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Summary. Experimenters often use post-stratification to adjust estimates. Post-stratification is
akin to blocking, except that the number of treated units in each stratum is a random variable
because stratification occurs after treatment assignment. We analyse both post-stratification
and blocking under the Neyman–Rubin model and compare the efficiency of these designs. We
derive the variances for a post-stratified estimator and a simple difference-in-means estimator
under different randomization schemes. Post-stratification is nearly as efficient as blocking: the
difference in their variances is of the order of 1=n2, with a constant depending on treatment
proportion. Post-stratification is therefore a reasonable alternative to blocking when blocking is
not feasible. However, in finite samples, post-stratification can increase variance if the number
of strata is large and the strata are poorly chosen.To examine why the estimators’ variances are
different, we extend our results by conditioning on the observed number of treated units in each
stratum. Conditioning also provides more accurate variance estimates because it takes into
account how close (or far) a realized random sample is from a comparable blocked experiment.
We then show that the practical substance of our results remains under an infinite popula-
tion sampling model. Finally, we provide an analysis of an actual experiment to illustrate our
analytical results.
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1. Introduction

One of the most important tools for determining the causal effect of some action is the random-
ized experiment, where a researcher randomly divides units into groups and applies different
treatments to each group. Randomized experiments are the ‘gold standard’ for causal infer-
ence because, assuming proper implementation of the experiment, if a difference in outcomes
is found the only possible explanations are a significant treatment effect or random chance.
Analytical calculation gives a handle on the chance which allows for principled inference about
the treatment effect. In the most basic analysis, a simple difference in means is used to estimate
the overall sample average treatment effect (SATE), which is defined as the difference in the units’
average outcome if all were treated as compared with their average outcome if they were not.
This framework and estimator were analysed by Neyman in 1923 (see the English translation by
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Splawa-Neyman et al. (1990)) under what is now called the Neyman or Neyman–Rubin model
of potential outcomes (Holland, 1986). Under this model, one need make few assumptions that
are not guaranteed by the randomization itself.

Since each additional observation in an experiment sometimes comes at considerable cost, it
is desirable to find more efficient estimators than the simple difference-in-means estimator to
measure treatment effects. Blocking, which is when experimenters first stratify their units and
then randomize treatment within predefined blocks, can greatly reduce variance compared with
the simple difference estimator if the strata differ from each other. See ‘A useful method’ in
Fisher (1926) for an early overview, Wilk (1955) for an analysis and comparison with analysis
of variance or Imai et al. (2008) for a modern overview. Unfortunately, because blocking must
be conducted before randomization, it is often not feasible owing to practical considerations or
lack of foresight. Sometimes randomization may even be entirely out of the researcher’s control,
such as with so-called natural experiments. When blocking is not done, researchers often adjust
for covariates after randomization. For example, Pocock et al. (2002) studied a sample of clinical
trials analyses and found that 72% of these references used covariate adjustment. Keele et al.
(2008) analysed the experimental results in three major political science journals and found that
74–95% of the references relied on adjustment. Post-stratification is one simple form of adjust-
ment where the researcher stratifies experimental units with a pretreatment variable, estimates
treatment effects within the strata and then uses a weighted average of these strata estimates for
the overall average treatment effect estimate. This is the estimator that we focus on.

In this paper, we use the Neyman–Rubin model to compare post-stratification both with
blocking and with using no adjustment. Neyman’s framework does not require assumptions of
a constant treatment effect or of identically or independently distributed disturbances, which
are assumptions that are typically made when considering adjustment to experimental data
without this framework (e.g. McHugh and Matts (1983)). This avenue for a robust analysis,
which was revitalized by Rubin in the 1970s (Rubin, 1974), has recently had much appeal. See,
for example, work on general experiments (Keele et al., 2008), matched pairs (Imai, 2008) or
matched pairs of clusters (Imai et al., 2009). (See Sekhon (2009) for a historical review of the
Neyman–Rubin model.) Also see Neyman’s own treatment of blocking in the appendix of Ney-
man et al. (1935). Our estimator is equivalent to one from a fully saturated ordinary least squares
regression. Freedman (2008a,b) analysed the regression-adjusted estimator under the Neyman–
Rubin model without treatment-by-strata interactions and found that the asymptotic variance
might be larger than if no correction were made. Lin (2012) extended Freedman’s results and
showed that, when a treatment-by-covariate interaction is included in the regression, adjust-
ment cannot increase the asymptotic variance. We analyse the exact, finite sample properties
of this saturated estimator. Imbens (2011) analysed estimating the treatment effect in a larger
population, assuming that the given sample being experimented on is a random draw from it.
However, because in most randomized trials the sample is not taken at random from the larger
population of interest, we focus on estimating the treatment effect within the sample. Tsiatis
et al. (2008) and Koch et al. (1998) proposed other adjustment methods that also rely on weak
assumptions and that have the advantage of working naturally with continuous or multiple
covariates. Because of different sets of assumptions and methods of analysis, these estimators
have important differences from each other. See Section 6 for further discussion.

