when p 7 0. For estimation
error, ESCV gains on and eventually outperforms CV with increasing correlation levels.
And for model selection, ESCV almost always has a higher F-measure than CV. Digging
deeper, Table 8 shows the breakdown of the F-measure into the true positive and false
positive rates. We can see that ESCV has much lower false positive rates while sacrificing
relatively little on the true positive rates.

3.2 fMRIDATA

These data are from the Gallant Neuroscience Lab at University of California, Berkeley.
In this experiment, a subject is shown a series of randomly selected natural images and the
fMRI response from his primary visual cortex is recorded. The fMRI response is recorded
at the voxel level, where each voxel corresponds to a tiny volume of the visual cortex. The
task is to model each voxel’s response to the n = 1500 images. The image features are
approximately 10000 transformed Gabor wavelet coefficients. We evaluate the prediction
performance by looking at correlation scores against an untouched validation set of 120
images with 10-13 replicates. There are 1250 voxels in all. We ranked them according to
their predictive performance under a different procedure from a previous study (Kay et al.
2008). Not all of them are informative, so we only look at the top 500.

We find that while the prediction performance are nearly identical for ESCV and CV,
ESCV selects much fewer features. The results are in Table 9. For the sake of brevity,
they are averaged across groups of 100 voxels. For example, for the top 100 voxels, on
average, the correlation scores are similar, but ESCV selects 30 features compared to CV’s
70 features—a close to 60% reduction. That is, ESCV selects a much simpler and also more
reliable model that predicts just as well as CV. Figure 4 shows how close the correlation
scores are.

We note again that ESCV picks fewer features than CV by design (Section 2.5). That
being said, the reduction is huge here: ESCV picks less than half the number of features
as CV across the different voxels. Furthermore, this was with little or no loss in predictive
performance. To understand the results better, we look at the individual voxels and examine
the features selected. In almost all the cases, ESCV selects a subset of the features selected
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Table 9. Performance on fMRI dataset. The numbers are averaged across the respective hundred voxels.
ESCV cuts down the model size by more than half compared to CV, while largely preserving prediction accuracy.

Correlation score Model size
Voxels ESCV (&)Y ESCV (6\%
1-100 0.730 0.735 30.1 70.2
101-200 0.653 0.655 27.0 61.8
201-300 0.567 0.566 22.6 49.6
301-400 0.455 0.459 16.7 40.3
401-500 0.347 0.347 16.5 33.6

by CV. This is because they both select from the same Lasso solution path and features are
rarely dropped after being added to the solution as we relax the regularization.

Now, each feature corresponds to a Gabor wavelet characterized by its location, fre-
quency, and orientation. We plot the features selected by both CV and ESCV as well as the
extra features selected by CV. The points in the plot represent the location and size of the
Gabor wavelet selected. Figure 5 shows four randomly selected voxels.

We can see quite clearly that the features selected by ESCV are clustered in one area
whereas the features selected by CV but not ESCV are scattered across the image. Biologi-
cally, we expect each voxel to respond only to a particular area of the visual receptive field.
This confirms that the extra features selected by CV are most likely not meaningful. Note
that the location information of the Gabor wavelets were not used in fitting the model.

Correlation Scores of ESCV vs CV for Top 500 Voxels

<
-

0.8
|

Ccv
0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
ESCV

Figure4. Scatterplot of predictive correlation scores of ESCV and CV for the top 500 voxels in the fMRI dataset.
We see that for almost all 500 voxels, the predictive performances are similar for ESCV and CV.
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Figure 5. Feature selection by ESCV and CV on four randomly selected voxels. The o’s represent features
selected by both methods, while the +’s represent features selected only by CV. The axes represent the pixel
location of the images. The position and size of the points represents the wavelet location and wavelet scale,
respectively. Note that most of the extra features CV select are scattered and less biologically plausible.

3.2.1 A Comparison With CV for Other Choices of V. The fMRI dataset provides us
with an unique opportunity. As seen in Table 9 and Figure 4, the predictive performance is
similar despite the very different model size. Most of the Lasso solution path in this case
has comparable predictive performance. This is possible because we are using correlation
as the prediction metric; scale is not scientifically important in this context.

We compare the model sizes with V =2 and V = 5. In this case, for each voxel, we
repeat V = 2 five times and V = 5 twice and aggregate the results for the respective choice
of A. This is to bring the computation cost in line with the V' = 10 case. Table 10 gives the
average model sizes by groups of 100 voxels. We see that lower V does indeed correspond
to a smaller model size. However, we note that even for V = 2, the model size is still above
that of ESCV with the exception of the 100 voxels with the poorest predictive performance.
We also note that there is relatively little change between V = 5 and V = 10, which bounds
the common application of V-fold CV.
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Table 10. Model size comparison on fMRI dataset. The numbers are averaged across the respective hundred
voxels. CV continues to select larger models than ESCV except in the 100 voxels with the poorest predictive
performance.

