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Abstract

Techniques for nonparametric regression
based on fitting small-scale local models at
prediction time have long been studied in
statistics and pattern recognition, but have
received less attention in modern large-scale
machine learning applications. In practice,
such methods are generally applied to low-
dimensional problems, but may falter with
high-dimensional predictors if they use a Eu-
clidean distance-based kernel. We propose
a new method, Silo, for fitting prediction-
time local models that uses supervised neigh-
borhoods that adapt to the local shape of
the regression surface. To learn such neigh-
borhoods, we use a weight function between
points derived from random forests. We
prove the consistency of Silo, and demon-
strate through simulations and real data that
our method works well in both the serial and
distributed settings. In the latter case, Silo
learns the weighting function in a divide-and-
conquer manner, entirely avoiding communi-
cation at training time.

1 INTRODUCTION

Modern datasets collected via the internet and in sci-
entific domains hold the promise for a variety of trans-
formational applications. Non-parametric methods
present an attractive modeling choice for learning from
these massive and complex datasets. While parametric
methods that optimize over a fixed function space can
suffer from high approximation error when the task is
complex, non-parametric methods augment the capac-
ity of the underlying statistical model as the datasets
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grows in scale and diversity. Moreover, the scale of
these datasets makes non-parametric estimation fea-
sible even when considering minimax rates for non-
parametric functions that require the data to scale ex-
ponentially in the feature dimension.

Global non-parametric models, e.g., neural networks
and kernel methods, learn complex response surfaces
and can be quite expensive to train on large-scale
datasets. Both machine learning and computer sys-
tems researchers are actively exploring techniques to
efficiently embed these learning approaches into paral-
lel and distributed computing frameworks, e.g., [1]–[5].
In contrast, local models are simple, interpretable, and
provide an attractive computational profile, by poten-
tially drastically reducing training time at the expense
of a moderate increase in test time.

However, to date local methods have been rarely em-
ployed on large-scale learning tasks due to both statis-
tical and computational concerns. Statistically, classi-
cal methods struggle with even a moderate number of
features due to the curse of dimensionality. Although
these local methods are minimax optimal, this mini-
max rate is quite conservative when the response does
not involve all dimensions. Although local approaches
relying on ‘supervised neighborhoods,’ e.g., DANN [6],
CART [7], Random Forests [8], and Rodeo [9], demon-
strate empirical and theoretical success at overcoming
this dimensionality issue, they do so at great compu-
tational expense.

In this work, we address these statistical and com-
putional issues, focusing on the problem of non-
parametric regression. We propose a novel family
of Supervised Local modeling methods (Silo) that
build on the interpretation of random forests as a lo-
cal model to identify supervised neighbors. Like k-NN
methods, the width of our neighborhoods adapts to the
local density of data: higher density leads to smaller
neighborhoods while lower density means neighbor-
hoods spread out and borrow strength from distant
points. Unlike k-NN or local polynomial methods, our
neighborhoods are determined by the shape of the re-
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sponse rather than some fixed metric (hence they are
supervised neighborhoods).

Additionally, we observe that datasets of the size we
need to fit nonparametric functions are often stored
and processed in a distributed fashion. We thus devise
an efficient distributed variant of Silo, which naturally
targets massive, distributed datasets. In this setting,
worker nodes at training time independently calculate
supervised neighborhoods using information from dis-
tinct random forests. Given a test point, the master
node gathers supervised neighborhood data from all
workers, and then trains a local linear model using
this neighborhood data.

To summarize, our contributions are as follows:

• We introduce a novel adaptive local learning ap-
proach, Silo, based on the idea of supervised
neighbors.
• We present a distributed variant of Silo that is

well suited for large-scale distributed datasets.
• We prove consistency of Silo under a simple

model of random forests.
• We show experimentally that Silo outperforms

both standard random forests and Euclidean-
distance based local methods in single node set-
tings.
• We implement the distributed variant of Silo

in Apache Spark [10], and demonstrate its
favorable performance relative to the default
Spark/MLlib [11] Random Forest implementa-
tion.

