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Abstract. We present CAGe, a statistical algorithm which exploits
high sequence identity between sampled genomes and a reference as-
sembly to streamline the variant calling process. Using a combination of
changepoint detection, classification, and online variant detection, CAGe
is able to call simple variants quickly and accurately on the 90-95% of
a sampled genome which differs little from the reference, while correctly
learning the remaining 5-10% that must be processed using more compu-
tationally expensive methods. CAGe runs on a deeply sequenced human
whole genome sample in approximately 20 minutes, potentially reduc-
ing the burden of variant calling by an order of magnitude after one
memory-efficient pass over the data.
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1 Introduction

A central goal in computational biology is to accurately reconstruct sampled
genomes from next-generation sequencing (NGS) data, a procedure termed vari-
ant calling. A vast number of algorithms have been developed in pursuit of this
goal, and they are notoriously computationally demanding. This is due both to
the difficulty of the underlying problem, as well as the sheer size of the data: a
whole human genome sequenced to 30× coverage produces roughly 250 GB of
sequence information and metadata; thus even one sample cannot be represented
in memory on a typical workstation. As a result, variant calling algorithms spend
significant time simply transferring and storing the information needed to carry
out the analysis.

A potential solution to this problem is to harness inherent similarity in ge-
netic data. Unrelated humans are estimated to share over 99% sequence identity
[1], so most sequencer output will be similar to a corresponding region of the
human reference sequence. So-called “reference-based” compression techniques
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which exploit this feature have been proposed [2, 3, 4]; however few existing
tools can operate natively on reference-compressed genomic data. The standard
compressed format for aligned sequence data [BAM; 5] enjoys widespread sup-
port, but only achieves roughly 50% compression owing to its use of a generic
compression algorithm (zlib).

In lieu of compression, a promising alternative is to use statistical methods to
discover the small fraction of the sampled genome believed to harbor interesting
variation, and focus further computational resources in these limited regions. We
formalize this idea in terms of complexity. Regions which are highly mutated,
have low coverage and/or were subject to sequencing errors are complex : they
contain additional signal which cannot be retrieved from the reference genome.
Conversely, regions which are similar to the reference, display expected coverage
levels, and show low rates of mutation and sequencer error have low-complexity.
Our goal then becomes to algorithmically classify genomic regions according to
their complexity level. Concretely, we propose the following hybrid approach:

1. Perform a first-pass analysis to isolate a small fraction of the sampled genome
which is “non-reference” and complex;

2. Pass these high-complexity regions to the computationally intensive variant
detection algorithms described above;

3. Process the remaining low-complexity regions using a fast algorithm designed
to detect simple variation.

In this work, we explore methods to isolate such regions by exploiting sta-
tistical features of the sequencer output, which can be computed quickly and
without recourse to fully decoding the underlying genome. Our algorithm, called
Changepoint Analysis of Genomic reads (CAGe), is fast and trivially paral-
lelizable across the genome, and hence well-suited to process large amounts of
NGS data quickly. Using several benchmark datasets, we demonstrate that our
approach maintains state-of-the-art variant calling accuracy while subjecting less
than 10% of the sampled genome to computationally intensive analysis. Addi-
tionally, we present an extension of our algorithm, called CAGe++, in which we
simultaneously perform variant detection and variant calling on low-complexity
genomic regions, potentially obviating the need for the third step of the hybrid
approach described above. Finally, our approach is very cheap when compared to
standard analysis tools [e.g. 5, 6, 7]: CAGe and CAGe++ can process a human
whole genome in approximately 20 minutes on a single 32 core machine while
consuming less than 16 GB of memory, thus illustrating that our proposed hy-
brid variant calling pipeline has the potential to significantly speedup the variant
calling process.

