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REVERSIBLE MCMC ON MARKOV EQUIVALENCE CLASSES OF
SPARSE DIRECTED ACYCLIC GRAPHS1

BY YANGBO HE, JINZHU JIA AND BIN YU

Peking University, Peking University and University of California, Berkeley

Graphical models are popular statistical tools which are used to repre-
sent dependent or causal complex systems. Statistically equivalent causal or
directed graphical models are said to belong to a Markov equivalent class. It
is of great interest to describe and understand the space of such classes. How-
ever, with currently known algorithms, sampling over such classes is only
feasible for graphs with fewer than approximately 20 vertices. In this pa-
per, we design reversible irreducible Markov chains on the space of Markov
equivalent classes by proposing a perfect set of operators that determine the
transitions of the Markov chain. The stationary distribution of a proposed
Markov chain has a closed form and can be computed easily. Specifically, we
construct a concrete perfect set of operators on sparse Markov equivalence
classes by introducing appropriate conditions on each possible operator. Al-
gorithms and their accelerated versions are provided to efficiently generate
Markov chains and to explore properties of Markov equivalence classes of
sparse directed acyclic graphs (DAGs) with thousands of vertices. We find
experimentally that in most Markov equivalence classes of sparse DAGs,
(1) most edges are directed, (2) most undirected subgraphs are small and (3)
the number of these undirected subgraphs grows approximately linearly with
the number of vertices.

1. Introduction. Graphical models based on directed acyclic graphs (DAGs,
denoted as D) are widely used to represent causal or dependent relationships in
various scientific investigations, such as bioinformatics, epidemiology, sociology
and business [12, 13, 19, 20, 24, 32, 35]. A DAG encodes the independence
and conditional independence restrictions of variables. However, because differ-
ent DAGs can encode the same set of independencies or conditional independen-
cies, most of the time we cannot distinguish DAGs via observational data [31].
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A Markov equivalence class is used to represent all DAGs that encode the same
dependencies and independencies [2, 6, 33]. A Markov equivalence class can be
visualized (or modeled) and uniquely represented by a completed partial directed
acyclic graph (completed PDAG for short) [6] which possibly contains both di-
rected edges and undirected edges [22]. There exists a one-to-one correspondence
between completed PDAGs and Markov equivalence classes [2]. The completed
PDAGs are also called essential graphs by Andersson et al. [2] and maximally
oriented graphs by Meek [26].

A set of completed PDAGs can be used as a model space. The modeling task
is to discover a proper Markov equivalence class in the model space [3, 4, 8, 9,
18, 25]. Understanding the set of Markov equivalence classes is important and
useful for statistical causal modeling [14, 15, 21]. For example, if the number of
DAGs is large for Markov equivalence classes in the model space, searching based
on unique completed PDAGs could be substantially more efficient than searching
based on DAGs [6, 25, 27]. Moreover, if most completed PDAGs in the model
space have many undirected edges (with nonidentifiable directions), many inter-
ventions might be needed to identify the causal directions [11, 17].

Because the number of Markov equivalence classes increases superexponen-
tially with the number of vertices (e.g., more than 1018 classes with 10 vertices)
[15], it is hard to study sets of Markov equivalence classes. To our knowledge,
only completed PDAGs with a small given number of vertices (≤10) have been
studied thoroughly in the literature [14, 15, 29]. Moreover, these studies focus on
the size of Markov equivalence classes, which is defined as the number of DAGs
in a Markov equivalence class. Gillispie and Perlman [15] obtain the true size dis-
tribution of all Markov equivalence classes with a given number (10 or fewer) of
vertices by listing all classes. Peña [29] designs a Markov chain to estimate the
proportion of the equivalence classes containing only one DAG for graphs with 20
or fewer vertices.

In recent years, sparse graphical models have become popular tools for fitting
high-dimensional multivariate data. The sparsity assumption introduces restric-
tions on the model space; a standard restriction is that the number of edges in
the graph be less than a small multiple of the number of vertices. It is thus both in-
teresting and important to be able to explore the properties of subsets of graphical
models, especially with sparsity constraints on the edges.

In this paper, we propose a reversible irreducible Markov chain on Markov
equivalence classes. We first introduce a perfect set of operators that determine the
transitions of the chain. Then we obtain the stationary distribution of the chain by
counting (or estimating) all possible transitions for each state of the chain. Finally,
based on the stationary distribution of the chain (or estimated stationary distri-
bution), we re-weigh the samples from the chain. Hence these reweighed samples
can be seen as uniformly (or approximately uniformly) generated from the Markov
equivalence classes of interest. Our proposal allows the study of properties of the
sets that contain sparse Markov equivalence classes in a computationally efficient
manner for sparse graphs with thousands of vertices.
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1.1. A Markov equivalence class and its representation. In this section, we
give a short overview for the representations of a Markov equivalence class.

A graph G is defined as a pair (V ,E), where V = {x1, . . . , xp} denotes the
vertex set with p variables, and E denotes the edge set. Let nG = |E| be the number
of edges in G . A directed (undirected) edge is denoted as → or ← (−). A graph
is directed (undirected) if all of its edges are directed (undirected). A sequence
(x1, x2, . . . , xk) of distinct vertices is called a path from x1 to xk if either xi → xi+1
or xi − xi+1 is in E for all i = 1, . . . , k − 1. A path is partially directed if at least
one edge in it is directed. A path is directed (undirected) if all edges are directed
(undirected). A cycle is a path from a vertex to itself.

A directed acyclic graph (DAG), denoted by D, is a directed graph which does
not contain any directed cycle. Let τ be a subset of V . The subgraph Dτ = (τ,Eτ )

induced by the subset τ has vertex set τ and edge set Eτ , the subset of E which
contains the edges with both vertices in τ . A subgraph x → z ← y is called a v-
structure if there is no edge between x and y. A partially directed acyclic graph
(PDAG), denoted by P , is a graph with no directed cycle.

A graphical model consists of a DAG and a joint probability distribution. With
the graphical model, in general, the conditional independencies implied by the
joint probability distribution can be read from the DAG. A Markov equivalence
class (MEC) is a set of DAGs that encode the same set of independencies or
conditional independencies. Let the skeleton of an arbitrary graph G be the undi-
rected graph with the same vertices and edges as G , regardless of their directions.
Verma and Pearl [36] proved the following characterization of Markov equivalence
classes:

LEMMA 1 (Verma and Pearl [36]). Two DAGs are Markov equivalent if and
only if they have the same skeleton and the same v-structures.

This lemma implies that, among DAGs in an equivalence class, some edge ori-
entations may vary, while others will be preserved (e.g., those involved in a v-
structure). Consequently, a Markov equivalence class can be represented uniquely
by a completed PDAG, defined as follows:

DEFINITION 1 (Completed PDAG [6]). The completed PDAG of a DAG D,
denoted as C , is a PDAG that has the same skeleton as D, and an edge is directed
in C if and only if it has the same orientation in every equivalent DAG of D.

According to Definition 1 and Lemma 1, a completed PDAG of a DAG D
has the same skeleton as D, and it keeps at least the directed edges that occur
in the v-structures of D. Another popular name of a completed PDAG is “essen-
tial graph” introduced by Andersson et al. [2], who introduce four necessary and
sufficient conditions for a graph to be an essential graph; see them in Lemma 2,
Appendix A.1. One of the conditions shows that all directed edges in a completed
PDAG must be “strongly protected,” defined as follows:
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FIG. 1. Four configurations where v → u is strongly protected in G .

DEFINITION 2. Let G = (V ,E) be a graph. A directed edge v → u ∈ E is
strongly protected in G if v → u ∈ E occurs in at least one of the four induced
subgraphs of G in Figure 1.

If we delete all directed edges from a completed PDAG, we are left with several
isolated undirected subgraphs. Each isolated undirected subgraph is a chain com-
ponent of the completed PDAG. Observational data is not sufficient to learn the
directions of undirected edges of a completed PDAG; one must perform additional
intervention experiments. In general, the size of a chain component is a measure
of “complexity” of causal learning; the larger the chain components are, the more
interventions will be necessary to learn the underlying causal graph [17].

In learning graphical models [6] or studying Markov equivalence classes [29],
Markov chains on completed PDAGs play an important role. We briefly introduce
the existing methods to construct Markov chains on completed PDAGs in the next
subsection.

1.2. Markov chains on completed PDAGs. To construct a Markov chain on
completed PDAGs, we need to generate the transitions among them. In general, an
operator that can modify the initial completed PDAG locally can be used to carry
out a transition [6, 27, 29, 34]. Let C be a completed PDAG. We consider six types
of operators on C : inserting an undirected edge (denoted by InsertU ), deleting
an undirected edge (DeleteU), inserting a directed edge (InsertD), deleting a di-
rected edge (DeleteD), making a v-structure (MakeV) and removing a v-structure
(RemoveV). We call InsertU, DeleteU, InsertD, DeleteD, MakeV and RemoveV
the types of operators. An operator on a given completed PDAG is determined
by two parts: its type and the modified edges. For example, the operator “InsertU
x − y” on C represents inserting an undirected edge x − y to C , and x − y is the
modified edge of the operator. A modified graph of an operator is the same as the
initial completed PDAG, except for the modified edges of the operator. A modified
graph might (not) be a completed PDAG; see Example 1 in Section 2.1, of the
Supplementary Material [16].

Madigan et al. [25], Perlman [34] and Peña [29] introduce several Markov
chains based on the modified graphs of operators. At each state of these Markov
chains, say C , they move to the modified graph of an operator on C only when
the modified graph happens to be a completed PDAG, otherwise, stay at C . In or-
der to move to new completed PDAGs, Madigan et al. [25] search the operators



1746 Y. HE, J. JIA AND B. YU

whose modified graphs are completed PDAG by checking Andersson’s conditions
[2] one by one. Perlman [34] introduces an alternative search approach that is more
efficient by “exploiting further” Andersson’s conditions.

When the modified graph of an operator on C is not a completed PDAG, the
operator might result in a transition from one completed PDAG C to another. This
operator also results in a “valid” transition. To obtain valid transitions, Chicker-
ing [6, 7] introduces the concept of validity for an operator on C . Before defining
“valid operator,” we need a concept consistent extension. A consistent extension
of a PDAG P is a directed acyclic graph (DAG) on the same underlying set of
edges, with the same orientations on the directed edges of P and the same set
of v-structures [10, 37]. According to Lemma 1, all consistent extensions of a
PDAG P , if they exist, belong to a unique Markov equivalence class. Hence if the
modified graph of an operator is a PDAG and has a consistent extension, it can re-
sult in a completed PDAG that corresponds to a unique Markov equivalence class.
We call it the resulting completed PDAG of the operator. Now a valid operator is
defined as below.