2 METHODS BASED ON LOCAL
MODELS

There are three ingredients to a method for local
model-based nonparametric regression: a loss function
L : R → R, a weight function w(·, ·), and a function
space F . In this work, we assume that the loss function
is the squared loss, i.e., L(u) = u2. The weight func-
tion is a mapping w(·, ·) : Rp×Rp → [0,∞), which may
be fixed, or may depend on the training dataset. F is a
family of functions where f ∈ F maps Rp → R. Gener-
ally F is a fairly simple function space, as it need only
provide a good approximation to the response surface
locally. Common function spaces are constant func-
tions, linear functions, or higher-order polynomials of
fixed degree.

We now describe the general form for local modeling
methods. Assume we have a set of training data pairs,
{(yi,xi)}ni=1. Given a test point x ∈ Rp, we define a
function ĝ(x) which approximates E(y | x), via the

following two-step process:

let f̂x(·) = arg min
f∈F

n∑

i=1
w(xi,x) (yi − f (xi − x))2 (1)

ĝ(x) = f̂x(0) . (2)
For instance, we can consider k-NN regression under
this framework by first defining Kx as the set of x’s
k nearest neighbors. Then, w(xi,x) = 1 if xi ∈ Kx
and zero otherwise, and f̂x(·) is a constant function
that returns 1

k

∑
xi∈Kx

yi. Partitioning methods like
CART [7], and random forests [8] can also be seen as
examples of local models with constant f̂x(·) functions.

LOESS [12] uses a fixed weighting function, and fits lo-
cal polynomial functions. We describe the particular
setting of linear functions in more detail in Section 3
(see equations 8 and 9). Other methods exist that are
similar in spirit to the local modeling framework de-
fined in equations 1 and 2 but do not fit precisely with
our formulation, e.g., tree-based piecewise polynomi-
als models [13], and multivariate adaptive regression
splines [14].

2.1 Euclidean distance-based local methods

A common form for the weight function w is the fol-
lowing:

w(x1,x2) = k(‖x1 − x2‖2) (3)
where ‖·‖ is the Euclidean, or L2 norm; k : [0,∞) →
[0,∞) is a univariate kernel function. Common ex-
amples include the rectangular, triangular, Epanech-
nikov, cosine, and Gaussian kernels. If the local model
family F is chosen to be polynomials of degree `, such
an estimator is denoted as an LP (`) method (we adopt
the notation of Tsybakov [15]). If the true condi-
tional expectation function E(y | x) belongs to the
Hölder class Σ(β, L), then, with appropriate scaling
of the kernel function, the mean square error of the
LP (bβc) estimator converges to zero at the minimax
optimal rate of n−

2β
2β+p . In practice, despite their opti-

mality properties, LP (`) estimators are not generally
applied to higher dimensional problems where some
dimensions may be irrelevant. As an example, Fig-
ure 1 shows the empirical performance of k-nearest
neighbors, LOESS with local linear models, and ran-
dom forests on the popular Friedman1 simulation from
[14]. In this simulation, p = 10, x is distributed
uniformly on the hypercube in 10 dimensions, and
y = 10 sin (πx1x2) + 20

(
x3 − 1

2
)2 + 10x4 + 5x5 + ε,

where ε ∼ N (0, 9). Note that only 5 of the 10 di-
mensions of x are relevant to y. We see that random
forests outperform LOESS and nearest neighbor meth-
ods; in this case the tuning parameters of LOESS and
k-NN have been optimized on the holdout set, while
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Figure 1: Comparison of non-parametric techniques on
the Friedman1 simulation. Parameters of LOESS and
k-NN were tuned on the holdout set, while random
forest parameters were set at default values (3 candi-
date variables at each node, trees trained to 5 points
per leaf.

the tuning parameters of random forests have been set
to their default. Unlike random forests, the Euclidean
distance based methods to not adapt to the fact that
irrelevant predictors are included in the model, and the
local neighborhoods for each test point do not ‘spread
out’ in the flat directions. We explore this property of
random forests in the next section.