Model size
Voxels ESCV CV(V =2) CV(V =5) CV(V = 10)
1-100 30.1 41.0 65.2 70.2
101-200 27.0 36.0 55.7 61.8
201-300 22.6 26.9 434 49.6
301-400 16.7 21.3 35.0 40.3
401-500 16.5 14.4 27.3 33.6

3.3 CYTOKINE DATA

These data are from experiments performed by the Alliance for Cellular Signaling
(AfCS), archived and made available at the Signaling Gateway, a comprehensive and free
resource supported by the University of California, San Diego (UCSD). Pradervand, Mau-
rya, and Subramaniam (2006) from the Bioinformatics and Data Coordination Laboratory
at UCSD processed and analyzed these data in an attempt to identify signal pathways
responsible for regulating cytokine release. There are 7 cytokines, 22 signal pathway pre-
dictors. The signal pathways cannot be directly manipulated. Instead, ligands are stimulated
to elicit responses from the signal pathway predictors and cytokines. For each cytokine, we
have about 100 samples, each corresponding to average measured responses of the cytokine
and signal pathways when a specific ligand pair is stimulated.

In the original study (Pradervand, Maurya, and Subramaniam 2006), principal compo-
nent regression (PCR) is used to fit the data to a linear model and select the significant
signal pathways. The selection is done by thresholding the estimated coefficients via a
pseudo-bootstrap method. They do this for each of the seven cytokines. That is, they solve
seven linear regression problems, each with n & 100 and p = 22, and apply thresholding
to select the relevant signal pathways. These PCR results are then merged with other data
and analysis to derive a final minimal model (MM).

We run Lasso with ESCV and CV on the seven linear regression problems and compare
our results with the results from PCR and MM. Figure 6 shows the feature selection results
for the four methods. We regard MM as the benchmark for feature selection performance
because it encompasses extra data and is not directly restricted by the linear model.

We can see from Figure 6 that Lasso with CV does poorly. It selects the most features
for every cytokine, often by a large margin. Lasso with ESCV, on the other hand, selects
the same or slightly larger number of features than MM. Moreover, with the exception
of cytokine TNFa, ESCV always includes the features PCR selected, which survived to
the minimal model. In the case of TNFa, PCR barely selects (close to threshold) the one
feature that ESCV missed. ESCV in general selects only about half the number of features
PCR selects. There are far fewer false positives with respect to MM. At the same time, it
rarely misses out any of the important features that PCR picked up.
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Figure 6. Feature selection results on cytokine data. The columns represent signal pathways predictors and each
block of four rows correspond to a cytokine. The four rows within each block represent the selections of the
four methods: the final minimal model (MM) and principal component regression (PCR) from the original study,
and Lasso with ESCV and CV. The white squares correspond to selected predictors. With only one exception,
ESCV always selects the pathways that MM (which we regard as ground truth) does, while having much smaller
models than CV.

We stress again that MM was derived using additional data independent of the seven
linear regression problems we ran Lasso on. ESCV, in this case, has managed to extract
more information from the limited linear regression data than CV and PCR.

4. CONCLUSION

Regularization methods are employed to deal with problems in the increasingly com-
mon high-dimensional setting. However, the difficult problem of selecting the associated
regularization parameter for interpretation or parameter estimation is not well studied. Our
method ESCYV is based on estimation stability but also takes into account model fit via CV.
With a similar parallelizable computational cost as CV, we have demonstrated that ESCV is
an effective alternative to the popular CV for choosing the regularization parameter for the
Lasso. On the whole, ESCV is able to deliver comparable prediction performance as CV,
and at the same time, do better in terms of other important statistical measures. For the
practical situation of dependent predictors, ESCV has an overall performance better than
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CV for parameter estimation and significantly outperforms CV in model selection. In par-
ticular, we found much sparser models of less than half the size in both the real datasets
from neuroscience and cell biology. These sparser ESCV models preserve the prediction
accuracy of the CV models, and at the same time, are more parsimonious and are corrob-
orated by subject knowledge. We believe this result is not restricted to the Lasso but holds
for other sparse regularization methods as well.

We also believe that this method can also be readily extended to the classification
problem through the generalized linear model, and leave this to future work.

SUPPLEMENTARY MATERIALS

ESCV _code.zip: R code to perform the simulations described in the article. Refer to
readme.txt for details.
ESCV _data.zip: Data for the problems described in Sections 3.2 and 3.3.
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