DEFINITION 3 (Valid operator). An operator on C is valid if (1) the modified
graph of the operator is a PDAG and has a consistent extension, and (2) all modified
edges in the modified graph occur in the resulting completed PDAG of the operator.

The first condition in Definition 3 guarantees that a valid operator results in
a completed PDAG. The second condition guarantees that the valid operator is
“effective;” that is, the change brought about by the operator occurs in the result-
ing completed PDAG. Here we notice that the second condition is implied by the
context in Chickering [6]. Below we briefly introduce how to obtain the resulting
completed PDAG of a valid operator from the modified graph.

Verma and Pearl [37] and Meek [26] introduce an algorithm for finding the com-
pleted PDAG from a “pattern” (given skeleton and v-structures). This method can
be used to create the completed PDAG from a DAG or a PDAG. They first undi-
rect every edge, except for those edges that participate in a v-structure. Then they
choose one of the undirected edges and direct it if the corresponding directed edge
is strongly protected, as shown in Figure 1(a), (c) or (d). The algorithm terminates
when there is no undirected edge that can be directed.

Chickering [6] proposes an alternative approach to obtain the completed PDAG
of a valid operator from its modified graph; see Example 2, Section 2.1 of the Sup-
plementary Material [16]. The method includes two steps. The first step generates a
consistent extension (a DAG) of the modified graph (a PDAG) using the algorithm
described in Dor and Tarsi [10]. The second step creates a completed PDAG corre-
sponding to the consistent extension [5, 6]. We describe Dor and Tarsi’s algorithm
and Chickering’s algorithms in Section 1 of the Supplementary Material [16].

The approach proposed by Chickering [5, 6] is “more complicated but more
efficient” [26] than Meek’s method described above. Hence when constructing a
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Markov chain, we use Chickering’s approach to obtain the resulting completed
PDAG of a given valid operator from its modified graph.

With a set of valid operators, a Markov chain on completed PDAGs can be con-
structed. Let Sp be the set of all completed PDAGs with p vertices, S be a given
subset of Sp . For any completed PDAG C ∈ S , let OC be a set of valid operators
of interest to be defined later on C in equation (3.2). A set of valid operators on S
is defined as

O = ⋃
C∈S

OC .(1.1)

Here we notice that each operator in O is specific to the completed PDAG that the
operator applies to. A Markov chain {et } on S based on the set O can be defined
as follows.

DEFINITION 4 (A Markov chain {et } on S ). The Markov chain {et } deter-
mined by a set of valid operators O is generated as follows: start at an arbitrary
completed PDAG, denoted as e0 = C0 ∈ S , and repeat the following steps for
t = 0,1, . . . :

(1) At the t th step we are at a completed PDAG et .
(2) We choose an operator oet uniformly from Oet ; if the resulting completed

PDAG Ct+1 of oet is in S , move to Ct+1 and set et+1 = Ct+1; otherwise we stay at
et and set et+1 = et .

Given the same operator set, the Markov chain in Definition 4 has more new
transition states for any completed PDAG than those based on the modified graphs
of operators [25, 29, 34]. This is because some valid operators will result in new
completed PDAGs even if their modified graphs are not completed PDAGs. Conse-
quently, the transitions, which are generated by these operators, are not contained
in Markov chains based on the modified graphs.

The set S is the finite state space of chain {et }. Clearly, the sequence of com-
pleted PDAGs {et : t = 0,1, . . .} in Definition 4 is a discrete-time Markov chain
[23, 28]. Let pC C′ be the one-step transition probability of {et } from C to C′ for
any two completed PDAGs C and C′ in S . A Markov chain {et } is irreducible if
it can reach any completed PDAG starting at any state in S . If {et } is irreducible,
there exists a unique distribution π = (πC , C ∈ S) satisfying balance equations (see
Theorems 1.7.7 and 1.5.6 in [28])

πC = ∑
C′∈S

πC′ pC′C for all C ∈ S.(1.2)

An irreducible chain et is reversible if there exists a probability distribution π

such that

πC pC C′ = πC′ pC′C for all C, C′ ∈ S.(1.3)
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It is well known that π is the unique stationary distribution of the discrete-
time Markov chain {et } if it is finite, reversible, and irreducible; see Lemma 1.9.2
in [28]. Moreover, the stationary probabilities πC can be calculated efficiently if
the Markov chain satisfies equation (1.3).

The properties of the Markov chain {et } given in Definition 4 depend on the
operator set O. To implement score-based searching in the whole set of Markov
equivalence classes, Chickering [6] introduces a set of operators with types of
InsertU, DeleteU, InsertD, DeleteD, MakeV or ReverseD (reversing the direction
of a directed edge), subject to some validity conditions. Unfortunately, the Markov
chain in Definition 4 is not reversible if the set of Chickering’s operators is used.
Our goal is to design a reversible Markov chain, as it makes it easier to compute the
stationary distribution, and thereby to study the properties of a subset of Markov
equivalence classes.

In Section 2, we first discuss the properties of an operator set O needed to
guarantee that the Markov chain is reversible. Section 2 also explains how to
use the samples from the Markov chain to study properties of any given subset
of Markov equivalence classes. In Section 3 we focus on studying sets of sparse
Markov equivalence classes. Finally, in Section 4, we report the properties of di-
rected edges and chain components in sparse Markov equivalence classes with up
to one thousand of vertices.

2. Reversible Markov chains on Markov equivalence classes. Let S be any
subset of the set Sp that contains all completed PDAGs with p vertices, and O be
a set of operators on S defined in equation (1.1). As in Definition 4, we can obtain
a Markov chain denoted by {et }. We first discuss four properties of O that guar-
antee that {et } is reversible and irreducible. They are validity, distinguishability,
irreducibility and reversibility. We call a set of operators perfect if it satisfies these
four properties. Then we give the stationary distribution of {et } when O is perfect
and show how to use {et } to study properties of S .

2.1. A reversible Markov chain based on a perfect set of operators. Let pC C′
be a one-step transition probability of {et } from C to C′ for any two completed
PDAGs C and C′ in S . In order to formulate pC C′ clearly, we introduce two prop-
erties of O: Validity and Distinguishability.

DEFINITION 5 (Validity). Given S and any completed PDAG C in S , a set of
operators O on S is valid if for any operator oC (o without confusion below) in OC ,
o is valid according to Definition 3 and the resulting completed PDAG obtained by
applying o to C , which is different from C , is also in S .

According to Definition 5, if a set of operators O on S is valid, we can move to
a new completed PDAG in each step of {et } and the one-step transition probability
of any completed PDAG to itself is zero:

pC C = 0 for any completed PDAG C ∈ S.(2.1)
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For a set of valid operators O and any completed PDAG C in S , we define the
resulting completed PDAGs of the operators in OC as the direct successors of C .
For any direct successor of C , denoted by C′, we obtain pC C′ clearly as in equation
(2.2) if O has the following property.

DEFINITION 6 (Distinguishability). A set of valid operators O on S is distin-
guishable if for any completed PDAG C in S , different operators in OC will result
in different completed PDAGs.

If O is distinguishable, for any direct successor of C , denoted by C′, there is a
unique operator in OC that can transform C to C′. Thus, the number of operators
in OC is the same as the number of direct successors of C . Sampling operators
from OC uniformly generates a uniformly random transition from C to its direct
successors. By denoting M(OC ) as the number of operators in OC , we have

pC C′ =
{

1/M(OC ), C′ is a direct successor of C ∈ S ;
0, otherwise.

(2.2)

We introduce this property because it makes computation of pC C′ efficient: if
O is distinguishable, we know pC C′ right away from M(OC ).

In order to make sure the Markov chain {et } is irreducible and reversible, we
introduce two more properties of O: irreducibility and reversibility.

DEFINITION 7 (Irreducibility). A set of operators O on S is irreducible if for
any two completed PDAGs C, C′ ∈ S , there exists a sequence of operators in O
such that we can obtain C′ from C by applying these operators sequentially.

If O is irreducible, starting at any completed PDAG in S , we have positive
probability to reach any other completed PDAG via a sequence of operators in O.
Thus, the Markov chain {et } is irreducible.

DEFINITION 8 (Reversibility). A set of operators O on S is reversible if for
any completed PDAG C ∈ S and any operator o ∈ OC with C′ being the resulting
completed PDAG of o, there is an operator o′ ∈ OC′ such that C is the resulting
completed PDAG of o′.

If the set of operators O on S is valid, distinguishable and reversible, for any
pair of completed PDAGs C, C′ ∈ S , C is also a direct successor of C′ if C′ is a
direct successor of C . For any C ∈ S and any of its direct successors C′, we have

pC C′ = 1/M(OC ) and pC′C = 1/M(OC′).(2.3)

Let T = ∑
C∈S M(OC ), and define a probability distribution as

πC = M(OC )/T .(2.4)
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Clearly, equation (1.3) holds for πC in equation (2.4) if O is valid, distinguishable
and reversible. πC is the unique stationary distribution of {et } if it is also irreducible
[1, 23, 28].

In the following proposition, we summarize our results about the Markov chain
{et } on S , and give its stationary distribution.

PROPOSITION 1 (Stationary distribution of {et }). Let S be any given set of
completed PDAGs. The set of operators is defined as O = ⋃

C∈S OC where OC is
a set of operators on C for any C in S . Let M(OC ) be the number of operators
in OC . For the Markov chain {et } on S generated according to Definition 4, if
O is perfect, that is, the properties—validity, distinguishability, reversibility and
irreducibility—hold for O, then:

(1) the Markov chain {et } is irreducible and reversible;
(2) the distribution πC in equation (2.4) is the unique stationary distribution of

{et } and πC ∝ M(OC ).

The challenge is to construct a concrete perfect set of operators. In Section 3, we
carry out such a construction for a set of Markov equivalence classes with sparsity
constraints and provide algorithms to obtain a reversible Markov chain. We now
show that a reversible Markov chain can be used to compute interesting properties
of a completed PDAG set S .

2.2. Estimating the properties of S by a perfect Markov chain. For any C ∈ S ,
let f (C) be a real function describing any property of interest of C , and the random
variable u be uniformly distributed on S . In order to understand the property of
interest, we compute the distribution of f (u).

Let’s consider one example in the literature. The proportion of Markov equiva-
lence classes of size one (equivalently, completed PDAGs that are directed) in Sp

is studied in the literature [14, 15, 29]. For this purpose, we can define f (u) as the
size of Markov equivalence classes represented by u and obtain the proportion by
computing the probability of {f (u) = 1}.