2 Related work

High-throughput sequencing has inspired various efforts aimed at reducing the
amount of data needed to be stored and analyzed, primarily in the form of
compression algorithms. Lossless compression methods include reference-based
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approaches [3, 4] which store variation relative to a reference sequence, as well
as non reference-based methods which specialize certain existing compression
techniques to genomic data [2]. Greater compression ratios may be achieved if
sequencer quality scores are lossily compressed while still losslessly compressing
the actual sequence data [8]. The primary disadvantage of these techniques is
that few existing software tools can operate directly on the compressed data,
mandating a time- and space-intensive decompression step each time the data
are analyzed.

Recent versions of the Genome Analysis Toolkit [GATK, 6] employ a lossy
compression tool, ReduceReads, to reduce alignment data before being processed
by other variant calling tools. The tool works by discarding data in regions of
the genome which contain little variation, and is thus similar in motivation to
the algorithm we report here. However, the algorithms differ in several regards.
CAGe is based on a statistical model of the observed data (Section 3), and is
tuned using intuitive quantities such as read coverage rate, sequencer error rate,
and mutation rate. ReduceReads appears to employ several heuristics when cre-
ating the compressed output, and it is not necessarily clear how to parameterize
these heuristics in order to achieve a desired compression ratio or data fidelity.
Additionally, though we are unaware of any formal publication or other effort to
benchmark the ReduceReads algorithm, user reports from the GATK support
forums indicate that it requires costly preprocessing steps in order to run, and
can require a large amount of memory and processing time in order to compress
a whole genome sequence.

CAGe uses a changepoint detection method to mark regions of variable
complexity as it moves along the genome. A similar idea was used by Shen and
Zhang [9] to detect abrupt changes in copy number. One way to view these
methods is as an alternative to the hidden Markov model (HMM), which has
also been previously used to detect genomic variation [10, 11]. In contrast to
the latter methods, which require the number of hidden states to be known
a priori, changepoint methods allow the number of detected segments to vary
in accordance with the data. We leverage this observation, in conjunction with
simple rule-based classifier, to learn the number of hidden genomic complexity
states in a semiparametric manner.

Various distributional aspects of the data we consider have been previously
studied. In a seminal paper, Lander and Waterman [12] showed that read depth
in whole-genome shotgun sequencing experiments is well modeled by a Poisson
distribution, a fact which we exploit in our model. Evans et al. [13] considered
fragment site–insert length pairs embedded into the plane. This construction can
be used to derive null distributions of several coverage-related statistics [13, 14].
They also describe an interesting visualization technique which can be used to
detect deviations from the null coverage distribution. This approach is similar in
spirit to our goal, but here we rely on automated techniques in order to detect
these deviations in a high-throughput environment.
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3 Methods

Following sequencing and alignment, evidence of genetic variation in NGS data
is detectable in several ways. Sites which harbor isolated, single-nucleotide vari-
ants can usually be aligned unambiguously to the reference genome, resulting
in a characteristic SNP signature common to half or all of the reads (depending
on zygosity) in the alignment. Small insertions and deletions (≈2-10bp) are also
frequently detected and compensated for by the aligner. In both of these scenar-
ios, coverage and concordance statistics are usually unaffected by the presence
of the nearby variant since the aligner is able to “explain away” the variant.

In contrast, larger structural variants produce several noticeable signals in
the alignment. Novel insertions are typically flanked by reads with low mapping
quality or missing mate pairs, and may also result in a coverage dropoff or de-
creased insert size near the insertion site. Similarly, deleted regions are evidenced
by larger than expected insert sizes and a coverage dropoff. Reads that straddle
the boundary of a structural variant often have a high percentage of soft-clipped
bases with high Phred-scores. More complicated forms of rearrangement result in
other distinctive patterns involving, for example, split mapping and orientation
bias [15].

Formally, we define complexity in terms of point processes and their associ-
ated rates. At genomic position i, let

– Mi ∈ {0, 1} denote the (unobserved) mutation state, assuming a biallelic
mutation model;

– Ri ∈ Z+ the number of short-reads whose alignment begins at i;
– Di ≥ Ri be number of sequenced bases (“coverage depth”) at i; and

– Ei = (ei,1, . . . , ei,Di
) ∈ {0, 1}Di denote a vector of indicators for whether a

sequencing error occurred in each of the Di bases aligned to i.