We derive the variances for post-stratification and simple difference-in-means estimators
under many possible randomization schemes including complete randomization and Bernoulli
assignment. We show that the difference between the variance of the post-stratified estimator
and that of a blocked experiment is of the order of 1=n2 with a constant primarily dependent on
the proportion of units treated. Post-stratification is comparable with blocking. Like blocking,
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post-stratification can greatly reduce variance over using a simple difference-in-means estimate.
However, in small samples post-stratification can substantially hurt precision, especially if the
number of strata is large and the stratification variable is poorly chosen.

After randomization, researchers can observe the proportion of units actually treated in each
stratum. We extend our results by deriving variance formulae for the post-stratified and simple
difference estimators conditioned on these observed proportions. These conditional formu-
lae help to explain why the variances of the estimators can differ markedly with a prognostic
covariate: the difference comes from the potential for bias in the simple difference estimator
when there is a large imbalance (i.e. when the observed proportions of units treated are far from
what is expected). Interestingly, if the stratification variable is not predictive of outcomes the
conditional mean-squared error (MSE) of the simple difference estimator usually remains the
same or even goes down with greater imbalance, whereas the conditional MSE of the adjusted
estimator increases. Adjusting for a poorly chosen covariate has real cost in finite samples.

The rest of the paper is organized as follows. In the next section, we set up the Neyman–
Rubin model, describe the estimators and then derive the estimators’ variances. In Section 3 we
show that post-stratification and blocking have similar characteristics in many circumstances.
In Section 4, we present our formula for the estimators’ variances conditioned on the observed
proportions of treated units in the strata and discuss their implications. We then align our
results with those of Imbens (2011) in Section 5 by extending our findings to the superpopula-
tion model and discussing the similarities and differences of the two viewpoints. We compare
post-stratification with other forms of adjustment in Section 6, focusing on how these differ-
ent approaches use different assumptions. In Section 7, we apply our method to the real data
example of a large, randomized medical trial to assess post-stratification’s efficacy in a real world
example. We also make a hypothetical example from this data set to illustrate how an imbalanced
randomization outcome can induce bias which the post-stratified estimator can then adjust for.
Section 8 concludes.

The programs that were used for the simulation examples can be obtained from

http://www.blackwellpublishing.com/rss

2. The estimators and their variances

We consider the Neyman–Rubin model with two treatments and n units. For an example
consider a randomized clinical trial with n people, half given a drug and the other half given
a placebo. Let yi.1/ ∈ R be unit i’s outcome if it were treated, and yi.0/ its outcome if it were
not. These are the potential outcomes of unit i. For each unit, we observe either yi.1/ or yi.0/

depending on whether we treat it or not. We make the assumption that treatment assignment
for any particular unit has no effect on the potential outcomes of any other unit (this is typi-
cally called the stable unit treatment value assumption). In the drug example this means that
the decision to give the drug to one patient would have no effect on the potential outcomes of
any other patient. The treatment effect ti for unit i is then the difference in potential outcomes,
ti ≡yi.1/−yi.0/, which is deterministic.

Although these ti are the quantities of interest, we cannot in general estimate them because
we cannot observe both potential outcomes of any unit i and because the ti generally differ by
unit. The average across a population of units, however, is estimable. Neyman (Splawa-Neyman
et al., 1990) considered the overall SATE:

τ ≡ 1
n

n∑
i=1

{yi.1/−yi.0/}:
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To conduct an experiment, randomize units to treatment and observe outcomes. Many choices
of randomization are possible. The observed outcome will be one of the two potential outcomes,
and which one depends on the treatment given. Random assignment gives a treatment assign-
ment vector T = .T1, . . . , Tn/ with Ti ∈ {0, 1} being an indicator variable of whether unit i was
treated or not. T ’s distribution depends on how the randomization was conducted. After the
experiment is complete, we obtain the observed outcomes Y , with Yi =Ti yi.1/+ .1−Ti/yi.0/.
The observed outcomes are random—but only because of the randomization used. The yi.l/

and ti are all fixed. Neyman first considered a balanced complete randomization.