Let A be any subset of R, the probability of {f (u) ∈ A} is

P
(
f (u) ∈ A

) = |{C :f (C) ∈ A, C ∈ S}|
|S| =

∑
C∈S I{f (C)∈A}

|S| ,(2.5)

where |S| is the number of elements in the set S and I is an indicator function.
Let {et }t=1,...,N be a realization of Markov chain {et } on S based on a perfect op-

erator set O according to Definition 4 and Mt = M(Oet ). Let π(et ) be the station-
ary probability of Markov chain {et }. From Proposition 1, we have π(et ) ∝ Mt for
t = 1, . . . ,N . We can use {et ,Mt }t=1,...,N to estimate the probability of {f (u) ∈ A}
by

P̂N

(
f (u) ∈ A

) =
∑N

t=1 I{f (et )∈A}M−1
t∑N

t=1 M−1
t

.(2.6)
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From the ergodic theory of Markov chains (see Theorem 1.10.2 in [28]), we can
get Proposition 2 directly.

PROPOSITION 2. Let S be a given set of completed PDAGs, and assume the
set of operators O on S is perfect. The Markov chain {et }t=1,...,N is obtained
according to Definition 4. Then the estimator P̂N({f (u) ∈ A}) in equation (2.6)
converges to P({f (u) ∈ A}) in equation (2.5) with probability one, that is,

P
(
P̂N

(
f (u) ∈ A

) → P
(
f (u) ∈ A

)
as N → ∞) = 1.(2.7)

Proposition 2 shows that the estimator defined in equation (2.6) is a consistent
estimator of P(f (u) ∈ A). We can study any given subset of Markov equivalence
classes via equation (2.6) if we can obtain {et }t=1,...,N and {Mt }t=1,...,N . We now
turn to construct a concrete perfect set of operators for a set of completed PDAGs
with sparsity constraints and then introduce algorithms to run a reversible Markov
chain.

3. A Reversible Markov chain on completed PDAGs with sparsity con-
straints. We define a set of Markov equivalence classes S n

p with p vertices and
at most n edges as follows:

S n
p = {C : C is a completed PDAG with p vertices and nC ≤ n},(3.1)

where nC is the number of edges in C . Recall that Sp denotes the set of all com-
pleted PDAGs with p vertices. Clearly, S n

p = Sp when n ≥ p(p − 1)/2.
We now construct a perfect set of operators on S n

p . Notice that our constructions
can be extended to adapt to some other sets of completed PDAGs, say, a set of
completed PDAGS with a given maximum degree. In Section 3.1, we construct the
perfect set of operators for any completed PDAG in S n

p . In Section 3.2, we propose
algorithms and their accelerated version for efficiently obtaining a Markov chain
based on the perfect set of operators.

3.1. Construction of a perfect set of operators on S n
p . In order to construct a

perfect set of operators, we need to define the set of operators on each completed
PDAG in S n

p . Let C be a completed PDAG in S n
p . We consider six types of opera-

tors on C that were introduced in Section 1.2: InsertU, DeleteU, InsertD, DeleteD,
MakeV and RemoveV. The operators on C with the same type but different mod-
ified edges constitute a set of operators. We introduce six sets of operators on C
denoted by InsertUC , DeleteUC , InsertDC , DeleteDC , MakeV C and RemoveV C in
Definition 9. In addition to the conditions that guarantee validity, for each type of
operators, we also introduce other constraints to make sure that all operators are
reversible.

First we explain some notation used in Definition 9. Let x and y be any two
distinct vertices in C . The neighbor set of x denoted by Nx consists of every vertex
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y with x − y in C . The common neighbor set of x and y is defined as Nxy =
Nx ∩ Ny . x is a parent of y and y is a child of x if x → y occurs in C . A vertex u

is a common child of x and y if u is a child of both x and y. �x represents the set
of all parents of x.

DEFINITION 9 (Six sets of operators on C ). Let C be a completed PDAG in
S n

p and nC be the number of edges in C . We introduce six sets of operators on C :
InsertUC DeleteUC , InsertDC , DeleteDC , MakeV C and RemoveVC as follows.

(a) For any two vertices x, y that are not adjacent in C , the operator “InsertU
x − y” on C is in InsertUC if and only if (iu1) nC < n; (iu2) “InsertU x − y” is
valid; (iu3) for any u that is a common child of x, y in C , both x → u and y → u

occur in the resulting completed PDAG of “InsertU x − y.”
(b) For any undirected edge x − y in C , the operator “DeleteU x − y” on C is

in DeleteUC if and only if (du1) “DeleteU x − y” is valid.
(c) For any two vertices x, y that are not adjacent in C , the operator “InsertD

x → y” on C is in InsertDC if and only if (id1) nC < n; (id2) “InsertD x → y”
is valid; (id3) for any u that is a common child of x, y in C , y → u occurs in the
resulting completed PDAG of “InsertD x → y.”

(d) For any directed edge x → y in C , operator “DeleteD x → y” on C is in
DeleteDC if and only if (dd1) “DeleteD x → y” is valid; (dd2) for any v that is a
parent of y but not a parent of x, directed edge v → y in C occurs in the resulting
completed PDAG of “DeleteD x → y.”

(e) For any subgraph x − z − y in C , the operator “MakeV x → z ← y” on C
is in MakeV C if and only if (mv1) “MakeV x → z ← y” is valid.

(f) For any v-structure x → z ← y of C , the operator “RemoveV x → z ← y”
on C is in RemoveVC if and only if (rv1) �x = �y ; (rv2) �x ∪Nxy = �z \ {x, y};
(rv3) every undirected path between x and y contains a vertex in Nxy .

Munteanu and Bendou [27] discuss the constraints for the first five types of op-
erators such that each one can transform one completed PDAG to another. Chick-
ering [6] introduces the necessary and sufficient conditions such that these five
types of operators are valid. We list the conditions introduced by Chickering [6] in
Lemma 3, Appendix A.1, and employ them to guarantee that the conditions iu2,
du1, id2, dd1 and mv1 in Definition 9 hold.

The set of operators on C denoted by OC is defined as follows:

OC = InsertUC ∪ DeleteUC ∪ InsertDC
(3.2)

∪ DeleteDC ∪ MakeV C ∪ RemoveV C .

Taking the union over all completed PDAGs in S n
p , we define the set of operators

on S n
p as

O = ⋃
C∈S n

p

OC ,(3.3)
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where OC is the set of operators in equation (3.2). In the main result of this paper,
we show that O in equation (3.3) is a perfect set of operators on S n

p .

THEOREM 1 (A perfect set of operators on S n
p). O defined in equation (3.3)

is a perfect set of operators on S n
p .

Here we notice that iu3, id3 and dd2 are key conditions in Definition 9 to guar-
antee that O is reversible. Without these three conditions, there are operators that
are not reversible; see Example 3, Section 2.1 in the Supplementary Material [16].
We provide a proof of Theorem 1 in Appendix A.2.

The preceding section showed how to construct a perfect set of operators. A toy
example is provided as Example 4 in Section 2.1 of the Supplementary Mate-
rial [16]. Based on the perfect set of operators we can obtain a finite irreducible
reversible discrete-time chain. In the next subsection, we provide detailed algo-
rithms for obtaining a Markov chain on S n

p and their accelerated version.

3.2. Algorithms. In this subsection, we provide the algorithms in detail to gen-
erate a Markov chain on S n

p , defined in Definition 4 based on the perfect set of
operators defined in (3.3). A sketch of Algorithm 1 is shown below; some steps of
this algorithm are further explained in the subsequent algorithms.

Step A of Algorithm 1 constructs the sets of operators on completed PDAGs in
the chain {et }. It is the most difficult step and dominates the time complexity of
Algorithm 1. Step B and Step C can be implemented easily after Oet is obtained.
Step D can be implemented via Chickering’s method [6] that was mentioned in
Section 1.2. We will show that the time complexity of obtaining a Markov chain

Algorithm 1: Road map to construct a Markov chain on S n
p

Input:
p, the number of vertices; n, the maximum number of edges; N , the length of
Markov chain.
Output:
{et ,Mt }t=1,...,N , where {et } is Markov chain and Mt is the number of operators in

Oet .
Initialize e0 as any completed PDAG in S n

p1

for t ← 0 to N do2
Step A Construct the set of operators Oet in equation (3.2) via Algorithm 1.1;
Step B Let Mt be the number of operators in Oet ;
Step C Randomly choose an operator o uniformly from Oet ;
Step D Apply operator o to et . Set et+1 as the resulting completed PDAG of o.

return {et ,Mt }t=1,...,N .3
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on S n
p with length N ({et }t=1,...,N ) is approximate O(Np3) if n is the same order

of p. For large p, we also provide an accelerated version that, in some cases, can
run hundreds of times faster.

The rest of this section is arranged as follows. In Section 3.2.1, we first intro-
duce the algorithms to implement Step A. In Section 3.2.2 we discuss the time
complexity of our algorithm, and provide an acceleration method to speed up Al-
gorithm 1.

3.2.1. Implementation of Step A in Algorithm 1. A detailed implementation of
Step A (to construct Oet ) is described in Algorithm 1.1. To construct Oet in Algo-
rithm 1.1, we go through all possible operators on et and choose those satisfying
the corresponding conditions in Definition 9.

The conditions in Algorithm 1.1 include: iu1, iu2, iu3, du1, id1, id2, id3, dd1,
dd2, rm1, rv1, rv2 and mv1. For each possible operator, we check the correspond-
ing conditions shown in Algorithm 1.1 one-by-one until one of them fails. Below,
we introduce how to check these conditions.

Algorithm 1.1: Construct Oet for a completed PDAG et .
Input: A completed PDAG et with p vertices.
Output: Operator set Oet .
// All sets of possible modified edges of et used below,

for example, Undirected-edgeset, are generated according

to Definition 9.

Set Oet as empty set1

for each undirected edge x − y in Undirected-edgeset do2

consider operator DeleteU x − x, add it to Oet if du1 holds,3

for each directed edge x → y in Directed-edgeset do4

consider DeleteD x → x, add it to Oet if both dd1 and dd2 hold;5

for each v-structure x → z ← y in V-structureset do6

consider RemoveV xk → xi ← xl , add it to Oet if rv1, rv2 and rv3 hold,7

for each undirected v-structure x − z − y in Undirected-v-structureset do8

consider MakeV xk → xi ← xl , add it to Oet if mv1 holds,9

if net < n (i.e., iu1 or id1 holds) then10

for each pair (x, y) in Pairs-nonadjet do11

consider InsertU x − y, add it to Oet if iu1, iu2, and iu3 hold;12

consider InsertD x → y, add it to Oet , if id1, id2 and id3 hold;13

consider InsertD x ← y, add it to Oet if id1, id2 and id3 hold.14

return Oet15
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The conditions iu3, id3 and dd2 in Algorithm 1.1 depend on both et and the
resulting completed PDAGs of the operators. Intuitively, checking iu3, id3 or dd2
requires that we obtain the corresponding resulting completed PDAGs. We know
that the time complexity of getting a resulting completed PDAG of et is O(pnet )

[6, 10], where net is the number of edges in et . To avoid generating resulting com-
pleted PDAG, in the Supplementary Material [16], we provide three algorithms to
check iu3, id3 and dd2 only based on et and in an efficient manner.