Note that we observe the random variables Ri and Di but not Mi or Ei; the Mi

are what we ultimately hope to infer through later variant calling analysis, and
we only observe a noisy signal of Ei through the sequencer quality score.

These random variables generate our data as follows. After sequencing and
read mapping, we observe a collection of vectors B1, . . . ,BL, where L is the
length of the reference genome (≈ 3.3×109 in humans) and Bi = (Bi,1, . . . , Bi,Di)
is the vector of sequenced bases at site i, with

Bi,j = 1{base j at location i matches the reference}
= Mi(1− ei,j) + (1−Mi)ei,j .

To compute the likelihood of the data, we make the following distributional
assumptions:

– The Ri are independent and Poisson distributed with intensity λi [12].
– Conditional on the R1, . . . , Ri, the coverage depth Di is deterministic.
– Mi ∼ Bernoulli (µi) has a Bernoulli distribution with success parameter µi,

the probability that a mutation occurs at i.
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– The indicators ei,j have a common Bernoulli(εi) distribution.
– Ri, ei,j and Mi are mutually independent within and across sites.
– All reference bases at a mutated site are sequencer errors, as are all non-

reference bases at a non-mutated site.

These assumptions are not expected to hold for real data, however they lead
to a fast, easily estimated model, and moreover they do not appear to greatly
affect the quality of our inference. Henceforth we abbreviate the genomic region
{i, i + 1, . . . , j − 1, j} as i : j. In a region of uniform genomic complexity we
expect that the parameters λk, µk, εk are approximately constant, (λk, µk, εk) =
(λ, µ, ε) , θ for k ∈ i : j.

The complete log-likelihood of the data, `θ(i : j), is then

`θ(i, j) , `θ(Bi:j ,Mi:j ,Ei:j) = `θ(Ri:j) + `θ(Mi:j) + `θ(Ei:j |Mi:j ,Bi:j) (1)

where:

`θ(Ri:j) =

j∑
b=i

logPλ(Rb) (2)

`θ(Mi:j) =

j∑
b=i

[Mb logµ+ (1−Mb) log(1− µ)] (3)

`θ(Ei:j |Mi:j ,Bi:j) =

j∑
b=i

[
(1−Mb)B̄b log ε+Mb(Di − B̄b) log(1− ε)

]
, (4)

Pλ is the Poisson likelihood with rate λ and B̄b =
∑
k Bb,k.

Let `θ̂(i : j) , supθ `θ(i : j) denote the maximized log-likelihood. It is clear
from the additive form of (2)—(4) that for any i ≤ k ≤ j, we can always increase
the likelihood of the data by breaking i : j into two independent segments i : k
and (k + 1) : j:

`θ̂(i : j) ≤ `θ̂(i : k) + `θ̂((k + 1) : j).

In what follows we use this observation to quickly detect uniformly complex
regions using likelihood-based methods.

3.1 Maximum likelihood estimation

The simple form of the complete likelihood (1) suggests using the EM algorithm
to compute `θ̂(i : j). To do so, we must evaluate the conditional expectation

EMi:j ,Ei:j |Bi:j ,θt(`θ(Bi:j ,Mi:j ,Ei:j)).

Unfortunately, the conditional distribution Mi:j ,Ei:j | Bi:j , θt is intractable be-
cause the normalization constant requires integrating over the high-dimensional
vectors Mi:j and Ei:j . Since the main goal of our algorithm is to decrease overall
computation time, we instead assume that Mi:j is known, either from a public
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database of mutations [16], or from genotypes estimated on-the-fly using a fast
and simple variant calling algorithm. We assume that the sampled genome(s)
harbor mutations only at sites contained in this database. This enables us to
quickly estimate the sample genotype in a particular region, at the expense of
erroneously classifying uncalled sites as sequencer errors. Since these sites are
generally segregating at low frequency in the population, or were the result of
genotyping error, the overall effect of this assumption on our likelihood calcula-
tion should be small. Moreover, by training our algorithm to flag regions with an
elevated sequencer error rate, we retain the ability to detect these novel variants
downstream.