Definition 1 (complete randomization of n units). Given a fixed p∈ .0, 1/ such that 0 <pn<n

is an integer, a complete randomization is a simple random sample of pn units selected for treat-
ment with the remainder left as controls. If p=0:5 (and n is even) the randomization is balanced
in that there are the same numbers of treated units as control units.

The classic unadjusted estimator τ̂ sd is the observed simple difference in the means of the
treatment and control groups:

τ̂ sd = 1
W.1/

n∑
i=1

TiYi − 1
W.0/

n∑
i=1

.1−Ti/Yi

=
n∑

i=1

Ti

W.1/
yi.1/−

n∑
i=1

.1−Ti/

W.0/
yi.0/,

where W.1/=ΣiTi is the total number of treated units, W.0/ is total control and W.1/+W.0/=n.
For Neyman’s balanced complete randomization, W.1/=W.0/=n=2. For other randomization
schemes the W.l/ are potentially random.

We analyse the properties of various estimators on the basis of the randomization scheme
used—this is the source of randomness. Fisher proposed a similar strategy for testing the ‘sharp
null’ hypothesis of no effect (where yi.0/=yi.1/ for i=1, . . . , n); under this view, all outcomes
are known and the observed difference in means is compared with its exact, known distribu-
tion under this sharp null. Neyman, in contrast, estimated the variance of the difference in
means, allowing for the unknown counterfactual outcomes of the units to vary. These different
approaches have different strengths and weaknesses that we do not discuss here. We follow this
second approach.

Neyman showed that the variance of τ̂ sd is

var.τ̂ sd/= 2
n

E[s2
1 + s2

0]− 1
n

S2 .1/

where s2
l are the sample variances of the observed outcomes for each group, S2 is the variance

of the n treatment effects ti and the expectation is over all possible assignments under balanced
complete randomization. We extend this work by considering an estimator that (ideally) exploits
some pretreatment covariate b by using post-stratification to reduce variance.

2.1. The post-stratified estimator of the sample average treatment effect
Stratification is when an experimenter divides the experimental units into K strata according
to some categorical covariate b with bi ∈B ≡ {1, . . . , K}, i= 1, . . . , n. Each stratum k contains
nk =#{i :bi =k} units. For example, in a cancer drug trial we might have the strata being differ-
ent stages of cancer. If the strata are associated with outcomes, an experimenter can adjust a
treatment effect estimate to remove the effect of random variability in the proportions of units
treated. This is the idea behind post-stratification. The bi are observed for all units and are
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not affected by treatment. The strata that are defined by the levels of b have stratum-specific
SATEk:

τk ≡ 1
nk

∑
i:bi=k

{yi.1/−yi.0/} k =1, . . . , K:

The overall SATE can then be expressed as a weighted average of these SATEks:

τ = ∑
k∈B

nk

n
τk: .2/

We can view the strata as K mini-experiments. Let Wk.1/=Σi:bi=kTi be the number of treated
units in stratum k, and Wk.0/ be the number of control units. We can use a simple difference
estimator for each stratum to estimate the SATEks:

τ̂ k = ∑
i:bi=k

Ti

Wk.1/
yi.1/− ∑

i:bi=k

.1−Ti/

Wk.0/
yi.0/: .3/

A post-stratification estimator is an appropriately weighted estimate of these strata level
estimates:

τ̂ps ≡ ∑
k∈B

nk

n
τ̂ k: .4/

These weights echo the weighted sum of SATEks in equation (2). Because b and n are known
and fixed, the weights are also known and fixed. We derive the variance of τ̂ps in this paper.