2.2 Random forests as adaptive nearest
neighbors

Soon after the introduction of the random forest algo-
rithm, Lin and Jeon [16] observed that random forests
can be considered an adaptive potential nearest neigh-
bor method (PNN). To explain this idea, we introduce
some notation. Given a random forest consisting of K
trees, we define θ to be the random parameter vector
that determines the growth of a tree (for example, θ
specifies the sampling of training points and the selec-
tion of covariates at each node). The tree built with θ
is denoted as T (θ), and for x ∈ Rp, let R(x, θ) be the
rectangle corresponding to the terminal node of T (θ)
containing x. We define the connection function of a
tree, which is the indicator that two points share the
same terminal node of a particular tree.

w(x1,x2, θ) = 1 {x1 ∈ R(x2, θ)} (4)

Define the number of training points contained in a
leaf-node containing the point x, for a tree trained
with parameter θ as kθ(x) =

∑n
i=1 w(xi,x, θ). Then
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Figure 2: Weights of random forest. Each circle rep-
resents a point in the training set, and diameter of the
circle represents the weight of that point when making
a prediction at the origin. The function being fit does
not vary along the x1 coordinate.

the prediction of a random forest can be written as

ĝ(x) = 1
K

K∑

j=1

[∑n
i=1 w(xi,x, θj)yi

kθj (x)

]
(5)

Note that this takes the form of equations 1 and 2,
where F is the family of constant functions, and we
define the random forest weighting function

wRF(xi,x) = 1
K

K∑

j=1

[
w(xi,x, θj)
kθj (x)

]
(6)

Note that this weighting function is not derived from
any explicit distance metric. However, as noted in Lin
and Jeon [16], assuming the training procedure trains
decision trees with at most k training points per leaf
node, and the full training set is used for each tree,
then any point xi with positive weight is in fact a k-
nearest neighbor under some monotone distance met-
ric. Moreover, due to the training procedure of each
constituent regression tree, this function assigns high
weight to pairs of points that share a similar value of
the response, y. Hence, we can interpret it as provid-
ing an adaptive distance measure, where distances are
shortened in directions where the function E(y | x) is
flat. This is illustrated in Figure 2, where we plot the
values of the weighting function for a random forest fit
on a function of two variables that does not vary in the
first coordinate, when making a prediction at the ori-
gin (0, 0). Note that the weights taper off much more
quickly along the x2 dimension, and that the random
forest ‘borrows strength’ from points that have very
different values of x1.

3 SUPERVISED NEIGHBORHOODS

The prior discussion sets up the introduction of our
method for nonparametric regression. The first step
is to use the standard random forest training algo-
rithm to fit a global random forest to the training data
{(yi,xi)}. This yields a random forest weighting func-
tion wRF(·, ·); note that, given the training set, this
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Figure 3: Test-set RMSE of standard random forest vs.
random forest combined with local linear modeling.

is still a random function, as it depends on the un-
derlying tree-training parameters θ1, . . . , θK . We then
use this weighting function in equation 1, but unlike
random forests, we expand the function class F to a
broader, more flexible class than just constants. In our
experiments and theoretical analysis, we use the set of
linear functions with an intercept term:

F =
{
f s.t. f(x) = α+ βTx;α ∈ R,β ∈ Rp

}
. (7)

For convenience, define wi = wRF(xi,x), and let
U(x) ∈ Rp+1 = (1, x1, . . . , xp)T , i.e. U(x) is the vec-
tor x prefixed by 1. Substituting into equations 1 and
2, to make a prediction at a point x ∈ Rp, our method
can be written in the following form:

βx = arg min
β∈Rp+1

n∑

i=1
wi

(
yi − βTU(xi − x)

)2
(8)

ĝ(x) = βTx U(0) . (9)

Equation 8 is standard weighted linear regression, re-
centered at x, and the prediction at point x is the
resulting intercept term (which motivates evaluating
βx at U(0)). We note that this method can, in fact,
be written as a local averaging method, but where
the original weights from the random forest are trans-
formed [15]. Define

Σx =
n∑

i=1
wiU(xi − x)U(xi − x)T (10)

ax =
n∑

i=1
U(xi − x)wiyi (11)
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Figure 4: Empirical bias and variance of standard ran-
dom forest vs. random forest + local linear regression,
on the same prediction task as Figure 3, with 5000
training points.

Then, if we assume that Σx is invertible,

ĝ(x) = U(0)TΣ−1
x ax

= 1
n

n∑

i=1
U(0)TΣ−1

x U(xi − x)wiyi
(12)

Thus, local modeling transforms the weights as wi →
Wi := U(0)TΣ−1

x U(xi − x)wi. Note that the weight
update is unsupervised (y is not incorporated), and has
the effect of correcting local imbalances in the design;
for an empirical investigation of this property, see, for
example, Hastie and Loader [17]. It is a well-known
feature of local linear regression that it reproduces lin-
ear functions exactly; see proposition 1.12 of Tsybakov
[15]. Hence the transformed weights balance the de-
sign about the point x; we have that:

1
n

n∑

i=1
U(0)TΣ−1

x U(xi − x)wiU(xi − x)T = 0

Note that the term U(0)TΣ−1
x extracts the first row

of Σ−1
x ; the elements of this row are related to the

difference between x and the weighted average of the
xi; we explictly calculate this vector in the proof of
Theorem 1.