3.2 Augmented Likelihood

The model described above aims to capture the essential data generating mecha-
nism of an NGS experiment. In practice, we found that augmenting the likelihood
with additional terms designed to capture features of coverage, mapping quality,
and related statistics improved the accuracy of our algorithm with minimal per-
formance impact. In particular, we assume that, in a region of constant genomic
complexity:

1. The mapping quality (MAPQ) distribution of short reads is Bernoulli: with
probability τ ∈ [0, 1], a read has MAPQ = 0; otherwise the read MAPQ > 0.
Here we bin MAPQ into two classes, zero and non-zero, since its distribu-
tion is unknown, and also because we found that the strongest signal was
contained in reads which had zero mapping quality.

2. With probability η ∈ [0, 1], each base pair is inserted or deleted in the sample
genome; otherwise, with probability 1−η the base is subject to the standard
mutational and sequencer error processes described above.

Modern aligners [7, 17] generate MAPQ scores during read mapping proce-
dure, and also call small indels where doing so improves concordance. Hence τ
and η can be be estimated with high confidence from the data. Indels which
are not detected by the aligner will generate aberrations in the coverage and
mismatch signals as described above.

Letting θ denote the vector of all parameters in our model, the augmented
likelihood from positions i to j can be written as

`augθ,τ,η(i, j) ≡ `θ(Bi:j ,Mi:j ,Ei:j)+

j∑
b=i

Ib log η +Qb log τ + (Db − Ib) log(1− η) + (Db −Qb) log(1− τ), (5)

where Ib and Qb count the number of inserted/deleted and MAPQ-0 bases at
position b, and ιb,c is the insert size of the c-th read aligned at position b. The
augmented model no longer has a simple interpretation in the generative sense;
and in fact we unrealistically assume that the random variables with which we
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have augmented the likelihood function are mutually independent and identi-
cally distributed. On the other hand, this enables us to quickly estimate these
parameters from data, and these parameter estimates in turn enable us to easily
detect the signatures of mutational events which mark complex regions of the
genome.

3.3 Change Point Detection

CAGe classifies genomic regions using parameter estimates obtained by max-
imizing (5). We assume that these parameters are piecewise constant within
(unobserved) segments of the sample genome, and estimate the segments using
a changepoint detection method. Let

(θ̂i:j , τ̂ , η̂) = arg max
θ,τ,η

`augθ,τ,η(i, j)

C(i, j) = −`aug
θ̂i:j ,τ̂ ,η̂

(i, j)

be defined using the likelihood function given above, and let

τ , (τ0 = 0, τ1, τ2, . . . , τm+1 = s)

be a sequence of changepoints dividing the region 0, . . . , s. C(i, j) is the negative
log-likelihood of segment i : j evaluated at the MLE, and hence

m+1∑
i=1

[C(τi−1 + 1, τi) + β] (6)

is a natural measure of fit for the segmentation τ . Here β is a regularization
parameter which penalizes each additional changepoint. In practice, rather than
considering all O(109) loci in the human genome as potential changepoints, we
restrict the τi in (6) to integer multiples of some window size w. We typically set
25 ≤ w ≤ 200 when evaluating our algorithm. This speeds up the optimization,
and also decreases the variance of the maximum likelihood parameter estimates
for each segment.