Technically, this estimator is undefined if Wk.1/ = 0 or Wk.0/ = 0 for any k ∈ 1, . . . , K. We
therefore calculate all means and variances conditioned on D, the event that τ̂ps is defined, i.e.
that each stratum has at least one unit assigned to treatment and one to control. This is fairly
natural: if the number of units in each stratum is not too small the probability of D is close to 1
and the conditioned estimator is similar to an appropriately defined unconditioned estimator.
See Section 2.2. Similarly, τsd is undefined if W.1/ = 0 or W.0/ = 0. We handle this similarly,
letting D′ be the set of randomizations where τ̂ sd is defined.

Different experimental designs and randomizations give different distributions on the treat-
ment assignment vector T and all resulting estimators. Some distributions on T would cause
bias. We disallow those. Define the treatment assignment pattern for stratum k as the ordered
vector .Ti : i∈{1, . . . , n : bi = k}/. We assume that the randomization used has assignment sym-
metry.

Definition 2 (assignment symmetry). A randomization is assignment symmetric if the following
two properties hold.

(a) Equiprobable treatment assignment patterns: all . nk

Wk.1/
/ ways to treat Wk.1/ units in stratum

k are equiprobable, given Wk.1/.
(b) Independent treatment assignment patterns: for all strata j and k, with j �=k, the treatment

assignment pattern in stratum j is independent of the treatment assignment pattern in
stratum k, given Wj.1/ and Wk.1/.

Complete randomization and Bernoulli assignment (where independent p-coin flips deter-
mine the treatment for each unit) satisfy assignment symmetry. So does blocking, where strata
are randomized independently. Furthermore, given a distribution on T that satisfies assignment
symmetry, conditioning on D maintains assignment symmetry (as do many other reasonable
conditionings, such as having at least x units in both treatment and control). See the on-line
supplementary material for a more formal argument. Cluster randomization or randomization
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where units have unequal treatment probabilities do not, in general, have assignment symmetry.
In our technical results, we assume that

(a) the randomization is assignment symmetric and
(b) we are conditioning on D (or D′), the set of possible assignments where τ̂ps (or τ̂ sd) is

defined.

The post-stratification estimator and the simple difference estimator are used when the initial
random assignment ignores the stratification variable b. In a blocked experiment, the estimator
that is used is τ̂ps, but the randomization is done within the strata defined by b. All three of these
options are unbiased. We are interested in their relative variances. We express the variances of
these estimators with respect to the sample’s (unknown) means, variances and covariance of
potential outcomes divided into between-strata variation and within-stratum variation. The
within-stratum variances and covariances are, for k =1, . . . , K,

σ2
k .l/= 1

nk −1

∑
i:bi=k

{yi.l/− ȳk.l/}2 l=0, 1

and

γk.1, 0/= 1
nk −1

∑
i:bi=k

{yi.1/− ȳk.1/}{yi.0/− ȳk.0/},

where ȳk.l/ denotes the mean of yi.l/ for all units in stratum k. Like many, we use nk −1 rather
than nk for convenience and cleaner formulae. The (1, 0) in γk.1, 0/ indicates that this framework
could be extended to multiple treatments.

The between-stratum variances and covariance are the weighted variances and covariance of
the strata means:

σ̄2.l/= 1
n−1

K∑
k=1

nk {ȳk.l/− ȳ.l/}2 l=0, 1

and

γ̄.1, 0/= 1
n−1

K∑
k=1

nk {ȳk.1/− ȳ.1/}{ȳk.0/− ȳ.0/}:

The populationwide σ2.l/ and γ.1, 0/ are analogously defined. They can also be expressed as
weighted sums of the component pieces. We also refer to the ‘correlation of potential outcomes’ r,
where r≡γ.1, 0/={σ.0/σ.1/}and the strata level correlations rk, where rk ≡γk.1, 0/={σk.0/σk.1/}.
An overall constant treatment effect gives r = 1, σ.0/=σ.1/, rk = 1 for all k and σk.0/=σk.1/

for all k.
We are ready to state our main results.

Theorem 1. The strata level estimators τ̂ k are unbiased, i.e.

E[τ̂ k|D]= τk k =1, . . . , K

and their variances are

var.τ̂ k|D/= 1
nk

{β1k σ2
k .1/+β0k σ2

k .0/+2 γk.1, 0/} .5/

with β1k = E[Wk.0/=Wk.1/|D], the expected ratio of the number of units in control to the
number of units treated in stratum k, and β0k =E[Wk.1/=Wk.0/|D], the reverse.