The other conditions can be tested via classical graph algorithms. These tests
include: (1) whether two vertex sets are equal or not, (2) whether a subgraph is
a clique or not and (3) whether all partially directed paths or all undirected paths
between two vertices contain at least one vertex in a given set. Checking the first
two types of conditions is trivial and very efficient because the sets involved are
small for most completed PDAGs in S n

p when n is of the same order of p. To
check the conditions with the third type, we just need to check whether there is a
partially directed path or undirected path between two given vertices not through
any vertices in the given set. We check this using a depth-first search from the
source vertex. When looking for an undirected path, we can search within the
corresponding chain component that includes both the source and the destination
vertices.

3.2.2. Time complexity of Algorithm 1 and an accelerated version. We now
discuss the time complexity of Algorithm 1. For et ∈ S n

p , let p and nt be the num-
ber of vertices and edges in et , respectively, kt be the number of v-structures in et ,
and k′

t be the number of undirected v-structures (subgraphs x − y − z with x and
z nonadjacent) in et . To construct Oet , in Step A of Algorithm 1 (equivalently,
Algorithm 1.1), all possible operators we need to go through: nt deleting opera-
tors (DeleteU and DeleteD), 3(p(p − 1)/2 − nt ) inserting operators (InsertU and
InsertD) when the number of edges in et is less than n, kt RemoveV operators and
k′
t MakeV operators. There are at most Qt = 1.5p(p − 1)− 2nt + kt + k′

t possible
operators for et . Among all conditions in Algorithm 1.1, the most time-consuming
one, which takes time O(p +nt ) [6], is to look for a path via the depth-first search
for an operator with type of InsertD. We have that the time complexity of con-
structing Oet in Algorithm 1.1 is O(Qt(p + nt )) in the worst case and the time
complexity of Algorithm 1 is O(

∑N
t=1Qt(p + nt )) in the worst case, where N is

the length of Markov chain in Algorithm 1. We know that kt and k′
t reach the max-

ima (p−2)/2∗floor(p/2)∗ ceil(p/2) when et is a evenly divided complete bipar-
tite graphs [15]. Consequently, the time complexity of Algorithm 1 are O(Np4) in
the worst case. Fortunately, when n is a few times of p, say n = 2p, all completed
PDAGs in S n

p are sparse and our experiments show kt and k′
t are much less than

O(p2) for most completed PDAGs in Markov chain {et }t=1,...,N . Hence the time
complexity of Algorithm 1 is approximate O(Np3) on average when n is a few
times of p.
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We can implement Algorithm 1 efficiently when p is not large (less or around
100 in our experiments). However, when p is larger, we need large N to guarantee
the estimates reach convergence. Experiments in Section 4 show N = 106 is suit-
able. In this case, cubic complexity (O(Np3)) of Algorithm 1 is unacceptable. We
need to speed up the algorithms for a very large p.

Notice that in Algorithm 1, we obtain an irreducible and reversible Markov
chain {et } and a sequence of numbers {Mt } by checking all possible operators
on each et . The sequence {Mt } are used to compute the stationary probabilities
of {et } according to Proposition 1. We now introduce an accelerated version of
Algorithm 1 to generate irreducible and reversible Markov chains on S n

p . The basic
idea is that we do not check all possible operators but check some random samples.
These random samples are then used to estimate {Mt }.

We first explain some notation used in the accelerated version. For each com-
pleted PDAG et , if net < n, O(all)

et is the set of all possible operators on et with
types of InsertU, DeleteU, InsertD, DeleteD, MakeV and RemoveV. If net = n,
the number of edges in et reaches the upper bound n, no more edges can be in-
serted into et . Let O(−insert)

et be the set of operators obtained by removing operators
with types of InsertU and InsertD from O(all)

et . O(−insert)
et is the set of all possible

operators on et when net = n. We can obtain O(all)
et and O(−insert)

et easily via all
possible modified edges introduced in Algorithm 1.1. The accelerated version of
Algorithm 1 is shown in Algorithm 2.

In Algorithm 2, O′
et

(either O(all)
et or O(−insert)

et ) is the set of all possible operators
on et , α ∈ (0,1] is an acceleration parameter that determines how many operators
in O′

et
are checked, O(check)

et is a set of checked operators that are randomly sam-

pled without replacement from O′
et

and Õet is the set of all perfect operators in

O(check)
et . When α = 1, Õet = Oet and Algorithm 2 becomes back to Algorithm 1.
In Algorithm 2, because the operators in Õet are i.i.d. sampled from Oet in

Step A′ and operator o is chosen uniformly from Õet in Step C′, clearly, o is
also chosen uniformly from Oet . We have that the following Corollary 1 holds
according to Proposition 1.

COROLLARY 1 (Stationary distribution of {et } on S n
p). Let S n

p , defined in
equation (3.1), be the set of completed PDAGs with p vertices and maximum n

of edges, Oet , defined in equation (3.2), be the set of operators on et , and Mt be
the number of operators in Oet . For the Markov chain {et } on S n

p obtained via
Algorithms 1 or 2, then:

(1) the Markov chain {et } is irreducible and reversible;
(2) the Markov chain {et } has a unique stationary distribution π and π(et ) ∝

Mt .
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Algorithm 2: An accelerated version of Algorithm 1.
Input:
α ∈ (0,1]: an acceleration parameter; p, n and N , the same as input in Algorithm 1
Output:
{et , M̂t }t=1,...,N , where M̂t is an estimation of Mt = |Oet |
Initialize e0 as any completed PDAG in S n

p1

for t ← 0 to N do2

Step A′:3

if net < n then4

Set O′
et

= O(all)
et5

else6

Set O′
et

= O(−insert)
et7

Set mt = |O′
et
|8

Randomly sample [αmt ] operators without replacement from O′
et

to9

generate a set O(check)
et , where [αmt ] is the integer closest to αmt .

Check all operators in O(check)
et , and choose perfect operators from it to10

construct a set of operators Õet .

Set m
(Õ)
t = |Õet |. If m

(Õ)
t = 0, go to line 9.11

end12

Step B′:13

Let M̂t = mt
m

(Õ)
t[αmt ] ,14

end15

Step C′:16

Randomly choose an operator o uniformly from Õet .17

end18

Step D:19

Apply operator o to et . Set et+1 as the resulting completed PDAG of o.20

end21

return {et , M̂t }t=1,...,N .22

In Algorithm 2, we provide an estimate of Mt instead of calculating it exactly
in Algorithm 1. Let |O′

et
| = mt , |O(check)

et | = [αmt ] and |Õet | = m
(Õ)
t . Clearly, the

ratio m
(Õ)
t /[αmt ] is an unbiased estimator of the population proportion Mt/mt via

sampling without replacement. We can estimate Mt = |Oet | in Step B′ as

M̂t = mt

m
(Õ)
t

[αmt ] .(3.4)
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We have that when [αmt ] is large, the estimator M̂t has an approximate normal
distribution with mean equal to Mt = |Oet |.

Let the random variable u be uniformly distributed on S n
p , f (u) be a real func-

tion describing a property of interest of u and A be a subset of R. By replacing
Mt with M̂t in equation (2.6), we estimate PN({f (u) ∈ A}) via {et , M̂t }t=1,...,N as
follows:

P̂
′
N

(
f (u) ∈ A

) =
∑N

t=1 I{f (et )∈A}M̂−1
t∑N

t=1 M̂−1
t

,(3.5)

where PN(f (u) ∈ A) is defined in equation (2.5).
In the accelerated version, only 100α% of all possible operators on et are

checked. In Section 4, our experiments on S 150
100 show that the accelerated version

can speed up the approach nearly 1
α

times, and that equation (3.5) provides almost
the same results as equation (2.6) in which {et ,Mt }t=1,...,N from Algorithm 1 are
used. Roughly speaking, if we set α = 1/p, the time complexity of our accelerated
version can reduce to O(Np2).

4. Experiments. In this section, we conduct experiments to illustrate the re-
versible Markov chains proposed in this paper and their applications for studying
Markov equivalence classes. The main points obtained from these experiments are
as follows:

(1) For Sp with small p, the estimations of our proposed are very close to true
values. For S n

p with large p (up to 1000), the accelerated version of our proposed
approach is also very efficient, and the estimations in equations (2.6) and (3.5)
converge quickly as the length of Markov chain increases.

(2) For completed PDAGs in S n
p with sparsity constraints (n is a small multiple

of p), we see that (i) most edges are directed, (ii) the sizes of maximum chain
components (measured by the number of vertices) are very small (around ten)
even for large p (around 1000) and (iii) the number of chain components grows
approximately linearly with p.

As we know, under the assumption that there are no latent or selection vari-
ables present, causal inference based on observational data will give a completed
PDAG. Interventions are needed to infer the directions of the undirected edges in
the completed PDAG. Our results show that if the underlying completed PDAG
is sparse, in the model space of Markov equivalence classes, most graphs have
few undirected edges and small chain components. They give hope for learning
causal relationships via observational data and for inferring the directions of the
undirected edges via interventions.

In Section 4.1, we evaluate our methods by comparing the size distributions of
Markov equivalence classes in Sp with small p to true distributions (p = 3,4) or
Gillispie’s results (p = 6) [15]. In Section 4.2, we report the proportion of directed
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edges and the properties of chain components of Markov equivalence classes under
sparsity constraints. In Section 4.3, we show experimentally that Algorithm 2 is
much faster than Algorithm 1, and that the difference in the estimates obtained is
small. Finally, we study the asymptotic properties of our proposed estimators in
Section 4.4.

4.1. Size distributions of Markov equivalence classes in Sp for small p. We
consider size distributions of completed PDAGs in Sp for p = 3,4 and 6, respec-
tively. There are 11 Markov equivalence classes in S3, and 185 Markov equiva-
lence classes in S4. Here we can get the true size distributions for S3 and S4 by
listing all the Markov equivalence classes and calculating the size of each explic-
itly. Gillespie and Perlman calculate the true size probabilities for S6 by listing
all classes; these are denoted as GP-values. We estimate the size probabilities via
equation (2.6) with the Markov chains from Algorithm 1. We ran ten independent
Markov chains using Algorithm 1 to calculate the mean and standard deviation
of each estimate. The results are shown in Table 1, where N is the sample size
(length of Markov chain). We can see that the means are very close to true values
or GP-values, and the standard deviations are also very small.

We implemented our proposed method (Algorithm 1, the version without accel-
eration) in Python, and ran it on a computer with a 2.6 GHZ processor. In Table 1,
T is the time used to estimate the size distribution for S3, S4 or S6. These results
were obtained within at most tens of seconds. In comparison, a MCMC method in
[30] took more than one hour (in C++ on a 2.6 GHZ computer) in order to get
similar estimates of the proportions of Markov equivalence classes of size one. It
is worth noting that our estimates are based on a single Markov chain, while the
results in [30] are based on 104 independent Markov chains with 106 steps.