Exact minimization of (6) over m and τ can be achieved in quadratic time
via a dynamic programming algorithm [18]. For likelihood-based changepoint
detection, properties of the likelihood function certify that certain changepoint
positions can never be optimal. Killick et al. [19] exploit this property to for-
mulate a pruning algorithm which minimizes (6) in expected linear time. The
pruning process enables both computational savings, as well as significant mem-
ory savings since the in-memory data structures can be repeatedly purged of all
data prior to the earliest possible changepoint. The resulting algorithm consumes
only a few gigabytes of memory, even when processing data sets which are tens of
gigabytes in size. Thus, multiple chromosomes can be processed simultaneously
on a typical workstation.

Our cost calculations take further advantage of a property of maximum
likelihood-based cost functions for parametric families that enable us to avoid
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calculating the full likelihood. From (2)–(4) and (5) it is seen that our cost
function factors as C(i, j) = gθ̂i:j ,τ̂ ,η̂ (T (i, j)) + h (i, j) where T (i, j) and h(i, j)

depend only on the data in region i : j and h does not depend on the parameters.
Since our model assumes the data are independent and identically distributed
within a segment, we have

h (i, j) =

j∑
b=i

h1(b)

where h1 is a univariate function. Thus the optimization (6) can be decomposed
as

min
m,τ

s=τm+1

m+1∑
i=1

[
gθ̂,τ̂ ,η̂ (τi−1 + 1, τi) + h (τi−1 + 1, τi) + β

]

= min
m,τ

s=τm+1

m+1∑
i=1

gθ̂,τ̂ ,η̂ (τi−1 + 1, τi) +

τi∑
b=τi−1+1

h1 (b) + β


=

n∑
b=1

h1 (b) + min
m,τ

s=τm+1

m+1∑
i=1

[
gθ̂,τ̂ ,η̂ (τi−1 + 1, τi) + β

]
.

We see that it is not necessary to evaluate h at all in order to carry out the
optimization. In our setting this function involves a number of log-factorial terms
which are relatively expensive to evaluate.

3.4 Identification of High-Complexity Regions

The changepoint detection algorithm described above determines which genomic
regions have uniform genomic complexity. Next, we use this information to allo-
cate additional computational resources to complex regions. In this paper we use
a binary classification scheme in which a region is labeled as either high or low.
For each changepoint region, we compute the features considered in CAGe’s
augmented likelihood defined in (5), and classify each region as high-complexity
if any of these features are outliers, using hand-tuned thresholds for each feature.

3.5 Integrated Variant Calling Algorithm

The hybrid variant calling approach described in Section 1 relies on a fast algo-
rithm to detect variation in low-complexity regions. Additionally, CAGe requires
estimates of ground-truth locations of mutations and short indels in its likeli-
hood calculation, as discussed in Section 3.1. We hypothesized that variation in
low-complexity regions of the genome should be particularly easy to call, and
implemented a simple, rule-based variant calling heuristic to be run alongside
the core CAGe algorithm during the initial pass over the data.

We refer to this modified algorithm as CAGe++. It uses a count-based
method to identify variants from a pileup, and relies on read depth, strand bias
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and read quality scores to filter calls. This method has five tuning parameters:
CAGe++ ignores all bases with quality scores less than α1, and calls a variant
at a particular pileup location if:

1. The pileup depth is at least α2;
2. An alternative allele appears in at least α3 percent of the reads, and no fewer

than α4 actual reads; and
3. The strand bias is less than α5 percent.

As we show in Section 4, this heuristic is extremely fast while remaining com-
petitive with more sophisticated algorithms in terms of accuracy.