Figure 3 compares the predictive root mean-square-
error (RMSE) of standard random forests with local-
regression augmented random forests, i.e., Silo, when
training on the Friedman1 simulated dataset, for vary-
ing sizes of training sets. We see that the addi-
tional local linear modeling step improves the predic-
tive RMSE. In Figure 4 we calculate an empirical bias-
variance trade-off for predictions of each method. To
calculate these estimates of bias and variance, we fit
the models 500 times, fixing all the training and test
set data except the values of εi in the training data
(i.e. this is bias and variance conditional on the de-
sign). We then estimate the bias by calculating the
difference between the mean prediction over the 500
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models and the true expected outcome, and the vari-
ance is estimated by calculating the variance of the
predictions over the 500 models. We see that local
modeling reduces the bias of the original random for-
est at the expense of a slight increase in the variance;
overall the RMSE is diminished.

3.1 Consistency of random forests + local
regression

Consistency properties of random forests have been
extensively studied since the original results in [8].
The true random forest algorithm is notoriously dif-
ficult to analyze, due to the many complex ingredi-
ents (greedy partitioning scheme, bagging, and deeply
trained trees), so most analyses make simplifications to
make the analysis more tractable. Local polynomial
methods based on Euclidean distance, on the other
hand, are very well understood theoretically: they
are known to have minimax-optimal rates of conver-
gence [18], can correct bias problems at the boundary
of the data [19], and that, with slight modifications
to avoid pathological behavior, they are known to be
consistent over arbitrary joint distributions of y and x
with Ey2 <∞ [20].

In our analyses, we make several simplifications to the
true random forest algorithm. Most notably, our anal-
ysis relies on the assumption that the procedure used
to build the regression trees proceeds independently
of the data used in building the local models; this as-
sumption is also made in [21] and is similar to the
‘honest tree’ assumption defined in [22]. The more
detailed mathematical analysis in [23] proves consis-
tency of random forests for additive regression func-
tions while avoiding this assumption. In our results,
we refer the ‘training data’ as the dataset {(yi,xi)}
which is used to fit local models, but is not used to
determine the structure of the trees. Also, we assume
that these data are sampled without replacement in
each of the trees of the forest, to avoid difficulties in
analyzing sampling with replacement. More specifi-
cally, we require the following:
Assumption 1. The training data
{(yi,xi), i = 1, . . . , n} are generated i.i.d. from a
joint distribution that satisfies the following proper-
ties:

xi ∼ Uniform([0, 1]p) (13)
yi = g(xi) + ω(xi)εi (14)

where εi is independent of xi, the function ω(x) is
bounded, E(εi) = 0, and E(ε2i ) < ∞. The function
g must be sufficiently well-behaved such that Assump-
tion 4 can be satisfied. A minimal requirement is that
g is continuous.

Assumption 2. The splits of the constituent regres-
sion trees of the random forest are calculated using a
dataset that is independent of the training data.
Assumption 3. We require that

min
x∈[0,1]p
j∈(1,...,K)

kθj (x)→∞ (15)

i.e., the number of training points contained in each
node of each tree of the random forest goes to infinity.
Assumption 4. For each x ∈ [0, 1]p, the trees are
trained in such a way that

max
i,j

[w(xi,x, θj)|g(xi)− g(x)|] p→ 0 (16)

i.e., that the cells containing x shrink in such away
that the maximal variation of the function g within a
cell shrinks to 0 in probability.
Assumption 5. The data in each tree are sampled
without replacement from the original training set, so
that all training points occuring in a particular leaf
node have the same weight.
Theorem 1. Under Assumptions 1 - 5, for all x ∈
[0, 1]p,

ĝ(x)− g(x) p→ 0 (17)

The proof is provided in the supplementary material.
Remark 1. Assumption 4 allows us to ensure that
the approximation error at point x vanishes asymp-
totically. This can be shown to hold, for example, by
combining Lemma 2 of Meinshausen [24] with continu-
ity of g; however, this requires additional assumptions
on the tree-training procedure that deviate somewhat
from the usual random forest tree-training procedure.
Proposition 2 in Scornet, Biau, and Vert [23] proves a
slightly weaker version of this assumption: the point-
wise statement is not proven, but a similar statement
is shown to hold for a random draw of x. It is an
open question whether such pointwise control over the
leaves can hold for the true random forest tree-training
procedure.