4.2. Markov equivalence classes with sparsity constraints. We now study the
sets S n

p of Markov equivalence classes defined in equation (3.1). The number of
vertices p is set to 100,200,500 or 1000, and the maximum edge constraint n

is set to rp where r is the ratio of n to p. For each p, we consider three ratios:
1.2, 1.5 and 3. The completed PDAGs in S rp

p are sparse since r ≤ 3. Define the
size of a chain component as the number of vertices it contains. In this section,
we report four distributions for completed PDAGs in S rp

p : the distribution of pro-
portions of directed edges, the distribution of the numbers of chain components
and the distribution of the maximum size of chain components. The results about
the distribution of the numbers of v-structures are reported in the Supplementary
Material [16]. In each simulation, given p and r , a Markov chain with length of
106 on S rp

p is generated via Algorithm 2 to estimate the distributions via equa-
tion (3.5). The acceleration parameter α is set to 0.1,0.05,0.01 and 0.001 for
p = 100,200,500 and 1000, respectively.

In Figure 2, twelve distributions of proportions of directed edges are reported
for S rp

p with different p and ratio r . We mark the minimums, 5% quartiles (solid
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TABLE 1
Size distributions for Sp with p = 3,4 and 6, respectively. N is the sample size, T is

the time (seconds) used to estimate the size distributions with a Markov chain,
GP-values are obtained by Gillispie and Perlman [15]

p = 3, N = 104, T = 2 sec

Size True value Mean (Std)

1 0.36363∗ 0.36422 (0.00540)
2 0.27273 0.27160 (0.00412)
3 0.27273 0.27274 (0.00217)
6 0.0909 0.09144 (0.00262)

p = 4, N = 104, T = 3 sec

Size True value Mean (Std)

1 0.31892∗ 0.31859 (0.00946)
2 0.25946 0.25929 (0.00590)
3 0.19460 0.19572 (0.00635)
4 0.10270 0.10229 (0.00395)
6 0.02162 0.02162 (0.00145)
8 0.06486 0.06464 (0.00291)

10 0.03243 0.03249 (0.00202)
24 0.00540 0.00536 (0.00078)

p = 6, N = 105, T = 60 sec

Size GP-value Mean (Std) Size GP-value Mean (Std)

1 0.28667∗ 0.28588 (0.00393) 48 0.00013 0.00013 (0.00004)
2 0.25858 0.25897 (0.00299) 50 0.00034 0.00034 (0.00007)
3 0.17064 0.17078 (0.00248) 52 0.00017 0.00018 (0.00003)

... 54 0.00017 0.00018 (0.00004)
28 0.00017 0.00017 (0.00004) 60 0.00019 0.00020 (0.00004)
30 0.00169 0.00170 (0.00017) 72 0.00006 0.00006 (0.00002)
32 0.00236 0.00238 (0.00017) 88 0.00004 0.00004 (0.00001)
36 0.00052 0.00053 (0.00008) 144 0.00009 0.00009 (0.00003)
38 0.00034 0.00035 (0.00004) 156 0.00006 0.00006 (0.00003)
40 0.00118 0.00120 (0.00010) 216 0.00001 0.00001 (0.00002)
42 0.00051 0.00052 (0.00009)

circles below boxes), 1st quartiles, medians, 3rd quartiles and maximums of these
distributions. We can see that for a fixed p, the proportion of directed edges in-
creases with the number of edges in the completed PDAG. For example, when the
ratio r = 1.2, the medians (red lines in boxes) of proportions are near 92%; when
the ratio r = 1.5, the medians are near 95%; when ratio r = 3, the medians are
near 98%.

The distributions of the numbers of chain components of completed PDAGs in
S rp

p are shown in Figure 3. We plot the distributions for S 1.5p
p in the main win-

dow and the distributions for r = 1.2 and r = 3 in two sub-windows. We can see
that the medians of the numbers of chain components are close to 5, 10, 20, and
40 for completed PDAGs in S 1.5p

p with p = 100,200,500 and 1000, respectively.
It seems that there is a linear relationship between the number of chain compo-
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FIG. 2. Distribution of proportion of directed edges in completed PDAGs in S rp
p . The lines in the

boxes and the solid circles under the boxes indicate the medians and the 5% quartiles, respectively.

nents and the number of vertices p. In the insets, similar results are shown in the
distributions for r = 1.2 and r = 3.

The distributions of the maximum sizes of chain components of completed
PDAGs in S rp

p are shown in Figure 4. For S 1.5p
p in the main window, the medi-

ans of the four distributions are approximately 4, 5, 6 and 7 for p = 100,200,500

FIG. 3. Distributions of numbers of chain components of completed PDAGs in S rp
p . The lines in the

boxes and the solid circles above the boxes indicate the medians and the 95% quartiles, respectively.
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FIG. 4. The distributions of the maximum sizes of chain components of completed PDAGs in S rp
p .

The lines in the boxes and the solid circles above the boxes indicate the medians and the 95% quar-
tiles, respectively.

and 1000, respectively. This shows that the maximum size of chain components
in a competed PDAG increases very slowly with p. In particular, from the 95%
quartiles (solid circles above boxes), we can see that the maximum chain compo-
nents of more than 95% completed PDAGs in S 1.5p

p have at most 8, 9, 10 and 13
vertices for p = 100,200,500 and 1000, respectively. This result implies that sizes
of chain components in most sparse completed PDAGs are small.

4.3. Comparisons between Algorithm 1 and its accelerated version. In this
section, we show experimentally that the accelerated version Algorithm 2 is much
faster than Algorithm 1, and the difference of estimates based on two algorithms is
small. We have estimated four distributions on S 150

100 in Section 4.2 via Algorithm 2.
The four distributions are the distribution of proportions of directed edges, the
distribution of the numbers of chain components, the distribution of maximum
size of chain components and the distribution of the numbers of v-structures. To
compare Algorithm 1 with Algorithm 2, we re-estimate these four distributions for
completed PDAGs in S 150

100 via Algorithm 1.
For each distribution, in Figure 5, we report the estimates obtained by Algo-

rithm 1 with lines and the estimates obtained by Algorithm 2 with points in the
main windows. The differences of two estimates are shown in the sub-windows.
The top panel of Figure 5 displays the cumulative distributions of proportions of
directed edges. The second panel of this figure displays the distributions of the
numbers of chain components. The third panel displays the distributions of maxi-
mum size of chain components. The bottom panel displays the distribution of the
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FIG. 5. Distributions for completed PDAGs in S 150
100 estimated via Algorithm 1 (plotted in lines)

and the accelerated version—Algorithm 2 (plotted in points) are shown in the main windows. The
differences are shown in sub-windows. Four panels (from top to bottom) display distributions of
directed edges, number of chain components, maximum size of chain components and v-structures,
respectively.

numbers of v-structures. We can see that the differences of three pairs of estimates
are small.

The average times used to generate a state of the Markov chain of completed
PDAGs in S 1.5p

p are shown in Table 2, in which α is the acceleration parameter
used in Algorithm 2. If α = 1, the Markov chain is generated via Algorithm 1. The
results suggest that the accelerated version can speed up the approach nearly 1

α
times when p = 100.

4.4. Asymptotic properties of proposed estimators. We further illustrate the
asymptotic properties of proposed estimators of sparse completed PDAGs via sim-
ulation studies. We consider S 1.5p

p for p = 100,200, 500 and 1000, respectively.
Let f (u) be a discrete function of Markov equivalence class u, where u is a ran-
dom variable distributed uniformly in S 1.5p

p . Let E(f ) be the expectation of f (u),

TABLE 2
The average time used to generate a completed PDAG in S 1.5p

p ,
where p is the number of vertices, α is the acceleration parameter,

κ is the average time (seconds)

p 100 100 200 500 1000
α 1 0.1 0.05 0.01 0.001
κ (seconds) 0.22 0.032 0.113 0.28 0.72
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and we have

E(f ) = ∑
i

iP(f = i).

Proposition 2 shows that the estimator P̂(f = i) in equation (2.6) converges to
P(f = i) with probability one. We also have that the estimator defined as

Ê(f ) = ∑
i

iP̂(f = i) =
∑

i

∑N
t=1 iI{f (et )=i}M−1

t∑N
t=1 M−1

t

=
∑N

t=1 f (et )M
−1
t∑N

t=1 M−1
t

converges to E(f ) with probability one, where {et ,Mt }t=1,...,N is a Markov chain
from Algorithm 1.

We generate some sequences of Markov equivalence classes {et , M̂t } with
length of N = 1.25 × 106 via Algorithm 2 and divide each sequence into 250
blocks. Set f (u) to be the proportion of directed edges in u, we estimate E(f )

using cumulative data in the first k blocks as

Ê(f )k =
(k×j∑

t=1

f (et )M̂
−1
t

)/ k×j∑
t=1

M̂−1
t ,

where j = 5 × 103. The simulation results are shown in Figure 6. We can see that
the estimates of proportions of directed edges converge quickly as k increases.

FIG. 6. Four sequences of average proportions of directed edges in completed PDAGs in S 1.5p
p

with p = 100,200,500 and 1000, estimated via Algorithm 2 and the first 5000k steps of the Markov
chains, where k is shown in x-axis.
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5. Conclusions and discussions. In this paper, we proposed a reversible ir-
reducible Markov chain on Markov equivalence classes that can be used to study
various properties of a given set of interesting Markov equivalence classes. Our
experiments on Markov equivalence classes with sparse constraints reveal useful
information. For example, we find that proportions of undirected edges and chain
components in sparse completed PDAGs are small even for Markov equivalence
classes with thousands of vertices.

When some “important” but very rare equivalence classes are of interest, it will
be very hard to sample them in the proposed Markov chain. In this case, we can
constrain the space appropriately so that these Markov equivalence classes are easy
to be sampled. For example, it is nearly impossible to sample equivalence classes
with 300 vertices and 1 edge from S300. Fortunately, if we set the space to be S 2

300,
sampling graphs with 1 edge is not difficult.

The sizes of Markov equivalence classes are the property most widely discussed
in the literature. Due to space constraints, we have omitted several details in this
paper about determining the size of Markov equivalence classes and calculating
further properties of edges and vertices. We will discuss these issues in a follow-
up paper. The proposed methods can potentially be extended to study other sets
of completed PDAGs besides S p

n . Some interesting sets include (1) the completed
PDAGs in which each vertex has at most d adjacent edges; (2) completed PDAGs
in which each pair of vertices is connected by a path along edges in the graph.