4 Results

We compared our proposed algorithms to two baseline variant calling algorithms
from GATK version 2.8. The first is a computationally cheap caller known as Uni-
fiedGenotyper (GATK-ug). The second algorithm, HaplotypeCaller (GATK-ht), is
more accurate but relies on computationally demanding local de novo assembly.
We compare these two variant callers with two hybrid approaches. In one ap-
proach, we first segment the genome by complexity using CAGe, and then use
GATK-ug and GATK-ht to process the low- and high-complexity regions, respec-
tively. In the second approach, we use CAGe++ to both segment the genome
by complexity and perform variant calling on the low-complexity regions, and
then rely on GATK-ht to process the high-complexity regions. To measure the
effectiveness of the changepoint detection component of CAGe and CAGe++,
we also evaluate a simple alternative hybrid approach, called AllChange, in
which we treat each window as a distinct region and rely solely on our rule-based
classifier to determine genomic complexity.4

To perform the CAGe and AllChange hybrid approaches, we first ran
GATK-ug on the full genome, and used these predictions as estimates of Mi:j ,
as discussed in Section 3.1. Since CAGe++ calls variants directly, the CAGe++
approach did not rely on GATK-ug. For all three hybrid approaches, after iden-
tifying regions of high-complexity via binary classification, we then executed
GATK-ht on each region, expanding each region by 10% of its length to minimize
errors at the boundaries. We then combined the resulting predictions from the
low-complexity regions (either from GATK-ug or directly from CAGe++) with
the predictions from GATK-ht on the high-complexity regions.

We performed all our experiments on an x86-64 architecture multicore ma-
chine with 12 2.4Ghz hyperthreaded cores and 284 GB of main memory. We
tuned the changepoint parameters for CAGe and CAGe on a small hold-out
set, setting the window size to w = 100, the regularization parameter to β = 3.0.
We used the same window size for AllChange. For CAGe++, we set the variant
calling parameters to (α1, α2, α3, α4, α5) = (12, 10, 20, 3, 20).

4 AllChange is similar to GATK’s ReduceReads algorithm and is also what we obtain
from CAGe with β ≡ 0.
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4.1 Datasets and Evaluation

To evaluate the performance of these algorithms we used SMaSH [20], a re-
cently developed suite of tools for benchmarking variant calling algorithms.
Briefly, SMaSH is motivated by the lack of a gold-standard NGS benchmarking
dataset which both a) mimics a realistic use-case (i.e. is not generated by sim-
ulating sequencer output) and b) includes comprehensive, orthogonal validation
data (i.e. is not generating using sequencer output). The datasets comprised by
SMaSH present different trade-offs between practical relevance and the qual-
ity and breadth of the validation data. We worked with the following SMaSH
datasets:

– Venter Chromosome 20 and full genome: generated from Craig Venter’s
genome [21] and including noise-free validation data and synthetically gen-
erated short-reads (30× coverage, mean insert size of 400);

– Mouse Chromosome 19: derived from the mouse reference genome and in-
cluding noisy validation data and overlapping short-reads generating from a
GAIIx sequencer (60× coverage, mean insert size of −34);

– NA12878 Chromosome 20: based on a well studied human subject, includ-
ing short-reads from a HiSeq2000 sequencer (50× coverage, mean insert
size of 300). SMaSH’s validation data for this dataset consists primarily
of well-studied SNP locations, so we instead rely on a richer set of validated
variants (SNPs and indels only) provided by Illumina’s Platinum Genomes
project [22]. We nonetheless leverage the SMaSH evaluation framework to
compute accuracy. Since this validation set is only a sample of the full set of
variants, we do not report precision results.

4.2 Accuracy

Table 1 summarizes the accuracy of GATK-ug, AllChange, CAGe/CAGe++
and GATK-ht. Precision and recall are calculated with respect to the validated
variants in the SMaSH datasets, except in the case of NA12878 as described
above. As expected, GATK-ht generally outperforms GATK-ug; the difference
is particularly pronounced for indels. Second, the CAGe approach in which
GATK-ht is applied to the high-complexity regions and GATK-ug is applied to the
remainder yields comparable accuracy to GATK-ht, with the CAGe approach
being slightly better on Mouse, comparable on Venter, and slightly worse on
NA12878. Third, AllChange accuracy is comparable to that of CAGe, indi-
cating that the features we consider in our likelihood model are indeed predictive
of genome complexity.