4 DISTRIBUTED Silo

There is a rich literature on algorithms for recover-
ing nearest neighbors from large datasets in high di-
mension, leading to efficient implementations of k-
nearest neighbors in the distributed setting [25]–[27].
The possibility of using supervised neighborhoods in
a distributed setting remains less explored. We pro-
pose an approach for distributed nonparametric esti-
mation which is based on the random forest-supervised
neighborhood method introduced above. In the set-
ting of distributed data, communication latency is
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Algorithm 1: Distributed Nonparametric Regression via Silo
Input: Number of workers W ; Distributed training dataset {(yi,j ,xi,j); j = 1, . . . ,W ; i = 1, . . . , Nj} where∑W

j Nj = n; Test points (x̃1, . . . , x̃M ) stored on master node
1 for each worker j = 1→W do in parallel
2 Fit random forest on local data (yi,j ,xi,j)
3 for each m = 1→M do
4 Master broadcasts test point x̃m
5 for each worker j = 1→W do in parallel
6 Worker j calculates supervised neighborhood of x̃m, yielding {wi,j , (yi,j ,xi,j)}
7 Worker j calculates weighted covariance matrix and cross-covariance vector:

Σj,m =
Nj∑

i

wj,iU (xj,i − x̃m)U (xj,i − x̃m)T aj,m =
Nj∑

i

wj,iU (xj,i − x̃m) yj,i

8 Worker j communicates (Σj,m,aj,m) to the master

9 Master node solves linear system and calculates ĝ (x̃m) = U (0)T
[∑W

j=1 Σj,m
]−1∑W

j=1 aj,m

10 return (ĝ (x̃1) , . . . , ĝ (x̃M ))

high, and implementing the random forest algorithm
on a distributed dataset is prohibitively expensive,
due to the necessity of performing several distributed
sorts at each internal node in the CART training pro-
cedure. However, approximations based on binning
data, extracting order statistics, and using randomized
searches for split-points has led to several scalable im-
plementations of distributed random forests [11], [28].

Here, we take a different approach, which avoids com-
munication at training time. We extend Silo to the
distributed setting, but instead of attempting to train
a global random forest, we train random forests sepa-
rately on each worker. At test-time, supervised neigh-
borhoods of each test point are determined indepen-
dently by each worker node, using the usual random
forest procedure of finding weighted PNNs. Then the
master node gathers the workers’ supervised neighbor-
hoods and fits a local linear model. The local model
helps to lower the bias of the workers’ individual pre-
dictions; this is similar in spirit to the approach taken
in Zhang, Wainwright, and Duchi [29], which uses
bootstrap bias correction. Our method is presented
in more detail in Algorithm 1. Note that, instead of
communicating the training data itself, the workers
communicate sufficient statistics for performing local
regression - the weighted covariance matrix Σx and
the weighted cross covariance vector ax; the master
then must simply add together these results from the
workers and solve a linear system. Additionally, to
amortize latency costs, we batch the communication
at test-time; the master can broadcast a set of several
test-points in a single message, and the workers can
communicate a corresponding set of sufficient statis-

tics. In practice, this significantly speeds up test-time
computations.

4.1 Simulation and Real Data Experiments

We analyze the performance of Algorithm 1 in two
ways. First, we plot the out-of-sample predictive ac-
curacy of distributed estimation as we increase the
number of worker nodes but fix the size of the overall
dataset. Second, we plot the accuracy as the size of the
dataset is fixed per worker, but the number of workers
is varied. We compare the performance of our algo-
rithm to both naive averaging of divide-and-conquer
random forests (equivalently, local constant models
in Algorithm 1), and, in the second case, the global
distributed random forest implementation in MLlib.
Runtimes are also shown in the supplemental materi-
als.