APPENDIX: PRELIMINARY RESULTS AND PROOF OF THEOREM 1

In this Appendix, we provide two preliminary results introduced by Andersson
[2] and Chickering [5, 6], respectively, in Appendix A.1. These results are neces-
sary to implement our proposed approach technically and will be used in the proof
of Theorem 1. Then we provide a proof of the main result of this paper (Theorem 1)
in Appendix A.2.

A.1. Two preliminary results. Some definitions and notation are introduced
first. A graph is called a chain graph if it contains no partially directed cycles [22].
A chord of a cycle is an edge that joins two nonadjacent vertices in the cycle.
An undirected graph is chordal if every cycle of length greater than or equal to
4 possesses a chord. A directed edge of a DAG is compelled if it occurs in the
corresponding completed PDAG, otherwise, the directed edge is reversible, and the
corresponding parents are reversible parents. Recall Nx be the set of all neighbors
of x, �x is the set of all parent of x, Nxy = Nx ∩ Ny and �x,y = �x ∩ Ny and the
concept of “strongly protected” is presented in Definition 2.

Lemma 2 characterizes completed PDAGs that are used to represent Markov
equivalence classes [2] and will be used in the proofs in Appendix A.2.

LEMMA 2 (Andersson [2]). A graph C is a completed PDAG of a directed
acyclic graph D if and only if C satisfies the following properties:
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(i) C is a chain graph;
(ii) let Cτ be the subgraph induced by τ . Cτ is chordal for every chain compo-

nent τ ;
(iii) w → u − v does not occur as an induced subgraph of C ;
(iv) every arrow v → u in C is strongly protected.

Lemma 3 shows the equivalent validity conditions for iu2, du1, id2, dd1 and
mv1 used in Definition 9.

LEMMA 3 (Validity conditions of some operators [6]). The necessary and suf-
ficient validity conditions of the operators with type of InsertU, DeleteU, InsertD,
DeleteD or MakeV are as follows:

• (InsertU) Let x and y be two vertices that are not adjacent in C . The operator
InsertU x − y is valid (equivalently, iu2 holds) if and only if (iu2.1) �x = �y ,
(iu2.2) every undirected path from x to y contains a vertex in Nxy .

• (DeleteU) Let x − y be an undirected edge in completed PDAG C . The operator
DeleteU x − y is valid (equivalently, du1 holds) if and only if (du1.1) Nxy is a
clique in C .

• (InsertD) Let x and y be two vertices that are not adjacent in C . The operator
InsertD x → y is valid (equivalently, id2 holds) if and only if (id2.1) �x = �y ,
(id2.2) �x,y is a clique, (id2.3) every partially directed path from y to x contains
at least one vertex in �x,y .

• (DeleteD) Let x → y be a directed edge in completed PDAG C . The operator
DeleteD of x → y is valid (equivalently, dd1 holds) if and only if (dd1.1) Ny is
a clique.

• (MakeV) Let x − z − y be any length-two undirected path in C such that x and
y are not adjacent. The operator MakeV x → z ← y is valid (equivalently, mv1
holds) if and only if (mv1.1) every undirected path between x and y contains a
vertex in Nxy .

A.2. Proof of Theorem 1. Let O be the operator set defined in equation (3.3);
to prove Theorem 1, which shows O is a perfect operator set, we need to show O
satisfies four properties: validity, distinguishability, irreducibility and reversibility.
Equivalently, we just need to prove Theorem 2–5 as follows:

THEOREM 2. The operator set O is valid.

THEOREM 3. The operator set O is distinguishable.

THEOREM 4. The operator set O is reversible.

THEOREM 5. The operator set O is irreducible.
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Of the above four theorems, the most important and difficult is to prove Theo-
rem 4. We now show the proofs one by one.

PROOF OF THEOREM 2. According to the definition of validity in Definition 5
and the definition of OC in equation (3.2), all operators in InsertUC , DeleteUC ,
InsertDC , DeleteDC and MakeV C are valid. We just need to prove Lemma 4, which
shows all operators in RemoveV C are valid. �

LEMMA 4. Let x → z ← y be a v-structure in completed PDAG C . If (rv1)
�x = �y , (rv2) �x ∪Nxy = �z \ {x, y}, and (rv3) every undirected path between
x and y contains a vertex in Nxy hold, then the operator RemoveV x → z ← y is
valid and results in a completed PDAG in S n

p defined in equation (3.1).

To prove Lemma 4, we will use Lemma 5 given by Chickering (Lemma 32
in [6]).

LEMMA 5. Let C be any completed PDAG, and let x and y be any pair of ver-
tices that are not adjacent. Every undirected path between x and y passes through
a vertex in Nxy if and only if there exists a consistent extension in which (1) x has
no reversible parents, (2) all vertices in Nxy are parents of y and (3) y has no
other reversible parents.

We now give a proof of Lemma 4.

PROOF OF LEMMA 4. From Lemma 5 and condition rv3 in Lemma 4, there
exists a consistent extension of C , denoted by D, in which x has no reversible
parents, and the reversible parents of y are the vertices in Nxy . Because y → z

occurs in the completed PDAG, C , Nz and Ny occur in different chain components.
We can orient the undirected edges adjacent to z out of z. Then all vertices in Nz

are children of z in D. Let D′ be the graph obtained by reversing y → z in D and
P ′ be the PDAG obtained by applying the RemoveV operator to C . We will show
that D′ is a consistent extension of P ′.

Clearly, D′ and P ′ have the same skeleton.
We have that any v-structure that occurs in D but not in P ′ must include either

the edge x → z or y → z. Since D is a consistent extension of C , we have that all
v-structures in D are also in C . From condition rv2, all parents of z other than x

and y are adjacent to x and y. Hence x → z ← y is the only v-structure that is
directed into z in C . We have that all v-structures of P ′ are also in D, and there is
only one v-structure x → z ← y that is in D but not P ′.

Since y → z is the unique edge that differs between D and D′, we have that any
v-structure that exists in D but not in D′ must include the edge y → z, and any
v-structure that exists in D′ but not in D must include the edge z → y. We have
shown that x → z ← y is the only v-structure in D that is directed into z. From the
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construction of D, we have that all compelled parents of y in D′ are also parents
of z, and all other parents are in Nxy ; from rv2, they also are parents of z. There
is no v-structure that includes edge z → y in D′. Hence, all v-structures of D′ are
also in D, and there is only one v-structure x → z ← y that is in D but not D′.

Hence, D′ and P ′ have the same v-structures. It remains to be shown that D′ is
acyclic.

If D′ contains a cycle, the cycle must contain the edges z → y because D is
acyclic. This implies there is a directed path from y to z in D. By construction, all
vertices in Nz are children of z in D′. So, this path must include a compelled parent
of z; denote it by u. If u = x, from condition rv2, u ∈ �y ∪Nxy ; by the construction
of D, we have u ∈ �y . Thus, there is no path from y to z that contains u. If u = x,
by construction, the path must contain a compelled parent v of x. From condition
rv1, v ∈ �y . Thus, there is no path from y to z contains v. We get that D′ is acyclic.
Thus D′ is a consistent extension of P ′ and the operator RemoveV x → z ← y is
valid. �

PROOF OF THEOREM 3. For any completed C ∈ S n
p , we need to show that dif-

ferent operators in OC result in different completed PDAGs. For any valid operator
o ∈ InsertUC , say InsertU x − y, denoted as o, the resulting completed PDAG of o

contains the undirected edge x − y. We have that all other operators in OC except
for InsertD x → y and Insert x ← y (if they are also valid) will result in com-
pleted PDAGs with skeletons different than the resulting completed PDAG of o.
Thus, these operators cannot result in the same completed PDAG as o. If InsertD
x → y or Insert x ← y is valid, the resulting completed PDAGs of them contain
x → y or x ← y. These two resulting completed PDAGs have at least a compelled
edge different than the resulting completed PDAG of o. Thus there is no operator
in OC that can result in the same completed PDAG as o.

Similarly, we can show for any operator in OC , different operators will result in
different completed PDAGs because they will have distinct skeletons, compelled
edges or v-structures. �

PROOF OF THEOREM 4. Let C be any completed PDAG in S n
p , o ∈ OC be an

operator on C . The operator o′ ∈ O is the reversible operator of o if o′ can transfer
the resulting completed PDAG of o back to C . To prove Theorem 4, we just need to
show each operator in OC defined in equation (3.3) has a reversible operator in O.
Equivalently, we prove Lemmas 6, 7, 8, 9, 10 and 11 to show the reversibility for
six types of operators, respectively. �

LEMMA 6. For any operator o ∈ OC denoted by “InsertU x −y,” the operator
“DeleteU x − y” is the reversible operator of o.

LEMMA 7. For any operator o ∈ OC denoted by “DeleteU x − y,” the opera-
tor “InsertU x − y” is the reversible operator of o.
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LEMMA 8. For any operator o ∈ OC denoted by “InsertD x → y,” the opera-
tor “DeleteD x → y” is the reversible operator of o.

LEMMA 9. For any operator o ∈ OC denoted by “DeleteD x → y,” the oper-
ator “InsertD x → y” is the reversible operator of o.

LEMMA 10. For any operator o ∈ OC denoted by “MakeV x → z ← y,” the
operator “RemoveV x → z ← y” is the reversible operator of o.

LEMMA 11. For any operator o ∈ OC denoted by “RemoveV x → z ← y,”
the operator “MakeV x → z ← y” is the reversible operator of o.

Before giving proofs of these six lemmas, We first provide several results shown
in Lemmas 12, 13, 14 and 15.

LEMMA 12. Let graph C be a completed PDAG, {w,v,u} be three vertices
that are adjacent each other in C . If there are two undirected edges in {w,v,u},
then the third edge is also undirected.

PROOF. If the third edge is directed, there is a directed cycle like w−v−u →
w. From Lemma 2, we know that C is a chain graph, so there is no directed circle
in C . �

LEMMA 13. Let C1 be the resulting completed PDAG obtained by inserting a
new edge between x and y in C . If there is at least one edge v → u that is directed
in C but not directed in C1, then there exists a vertex h that is common child of x

and y such that x → h and y → h in C become undirected in C1.

PROOF. According to Lemma 2, an edge is directed in a completed PDAG if
and only if it is strongly protected. Thus, we have that at least one case among
(a), (b), (c), (d) in Figure 1 occurs in C but not in C1 for v → u. We will show
that either Lemma 13 holds, or there exists a parent of u, denoted as u1, such that
u2 → u1 occurs in C but not in C1, where u2 is a parent of u1. We denote the latter
result as (*).

Suppose case (a) in Figure 1 occurs in C but not in C1. Because v → u becomes
undirected in C1, we have that w → v must be undirected in C1 since w and u are
not adjacent. Set u1 = v and u2 = u, and we have that (*) holds.