As shown in Table 2, the AllChange high-complexity regions are larger
than the corresponding CAGe and CAGe++ regions, and by a large margin for
the two human datasets, thus highlighting the effectiveness of the changepoint
detection algorithm. The table also shows that a large fraction of the structural
variants are concentrated in these high-complexity regions. Moreover, when we
investigated the handful of remaining structural variants which fell into low-
complexity regions, we found that they were difficult to discern even by visually
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Table 1: Precision/Recall of various variant calling algorithms.
Variant Dataset GATK-ug AllChange CAGe CAGe++ GATK-ht

SNPs
Venter 93.6 / 98.7 98.8 / 98.2 98.6 / 98.2 98.9 / 96.5 98.9 / 98.1
Mouse 93.3 / 96.4 98.2 / 95.5 98.1 / 95.6 98.6 / 95.4 98.5 / 95.4
NA12878 - / 99.7 - / 99.6 - / 99.6 - / 99.6 - / 99.6

Indel-Ins
Venter 94.3 / 81.3 93.1 / 92.1 93.1 / 91.9 93.1 / 91.8 93.1 / 92.0
Mouse 94.2 / 75.1 89.7 / 89.5 89.8 / 89.4 90.0 / 88.3 89.2 / 89.7
NA12878 - / 62.2 - / 93.0 - / 92.7 - / 92.8 - / 93.4

Indel-Del
Venter 95.0 / 87.2 95.0 / 93.4 95.1 / 93.3 95.0 / 93.6 95.1 / 93.9
Mouse 92.1 / 90.7 80.1 / 94.4 81.0 / 94.4 85.6 / 94.2 77.7 / 94.6
NA12878 - / 64.3 - / 94.3 - / 94.3 - / 94.3 - / 94.6

Table 2: Segregation of variants in high-complexity regions for AllChange and
CAGe.

Algorithm Dataset Size of high % SNPs % Indels % SVs

AllChange
Venter 13.1% 28.2% 58.3% 98.4%
Mouse 13.2% 72.5% 79.9% 98.7%

NA12878 13.5% - - -

CAGe
Venter 4.0% 14.3% 53.4% 98.4%
Mouse 11.3% 61.3% 77.1% 98.8%

NA12878 7.1% - - -

CAGe++
Venter 6.3% 32.1% 99.6% 97.2%
Mouse 9.7% 55.8% 97.3% 98.2%

NA12878 8.3% - - -

inspecting the raw data. We further note that the basic variant caller in CAGe++
leads to a much higher fraction of indels being placed in high-complexity regions.

4.3 Computational Performance

We evaluated the runtime of CAGe on the full Venter genome, executing it
on a single Amazon EC2 cc2.8xlarge instance with 59 GB of main memory
and 32 cores. We divided the genome into roughly equal sized subproblems,
and CAGe completed in 13 minutes when executing all subproblems in parallel,
with peak memory usage of less than 16 GB. Next, we evaluated the performance
of CAGe++. Since CAGe is heavily I/O bound, the additional computation re-
quired by the variant caller component of CAGe++ has a small impact on overall
execution time, increasing runtime relative to CAGe by approximately 50%. Fi-
nally, we evaluated the speedup obtained by executing GATK-ht only on CAGe’s
high-complexity regions, but we observed modest speedups. Indeed, on Venter,
where CAGe’s high-complexity regions comprise a mere 4% of chromosome 20,
we observed a 1.4× speedup. As a baseline comparison, we also executed GATK-ht

on randomly selected contiguous regions each consisting of 4% of chromosome
20, and observed an average speedup of 2.8×. The sublinear scaling of GATK-ht
suggests that it may not be well suited for a hybrid variant calling approach.
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Fig. 1: Overlap between CAGe regions and known genome annotations. (a,b)
Overlap with the exome. (c,d) Overlap with GEM non-unique regions.