4.1.1 Fixing the training set size

We demonstrate the effect of parallelization on two
simulated datasets and one real dataset. The first
simulation is the Friedman1 function described in
Section 2.1. The second simulation is a Gaus-
sian process, generated by fixing M different vec-
tors in Rp, drawing Z1, . . . , ZM i.i.d. N (0, 1), set-
ting σ2 = 0.05, and generating the function g(x) =∑M
k=1 Zke

− 1
2‖ωk‖2σ2 cos(ωTk x). We generate a func-

tion in p = 10 variables, but for our simulation, we
append an additional 20 variables unrelated to the out-
come. This prediction task is very difficult - even with
1 million training points, a random forest attains a
test-set correlation of 0.83. The real dataset is a pre-
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Figure 5: Effect of distributing the data for the Friedman1 and Gaussian Process simulations, and the Year
Prediction dataset. The black bar represents a random forest trained on the full dataset. The error bars
represent the ranges between the 0.1 - 0.9 quantiles after performing 40 different runs of the experiments, fixing
the training and test data data, but fitting different random forests. In the case of the simulations, the test
datasets are noise-free, so the true regression function would have an RMSE of zero.

diction task drawn from the Million Song Dataset [30].
The task is to predict the year of a song’s release given
90 acoustic features of the song. The training set con-
sists of 463, 715 songs appearing between 1922 and
2011, and the test set consists of 51,630 songs. The re-
sults are shown in Figure 5. The plots show the perfor-
mance of a random forest trained on the full datasets
(black lines), a ‘naive’-divide and conquer random for-
est, which simply averages predictions from random
forests trained on the workers (blue points), and the
distributed Silo procedure outlined in Algorithm 1.
The number of workers ranges from 5 to 195 for the
two simulations (corresponding to 200k to 5k training
points per worker), and from 5 to 105 for the Year
Prediction task (corresponding to approximately 92k
to 4k training points per worker). The error bars in
the plots represent 0.1-0.9 quantile ranges, as the ex-
periments were repeated 40 times, holding the training
and test set fixed, while fitting different random real-
izations of random forests. We see that, in the case of
the Friedman1 simulation, the Distributed Silo pro-
cedure consistently outperforms the full random forest
and, in contrast to the naively distributed random for-
est, shows little decay in performance as the data are
distributed. In the Gaussian process simulation, the
performance of Distributed Silo does deteriorate as
the data are distributed, and we can see an increase
in variance, but it still significantly outperforms the
naively distributed random forest. For the Year Pre-
diction task, Distributed Silo significantly improves
upon the full random forest for all numbers of work-
ers.

4.1.2 Fixing the dataset size per worker

We now explore the performance of distributed-Silo
when we fix the training dataset size per worker, but
increase the number of workers, and hence, the overall
amount of training data. We use the two simulation se-
tups outlined above: the Friedman1 function, and the
higher-dimensional Gaussian process. We slightly al-
tered the Friedman1 simulation, adding an additional
45 noise features to increase the overall size of the
training dataset and to make the random forest fit-
ting procedure more computationally challenging, as
the mtry parameter (number of variables considered
at each node) is increased from 3 to 18. We im-
plemented distributed-Silo in Spark, a popular open
source framework for distributed computation, and we
compare our method with the implementation of dis-
tributed random forests in MLlib. To attain similar ac-
curacy between Silo and MLlib’s random forests, we
set the maxDepth parameter of MLlib to be 15 and the
minInstancesPerNode parameter to be 10. We ran
our experiments on Amazon EC2, using r3.xlarge in-
stances, which have 4 processors and 30.5 GB of RAM
per node. We set the number of Spark partitions to
equal the number of processors, testing clusters of size
2 to 8 nodes. The training dataset size was fixed at n =
100,000 per partition, yielding n ranging from 800k to
3.2 million. The results of our experiments are shown
in Figure 6. In these plots we show three different
methods: Distributed-Silo, naive divide-and-conquer
random forests, and MLlib’s distributed random for-
est. Similar to the results in Figure 5, the local model-
ing step in Silo improves performance relative to the
naive averaging method for most cluster sizes. The
performance of Distributed-Silo is particularly strong
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Figure 6: Performance of Silo, MLlib’s random forest, and naively distributed random forests on simulated
datasets with growing training set size. We fixed the amount of training data per partition to 100,000 observa-
tions, and varied the number of partitions from 4 to 32. The y-axis shows the test-set RMSE. In the Friedman1
simulation, Silo consistently fits better models with more training data. In the Gaussian process simulation,
both Silo and MLlib generally improve with more training data. For most cluster sizes, Silo improves upon
naive averaging of workers’ predictions. For large cluster sizes, it is more than 2× faster than MLlib due to its
avoidance of communication; see the supplementary material for details.

in the Friedman1 simulation, as the predictions consis-
tently improve with more training data, unlike MLlib.
In the Gaussian process simulation, both Distributed-
Silo and MLlib generally improve with more data,
though the trend is not monotone. Training time
of Distributed-Silo is essentially constant because it
avoids communication entirely. In both simulations,
it is more than 2× faster than MLlib for the largest
clusters (see the supplemental material).