Suppose case (b) in Figure 1 occurs in C but not in C1. If the pair {v,w} is not
{x, y}, v → u ← w is a v-structure in C . We have that v → u occurs in C1. This is
a contradiction. If {v,w} is {x, y}, we have that Lemma 13 holds (h = u).

Suppose case (c) in Figure 1 occurs in C but not in C1. Either v → w or w → u

occurs in C but not in C1. If it is v → w, by setting u2 = v and u1 = w, we have
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(*) holds. If it is w → u, both v − u and w − u in C1, so x − u also must be in C1.
We also have that (*) holds.

Suppose case (d) in Figure 1 occurs in C but not in C1. If the pair {w,w1} is
{x, y}, Lemma 13 holds (h = u). Otherwise, w → u ← w1 must occur in both C1
and C and the edge v → u is still strongly protected in C1, yielding a contradiction.

If (*) holds, we have that there is a directed path u2 → u1 → u such that u2 →
u1 occurs in C but not C1. Iterating, we can get a directed path uk → uk−1 · · · → u

of length k − 1 without undirected edges such that uk → uk−1 occurs in C but not
in C1 if Lemma 13 does not hold in each step. Because C is a chain graph without
directed circle, the procedure will stop in finite steps and Lemma 13 will hold
eventually. �

From the proof of Lemma 13, we have that u should be a descendant of x and y,
so we can get the following Lemma 14.

LEMMA 14. Let C be any completed PDAG, and let P denote the PDAG that
results from adding a new edge between x and y. For any edge v → u in C that does
not occur in the resulting completed PDAG extended from P , there is a directed
path of length zero or more from both x and y to u in C .

LEMMA 15. Let InsertUC and DeleteUC be the operator sets defined in Defi-
nition 9, respectively. For any o in InsertUC or in DeleteUC , where P ′ is the modi-
fied graph of o that is obtained by applying o to C , we have that P ′ is a completed
PDAG.

PROOF. We just need to check whether P ′ satisfies the four conditions in
Lemma 2.

(i): For any o ∈ DeleteUC , denoted as DeleteD x − y, let P ′ be the modified
graph obtained by deleting x − y from C .

If there is a directed cycle in P ′, it must be a directed cycle in C , which is a
contradiction. Thus there is no directed cycle in P ′, and P ′ is a chain graph.

If there exists an undirected cycle of length greater than 3 without a chord in P ′,
the cycle must contain both x and y; otherwise, this cycle occurs in C . If the length
of the cycle is 4, the other two vertices are in Nxy ; we have that the cycle has a
chord since Nxy is a clique in C . If the cycle in P ′ has length greater than 4 without
a chord, we have that x − y is the unique chord of this cycle in C . However, this
would imply that there is a cycle of length greater than 3 without a chord in C ,
a contradiction. Thus, there is no undirected cycle with length greater than 3 in P ′,
so every chain component of P ′ is chordal.

Suppose that · → ·−· occurs as an induced subgraph of P ′; it must be x → ·−y

(or y → · − x). However, in this case, x → · − y − x (or y → · − x − y) would be
a directed cycle in C . Thus the induced subgraph like · → · − · does not occur as
an induced subgraph of P ′.
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Finally, all directed edges in P ′ will be strongly protected; by the definition of
strong protection, all directed edges in C will remain strongly protected when an
undirected edge is removed.

(ii): For any o ∈ InsertUC , denoted as InsertU x − y, P ′ is the modified graph
of o.

If there is a directed cycle in P ′, it must contain x − y; otherwise this cycle is
also in C . We can suppose that there exists a partially directed path from x to y in C .
Denote the adjacent vertex of y in the path as u. Let u be the vertex adjacent to y

in the path. We have u /∈ �y ; otherwise, from the condition �x = �y in Lemma 3,
u would also be in �x , so there would be a partially directed cycle from x to x

in C . Hence the directed path must have the form x · · · → · · ·u − y. This would
induce a subgraph like a → b−v in C , a contradiction. Consequently, P ′ is a chain
graph.

If there exists an undirected cycle of length greater than 3 without a chord in P ′,
the cycle must contain x and y, and there must be an undirected path from x to
y in C ; otherwise, the cycle would also be in C . From Lemma 3, every undirected
path from x to y contains a vertex in Nxy , so every undirected path of length greater
than two has a chord. Thus, every undirected path of length greater than 3 from x

to y in P ′ has a chord. This implies that every chain component of P ′ is chordal.
Suppose that a subgraph like · → · − · occurs as an induced subgraph of P ′.

Since �x = �y in C , the induced subgraph is not · → x − y (or · → y − x). Thus,
the induced subgraph like · → · − · also occurs in C . This is a contradiction since

C is a completed PDAG, yielding a contradiction.
From Lemma 13 and the condition iu3 in Definition 9, all directed edges in C

are also directed in C1. This implies that all directed edges in P are still compelled,
and are thus strongly protected. �

We now give proofs of Lemmas 6, 7, 8, 9, 10 and 11, one by one.

PROOF OF LEMMA 6. Because the operator “InsertU x −y” = o ∈ OC is valid
and C1 is the resulting completed PDAG of o, we have that x − y occurs in C1. We
just need to show that the common neighbors of x and y, denoted as Nxy , form a
clique in C1.

If Nxy is empty set or has only one vertex, the condition that Nxy is a clique in
C1 holds.

If there are two different vertices z,u ∈ Nxy in C1, we have that x − z − y and
x − u − y form a cycle of length of 4 in C1. The cycle is also in C . Since the edge
x − y does not exist in C and C is a completed PDAG in which all undirected
subgraphs are chordal graphs, we have that z − u occurs in C , so z and u are
adjacent in C1. Hence the condition that Nxy is a clique in C1 holds. �

PROOF OF LEMMA 7. We need to show the operator o′:= InsertU x − y sat-
isfies the conditions iu1, iu2 and iu3 in Definition 9 for completed PDAG C1 and
that the resulting completed PDAG of o′ is C .
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The condition iu1 clearly holds, since x −y exists in C1 but not in C . Lemma 15
implies that the graph obtained by deleting x − y from C is the completed
PDAG C1. Thus, the graph obtained by inserting x − y into C1 is C . This implies
that InsertU x − y is valid, and the condition iu2 holds.

Lemma 15 implies that the condition iu3 also holds. �

PROOF OF LEMMA 8. I will first show that there is no undirected edge y − w

that occurs in both C and C1. If w −y occurs in C , since x and y are not adjacent in
C , x → w−y does not occur in C . There are three possible configurations between
x and w in C : (1) x is not adjacent to w, (2) w → x and (3) x − w. If x is not
adjacent to w in C , inserting x → y will result in y → w in C1. If w → x is in C ,
inserting x → y will result in w → y in C1. If x − w in C , there is an undirected
path from y to x; that is, the first condition for InsertD to be valid, according to
Lemma 3, does not hold. Thus we get that there is no undirected edge y − w that
occurs in both C and C1.

For any w ∈ Ny in C1, the edge between w and y is directed in C ; that is, either
w → y or y → w occurs in C . If y → w is in C , there are three possible configura-
tions between x and w in C : (1) x is not adjacent to w, (2) w → x and (3) x → w.
If x and w are not adjacent in C , inserting x → y will result in y → w in C1. If
w → x occurs in C , inserting x → y is not valid for C since there would be a di-
rected path from y to x. If x → w occurs in C , w is common child of x and y,
so from condition id3, y → w occurs in C1 and w /∈ Ny in C1. Thus, we have that
w → y must be in C .

If there is another vertex v ∈ Ny in C1, v → y must also be in C . If v and w

are not adjacent, v → y ← w forms a v-structure both in C and in C1. w → y

must occur in C1 and, consequently, w /∈ Ny in C1 yielding a a contradiction. Thus,
we know that any two vertices in Ny are adjacent in C . Ny is therefore a clique
in C1, and the operator DeleteD x → y is valid for C1; that is, the condition id1 in
Definition 9 holds.

Denote the modified PDAG of operator DeleteD x → y of C1 as P ′. We need
to show that the corresponding completed PDAG of P ′ is C . Equivalently, we just
need to show P ′ and C have the same skeleton and v-structures. Clearly, P ′ and C
have the same skeleton. If there is a v-structure in C , but not in C1, it must be x →
u ← y, where u is a common child of x and y. From condition id3 in Definition 9,
x → u and y → u also occur in C1, so, these v-structures also exist in P ′. This
implies that all v-structures of C are also in P ′. Moreover, the v-structures in C1
but not in C must be x → y ← v, where v is parent of y, and x and v are not
adjacent in C1. Clearly, after we delete x → y from C1, these v-structures will not
exist in P ′. This implies that all v-structures of P ′ are in C . So, P ′ and C have the
same v-structures.

For any v → y in C1, if v − y is in C , v must be parent of x. If x and v are
not adjacent, inserting x → y to C will result in y → v in C1. Moreover, x − v − y

does not exist in C since InsertD x → y is a valid operator, and x → v −y does not
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occur in C . Thus, for any v that is a parent of y but not a parent of x, the directed
edge v → y also occurs in the resulting completed PDAG C . That is, the condition
id2 in Definition 9 holds. �

PROOF OF LEMMA 9. To prove this lemma, we first introduce Lemmas 16
and 17. Let L = (u1, u2, . . . , uk) be a partially directed path from u1 to uk in a
graph. A path L2 = (u1, . . . , uk) is a sub-path of L1 if all vertices in L1 are in L

and have the same order as in L. We say that a partially directed path is shortest if
it has no smaller sub-path. �

LEMMA 16. Let C be a completed PDAG, and let L1 be a partially directed
path from y to x in C . Then there exists a shortest sub-path of L1, denoted as
L2 = y − u1 − · · · − uk → ·· · → x, in which there exists a k such that all edges
occurring before uk in the path are undirected, and all edges occurring after uk

are directed.

PROOF. We just need to show that a directed edge must be followed by a
directed edge in the shortest sub-path. If not, ui → ui+1 − ui+2 occurs in L2.
Because C is a completed PDAG, ui and ui+2 must be adjacent; otherwise ui+1 →
ui+2 occurs in C . If ui → ui+2 occurs in C , L2 is not a shortest path. If ui ← ui+2
occurs in C , ui+1 ← ui+2 must be in C . �

LEMMA 17. If the graph P1 obtained by deleting a → b from a completed
PDAG C can be extended to a new completed PDAG, C1, then we have that for any
directed edge x → y in C , if y is not b or a descendent of b, then x → y occurs
in C1.