4.4 Properties of CAGe Regions

To further validate our approach, we examined how low- and high-complexity
regions produced by CAGe interact with various genome annotation tracks, as
well as with each other when processing multiple samples at once. Figure 1 (a,b)
depicts the overlap between these regions and portions of the sampled genome
that are annotated as exons according to the Illumina TruSeq exon capture
kit. We found that low-complexity regions are comparatively enriched for exons:
96.3% (97.9%) of the exome falls in low-complexity for NA12878 (Venter). This
is expected since exons are under stronger purifying selection than noncoding
regions of the genome and hence harbor less variation [23].

We also explored the relationship between genome mappability [24] and
CAGe classification. Mappability estimates the uniqueness of each k-mer of
the reference genome. Repetitive and duplicated regions have lower mappability
scores, while k-mers that are unique among all reference k-mers have a map-
pability score of 1. In our experiments we set k = 100 to match the standard
read length of NGS data. Figure 1 (c,d) compares the overlap between high-
complexity regions, low-complexity regions, and segments of the genome that



CAGe 13

NA12878 NA12889

NA12890

Fig. 2: Overlap of chromosome 20 high regions for three unrelated individuals.

have non-unique k-mers (mappability < 1). High-complexity regions are com-
paratively enriched for segments that are more difficult to map, with 53.3%
(7.5× enrichment) of the non-unique locations residing in the NA12878 high-
complexity regions and 34.1% (8.5× enrichment) in the Venter high-complexity
regions. This enrichment is consistent with the fact that non-unique locations
of the genome are prone to alignment errors that can result in high-complexity
pileups around these locations.

Since variant calling is often performed with many samples in parallel, we
next studied the concordance of high-complexity regions between individual sam-
ples. We computed high-complexity regions for samples NA12889, NA12890 and
NA12878 using data released by the Platinum Genomes project. The individu-
als are members of the CEPH/UTAH 1463 pedigree but are unrelated (mother
and paternal grandparents). We ran CAGe on chromosome 20 of each of these
individuals, setting the thresholds of our rule-based classifiers to generate a high-
complexity region of consistent size on each of the chromosomes (respectively,
8.1%, 8.2%, 8.3%). The Venn diagram in Figure 2 characterizes the overlap
among these regions. The high-complexity regions are fairly consistent among
the three individuals; the union of their high-complexity regions consists of 11.6%
of the chromosome.

5 Discussion

These experiments illustrate that a hybrid approach has the potential to accu-
rately detect regions of a sampled genome that harbor the majority of complex
variation, as well as improve the computational performance of variant calling
algorithms. It is possible to partition a genome into high- and low-complexity
regions such that:

1. Low-complexity regions comprise a large majority of the genome; and
2. Fast, simple variant calling algorithms work as well as slower, more complex

ones on these regions.
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This strategy leads to a large increase in throughput compared with traditional
variant calling pipelines.

There are several avenues for improving upon this work. Our experiments
demonstrate the promise of, at least in the case of deeply sequenced samples,
employing a trivial, rule-based variant calling algorithm to process a large frac-
tion of the data with minimal impact on accuracy. More experiments are needed
to confirm that this finding translates to larger samples and/or other types of
sequencing experiments.

The experimental results presented above used a hand-trained classifier to
segment the sampled genomes into high- and low-complexity regions. In order to
employ our algorithm on a larger scale it is necessary to automatically train this
classifier. Since it is usually straightforward via visual inspection to determine
whether a region harbors a complex variant, one potential solution is to build
a streamlined program to facilitate the rapid generation of training examples
by human supervision. We have implemented a prototype of this software and
found that a knowledgeable human subject is capable of generating on the or-
der of 1,000 training examples per hour. More work is needed to integrate this
supervised classifier into CAGe.

Another extension would be to the multi-class regime where regions are
placed into one of several categories based on whether they are believed to
harbor SNPs, indels, various types of structural variants or some combination
thereof. The summary statistics generated in the maximum likelihood step of
CAGe could be used to send segments to specialized variant calling algorithms
designed to handle these respective categories.
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