We note that distributed-Silo has traded training
time for test time, as communication of supervised
neighborhoods between workers and master must oc-
cur, and a local model must be fit for every test point.
However, we find that the increase in test time is neg-
ligible compared to the gains in training time; for ex-
ample, by batching test points into groups of size 100,
we are able to amortize the cost of communication la-
tency, and find that the predictions can be made at an
overall rate of approximately 20 milliseconds per test
point. While this is several orders of magnitude slower
than making predictions using a model that is stored
locally (as is the case with MLlib), it is still fast enough
that overall gains in training time are dominant unless
very large test sets are required. We also note that,
in the standard random forest algorithm, the trees are
built such that the leaves contain a small number of
test points (usually less than 10 for regression tasks).
Thus, the overall storage costs of random forests scales
linearly with the size of the training set, and the mod-
els may grow beyond the in-memory storage capacity
of a single machine; for example, we estimate that, in
our Scala implementation, a random forest trained on

a dataset of size 3.2 million points would require more
than 6 gigabytes of memory.

5 CONCLUSION

Silo is a novel local learning algorithm that uses ran-
dom forests to identify supervised neighborhoods for
the problem of non-parametric regression. We proved
the consistency of Silo, introduced a distributed vari-
ant, and demonstrated its favorable empirical perfor-
mance (in terms of accuracy and computation) relative
to natural baselines.

We note that the contemporaneous work of [31] in-
troduces a local learning method that also relies on
random forests to identify supervised neighborhoods
for non-parametric regression. They also introduce
a reweighting procedure for the local models that, in
contrast to ours, is supervised using a small scale local
random forest. This work focuses on empirical studies
and does not investigate the scalability of the proposed
algorithm. However, in followup work, they show that
the underlying ideas motivating the distributed variant
of Silo are applicable to their approach as well [32].

Moving forward, it would be interesting to extend Silo
to the classification setting, study the degree to which
Silo can be parallelized by characterizing the rela-
tionship between n, Nj and W in Algorithm 1, and
investigate the theoretical performance of local meth-
ods with supervised neighborhoods relative to classi-
cal non-adaptive methods under sparsity assumptions,
e.g., when the response only involves s� p predictors.

1457



Adam Bloniarz, Christopher Wu, Bin Yu, Ameet Talwalkar

Acknowledgements This work was partially sup-
ported by NSF grants DMS-1107000, CDS&E-
MSS-1228246, DMS-1160319 (FRG), AFOSR grant
FA9550-14-1-0016, The Center for Science of Infor-
mation (CSoI), an US NSF Science and Technology
Center under grant agreement CCF-0939370, and the
National Defense Science & Engineering Graduate Fel-
lowship Program (NDSEG). AT is supported in part
by a Bloomberg Research Grant and an AWS in Edu-
cation Research Grant.

References

[1] B. Recht, C. Re, S. Wright, and F. Niu,
“Hogwild!: a lock-free approach to paralleliz-
ing stochastic gradient descent,” in NIPS, 2011.

[2] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola,
“Parallelized stochastic gradient descent,” in
NIPS, 2010.

[3] J. Dean, G. Corrado, et al., “Large scale dis-
tributed deep networks,” in NIPS, 2012.

[4] M. Jaggi, V. Smith, et al., “Communication-
efficient distributed dual coordinate ascent,” in
NIPS, 2014.

[5] L. W. Mackey, M. I. Jordan, and A. Talwalkar,
“Divide-and-conquer matrix factorization,” in
NIPS, 2011.

[6] T. Hastie and R. Tibshirani, “Discriminant
adaptive nearest neighbor classification,” IEEE
Trans. Pattern Anal. Mach. Intell. 18 (6): 607–
616, 1996.