PROOF. Because x → y occurs in C , so it is strongly protected in C . If x →
y does not occur in C1, it is not strongly protected in C1 from Lemma 2. From
the definition of strongly protected, we know that the four cases in Figure 1 in
which v → u is strongly protected do not involve any descendant of u. Thus, if
x → y is not compelled in C1, there must exist a directed edge w → z between
two nondescendants of y such that the edges between nondescendants of z are
strongly protected, and w − z is no longer strongly protected in P1. Because P1
is obtained by deleting a → b, z is nondescendant of b, we have that w → z is
strongly protected in P1, yielding a contraction. �

We now give a proof of Lemma 9:

PROOF OF LEMMA 9. Since C ∈ S n
p , we have nC1 < n. That is, the condition

id1 in Definition 9 holds for InsertD x → y of C1.
For any undirected edge w − y in C , x must be parent of w; otherwise the edge

between y and w is directed. Then deleting x → y from C will result in w → y
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in C1. Thus, we have that all Ny in C become parents of y in C1. From the condition
dd2, the parents of y but not x in C are also parents of y in C1. If there is a partially
directed path from y to x in C1, then the vertex adjacent to y in this path must be a
child of y or a vertex that is parent of y and x in C . We will show that if the vertex
is not a parent of y and x in C , there exists a contradiction.

If there is a partially directed path from y to x in C1, we can find a shortest
partially directed path like y −u1 − · · ·−uk → ·· · → x from Lemma 16, denoted
as L1. Any directed edge, say ui → ui+1, in L1 does not become ui ← ui+1 in C .
If L1 does not include undirected edges in C1, we have that the vertices of L1
form a partially directed cycle in C . We just need to show that the vertices of the
undirected path L1 also form a partially directed path in C .

Suppose y → u1 occurs in C . If u1 − u2 is undirected in C , then y → u2 must
occur in C , and consequently, L1 will not be shortest in C1. If u2 → u1 occurs in C ,
there exists a v-structure u2 → u1 ← y in C1; otherwise u2 and y are adjacent, and
L1 is not the shortest path in C1. Thus, u1 → u2 must occur in C . In this manner,
we get that all edges in y − u1 − · · · − uk → ·· · → x are directed in C and are
directed from ui → ui+1. This implies that there exists a partially directed cycle
in C . So, u1 must be a parent of y and x in C . We have u1 ∈ �xy and every partially
directed path of C1 from y to x contains at least one vertex in �xy .

Since all vertices in �xy in C1 are parents of x and y in C , if there are two
vertices, say w1,w2 ∈ �xy , that are not adjacent, the subgraph w1 → y ← w2
could be a v-structure in C1. So, all vertices in �xy in C1 are adjacent and �xy is a
clique.

We have that the parents of y in C1 ((�y)C1 ) are in the union of the parents and
neighbors of y in C ((�y ∪ Ny)C1 ). If there is at least one neighbor u of y in C ,
u must be child of x in C and parent of y in C1, so parents of x and y are not the
same. If there is no neighbor of y in C , the parents of y in C1 are the same as in C ,
except those vertices that are parents of x, that is, (�y − �x)C1 = (�y − �x)C .
At the same time, from Lemma 17, the parents of x in C1 are also the parents of x

in C . Thus, the parents of x and y are not the same in C1. From Lemma 3, we have
that InsertD x → y is valid for C1, and condition id2 holds.

Denote the modified PDAG of operator InsertD x → y of C1 as P ′. We need
to show that the corresponding completed PDAG of P ′ is C . Equivalently, we just
need to show that P ′ and C have the same skeleton and v-structures. Clearly, P ′ and
C have the same skeleton. A v-structure that is in C but not in C1 must have the
form x → y ← u, where u is parent of y but not adjacent to x. From condition dd2
in Definition 9, u → y also occurs in C1, so such a v-structure must also exist in P ′.
This implies that all v-structures of C are also in P ′. Moreover, the v-structures in
C1 but not in C must have the form x → v ← y, where v is a common child of y

and x in C1. Clearly, after we insert x → y to C1, this is no longer a v-structure
in P ′ implying that all v-structures of P ′ are in C . Thus, P ′ and C have the same
v-structures.
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Let the modified graph of DeleteD x → y from C be P ; we know that P and C1
have the same v-structures. Thus, for any u that is a common child of x and y in
C1, x → u ← y is a v-structure in P . This implies that y → u occurs in C and the
condition id3 hold. �

PROOF OF LEMMA 10. Since x, z and y are in the same chain component
of C , they have the same parent set in C . The modified graph of o′ has the same
skeleton and v-structures as C1 because all compelled edges in C remain compelled
in C1. We just need to prove that the operator o′ is valid and equivalently to prove
that the conditions rm1, rm2 and rm3 hold for C1.

We now show that the condition rm1, x and y have the same parents in C1 holds.
Because x and y have the same parents in C , and all directed edges in C occur in C1,
we just need to consider the neighbors of x or y. Let w −y be any undirected edge
in C , we consider the edges between w and x or z:

(1) If both w − z and x − w occur in C , w − y and w − x must be undirected
in C1.

(2) If w − z occurs but x − w does not occur in C , z → w and y → w must be
in C1.

(3) If x − w occurs but w − z does not occur in C , there is an undirected cycle
of length 4 without a chord in C . Thus, this case will not occur.

(4) If neither w − z nor x − w occur in C , and there is no undirected path other
than w − y − z from w to z in C , then w − y occurs in C1. If there exists another
undirected path from w to z, there must exist an undirected path of length 2 like
w − u′ − z in C , and y is adjacent to u′. In this case, y − w occurs in C1 when
x − u′ occurs and y → w occurs when x, and u′ are not adjacent.

Thus, there are no neighbors of y in C that become parents of y in C1; that is, y

has the same parents in both C1 and C . Similarly, x has the same parents in both C1
and C . we get x and y have the same parents in C1, and the condition rm1 holds.

All parents of x must also be parents of z in C1 since they are in the same chain
component. For any w ∈ Nxy , w − z also occurs in C ; otherwise x − z−y −w −x

would form cycle of length 4 without a chord. We have w → z must be in C1,
otherwise a new v-structure will occur in C1. Thus, we have �(x) ∪ Nxy ⊂ �(z)

in C1.
For any w ∈ �(z) in C1, if w ∈ �(z) in C , it must also be parent of x, y and z

in C1, so w ∈ �(x) in C1. If w−z is an undirected edge in C , there exist undirected
edges w−x and w−y in C such that w → z is in C1. Thus, w ∈ Nxy in C1. We have
that w ∈ �(x) ∪ Nxy and �(z) ⊂ �(x) ∪ Nxy in C1. Thus, �(z) = �(x) ∪ Nxy

in C1, and the condition rm2 holds.
Any undirected path between x and y in C1 will also be an undirected path in C ,

so these paths contain at least one vertex in Nxy in C . From the proof above, any
vertex in Nxy in C is also a vertex of Nxy in C1. Thus any undirected path between
x and y contains a vertex in Nxy in C1, and the condition rm3 holds. �
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PROOF OF LEMMA 11. From Lemma 5 and the condition rm3, there exists
a consistent extension of C , denoted by D, such that all neighbors of x in C are
children of x in D, and all neighbors of y in C are parents of x in D. Changing
y → z to z → y in D, we obtain a new graph D′. From the proof of Lemma 4,
we can get that (1) D′ is a DAG, (2) D′ is a consistent extension of C1. Thus,
D is a consistent extension of the PDAG that results from making the v-structure
x → z ← y in C1. Thus, we can get C by applying MakeV x → z ← y to C1.
This implies that MakeV x → z ← y is a valid operator of O1 and satisfies the
condition mv1. �

PROOF OF THEOREM 5. In order to prove this theorem, we first introduce
three results: Lemmas 18, 19 and 20. �

LEMMA 18. For any completed PDAG C containing at least one undirected
edge, there exists an undirected edge x − y for which Nxy is a clique.

LEMMA 19. For any completed PDAG C , if x → y occurs in C , then �x =
�y \ x.

A proof of Lemmas 18 and 19 can be found in Chickering [6].

LEMMA 20. For any completed PDAG C containing no undirected edges and
at least one directed edge, there exists at least one vertex x for which any parent
of x has no parent.

PROOF. The following procedure will find the vertex whose parent has no
parent. Let a → b be a directed edge in C , set y = a and x = b.

(1) If �y is not empty, choose any vertex u in �y , set x = y and y = u. Repeat
this step until we find a directed edge y → x for which �y is empty.

(2) Since �y is empty, from Lemma 19, there exists at least one vertex other
than y in �x . If there is a vertex u ∈ �x and u = y such that �u is not empty,
choose a vertex in �u, denoted as v and set y = v and x = u, and go to step 1.

Since C is an acyclic graph with finite vertices, above procedure must end at the
step in which the parents of x have no parents. �

We now show a proof of Theorem 5.

PROOF OF THEOREM 5. We need to show that for any two completed PDAGs
C1, C2 ∈ S , there exists a sequence of operators in O such that C2 can be obtained
by applying a sequence of operators to PDAGs, starting from C1. Because O is
reversible, any operator in O has a reversible operator, so we just need to show
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that any completed PDAG can be transferred to empty graph without edges. The
procedure includes three basic steps.

(1) Deleting all undirected edges.
From Lemma 18, for any completed PDAG containing at least one undirected

edge, we can find an operator with type of DeleteU that satisfies the condition du1
in Definition 9. We can delete an undirected edge with this operator and get a new
completed PDAG whose skeleton is a subgraph of the skeleton of the initial com-
pleted PDAG. Repeating this procedure, we can get a completed PDAG, denoted
as Ci , which contains no undirected edges.

(2) Deleting some directed edges.
From Lemma 20, we can find a vertex, denoted as x, whose parents have no

parents in the completed PDAG Ci . If �x contains more than two vertices, we can
choose a vertex u ∈ �x . Because (1) Nx is empty in Ci , and (2) any other directed
edge v → x forms a v-structure in Ci , we have that v → x is also compelled in the
completed PDAG obtained by deleting directed edge u → x from Ci . We can delete
v → x from Ci and get a new completed PDAG whose skeleton is a subgraph of
the skeleton of the initial one. Thus, the new completed PDAG is in S . Repeat this
procedure for all other directed edges v′ → x in which v′ ∈ �x until there are only
two vertices in �x in the new completed PDAG, denoted as Cj .

(3) Removing a v-structure.
The conditions rm1, rm2 and rm3 hold for the v-structure y → x ← u in Cj ,

so, we can remove y → x ← u from Cj and get a new completed PDAG whose
skeleton is a subgraph of the skeleton of the initial graph. Denote the resulting
completed PDAG as Ck ; it may still contain some undirected edges.

By repeatedly applying the above the steps in sequence, we can finally obtain a
graph without any edges. �
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SUPPLEMENTARY MATERIAL

Supplement to “Reversible MCMC on Markov equivalence classes of
sparse directed acyclic graphs” (DOI: 10.1214/13-AOS1125SUPP; .pdf). In this
supplementary note, we give some algorithms, examples, an experiment and the
proofs of the results in this paper.
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