[7] L. Breiman, J. Friedman, C. J. Stone, and R. A.
Olshen, Classification and regression trees. CRC
press, 1984.

[8] L. Breiman, “Random forests,” Mach. Learn.
45 (1): 5–32, 2001.

[9] J. Lafferty and L. Wasserman, “Rodeo: sparse,
greedy nonparametric regression,” Ann. Statist.
36 (1): 28–63, 2008.

[10] M. Zaharia, M. Chowdhury, M. J. Franklin, S.
Shenker, and I. Stoica, “Spark: cluster comput-
ing with working sets,” in Proc. 2nd HotCloud,
2010.

[11] X. Meng et al., “Mllib: machine learning in
apache spark,” ArXiv e-prints, 2015. arXiv:
1505.06807 [cs.LG].

[12] W. S. Cleveland and S. J. Devlin, “Locally
weighted regression: an approach to regression
analysis by local fitting,” JASA 83 (403): 596–
610, 1988.

[13] P. Chaudhuri, M.-C. Huang, W.-Y. Loh, and
R. Yao, “Piecewise-polynomial regression trees,”
Stat. Sin. 4 (1): 143–167, 1994.

[14] J. H. Friedman, “Multivariate adaptive regres-
sion splines,” Ann. Statist. 19 (1): 1–67, 1991.

[15] A. B. Tsybakov, Introduction to Nonparametric
Estimation. Springer-Verlag New York, 2008.

[16] Y. Lin and Y. Jeon, “Random forests and adap-
tive nearest neighbors,” JASA 101 (474): 578–
590, 2006.

[17] T. Hastie and C. Loader, “Local regression: au-
tomatic kernel carpentry,” Stat. Sci. 8 (2): 120–
129, 1993.

[18] C. J. Stone, “Optimal rates of convergence for
nonparametric estimators,” Ann. Statist. 8 (6):
1348–1360, 1980.

[19] J. Fan and I. Gijbels, “Variable bandwidth and
local linear regression smoothers,” Ann. Statist.
20 (4): 2008–2036, 1992.

[20] M. Kohler, “Universal consistency of local poly-
nomial kernel regression estimates,” Ann. Inst.
Stat. Math. 54 (4): 879–899, 2002.

[21] G. Biau, “Analysis of a random forests model,”
JMLR 13 : 1063–1095, 2012.

[22] S. Wager and S. Athey, “Estimation and in-
ference of heterogeneous treatment effects us-
ing random forests,” ArXiv e-prints, 2015. arXiv:
1510.04342 [stat.ME].

[23] E. Scornet, G. Biau, and J.-P. Vert, “Consistency
of random forests,” Ann. Statist. 43 (4): 1716–
1741, 2015.

[24] N. Meinshausen, “Quantile regression forests,”
JMLR 7 : 983–999, 2006.

[25] J. L. Bentley, “Multidimensional binary search
trees used for associative searching,” Commun.
ACM 18 (9): 509–517, 1975.

[26] P. Indyk and R. Motwani, “Approximate nearest
neighbors: towards removing the curse of dimen-
sionality,” in Proc. Thirtieth Annu. ACM Symp.
Theory Comput., 1998.

[27] A. Andoni and P. Indyk, “Near-optimal hashing
algorithms for approximate nearest neighbor in
high dimensions,” Commun. ACM 51 (1): 117–
122, 2008.

[28] B. Panda, J. S. Herbach, S. Basu, and R. J. Ba-
yardo, “PLANET: massively parallel learning of
tree ensembles with MapReduce,” Proc. VLDB
Endow. 2 (2): 1426–1437, 2009.

[29] Y. Zhang, M. J. Wainwright, and J. C. Duchi,
“Communication-efficient algorithms for statis-
tical optimization,” in NIPS, 2012.

[30] T. Bertin-Mahieux, D. P. W. Ellis, B. Whitman,
and P. Lamere, “The million song dataset,” in
Proc. 12th ISMIR, 2011.

1458



Supervised neighborhoods for distributed nonparametric regression

[31] R. Xu, D. Nettleton, and D. J. Nordman, “Case-
specific random forests,” J. Comput. Graph.
Stat. 25 (1): 49–65, 2016.

[32] J. Zimmerman and D. Nettleton, “Case-specific
random forests for big data prediction,” in JSM
Proceedings, Gen. Methodol., 2015.

1459