Theorem 2. The post-stratification estimator τ̂ps is unbiased:
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E[τ̂ps|D]=E

[∑
k

nk

n
τ̂ k|D

]
=∑

k

nk

n
E[τ̂ k|D]=∑

k

nk

n
τk = τ :

Its variance is

var.τ̂ps|D/= 1
n

∑
k

nk

n
{β1k σ2

k .1/+β0k σ2
k .0/+2 γk.1, 0/}: .6/

See Appendix A for a proof. In essence we expand the sums, use iterated expectation and
evaluate the means and variances of the treatment indicator random variables. Assignment
symmetry allows for the final sum. Techniques used are similar to those found in many classic
(e.g. Neyman et al. (1935) and Student (1923)) and recent references (e.g. Imai et al. (2008)).

Consider the whole sample as a single stratum and use theorem 1 to obtain immediately the
following corollary.

Corollary 1. The unadjusted simple difference estimator τ̂ sd is unbiased, i.e. E[τ̂ sd|D′]= τ . Its
variance is

var.τ̂ sd|D′/= 1
n
{β1 σ2.1/+β0 σ2.0/+2γ.1, 0/}, .7/

where β1 ≡E[W.0/=W.1/|D′] and β0 ≡E[W.1/=W.0/|D′]. In terms of strata level parameters, its
variance is

var.τ̂ sd|D′/= 1
n
{β1 σ̄2.1/+β0 σ̄2.0/+2 γ̄.1, 0/}+ 1

n

∑
k

nk −1
n−1

{β1 σ2
k .1/+β0 σ2

k .0/+2γk.1, 0/}:
.8/

Conditioning τ̂ sd on the D that is associated with τ̂ps does not produce an assignment sym-
metric randomization in the single stratum of all units, and indeed E[τ̂ sd|D] �= τ in some cases.

For completely randomized experiments with np units treated, β1 = .1−p/=p and β0 =p=.1−
p/. For a balanced completely randomized experiment, equation (7) is the result that was pre-
sented in Splawa-Neyman et al. (1990)—see equation (1); the expectation of the sample variance
is the overall variance. Then βl =1 and

var.τ̂ sd/= 1
n
{σ2.1/+σ2.0/+2γ.1, 0/}

= 2
n
{σ2.1/+σ2.0/}− 1

n
{σ2.1/+σ2.0/−2γ.1, 0/}

= 2
n
{σ2.1/+σ2.0/}− 1

n
var{yi.1/−yi.0/}:

2.1.1. Remarks
β1k is the expectation of Wk.0/=Wk.1/, the ratio of control units to treated units in stratum
k. For large nk, this ratio is close to the ratio E[Wk.0/]=E[Wk.1/] since the Wk.l/ will not vary
much relative to their size. For small nk, however, they will vary more, which tends to result
in β1k being noticeably larger than E[Wk.0/]=E[Wk.1/]. This is at the root of how the overall
variance of post-stratification differs from blocking. This is discussed more formally later on
and in Appendix B.

For l = 0, 1 the βlks are usually larger than βl, being expectations of different variables with
different distributions. For example in a balanced completely randomized experiment β1 = 1
but β1k > 1 for k =1, . . . , K since Wk.1/ is random and W.1/ is not.
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All the βs depend on both the randomization and the conditioning on D or D′, and thus the
variances from both equation (8) and equation (6) can change (markedly) under different ran-
domization scenarios. As a simple illustration, consider a complete randomization of a 40-unit
sample with a constant treatment effect and four strata of equal size. Let all σk.l/ = 1 and all
rk =1. Also let σ̄.l/= γ̄.0, 1/=0:56. If p=0:5, then β1 =β0 =1 and the variance of τ̂ sd is about
0.15. If p= 2

3 , then β1 = 1
2 and β0 =2. Equation (8) holds in both cases, but the variance in the

second case will be about 10% larger owing to the larger β0. There are fewer control units, so
the estimate of the control outcome is more uncertain. The gain in certainty for the treatment
units does not compensate enough. For p = 0:5, β1k =β0k ≈ 1:21. The post-stratified variance
is about 0.11. For p= 2

3 , β1k ≈ 2:44 and β0k ≈ 0:61. The average is about 1.52. The variance is
about 14% larger than the p= 0:5 case. Generally speaking, the relative variances of different
experimental set-ups are represented in the βs.

The correlation of potential outcomes, γk.1, 0/, can radically impact the variance. If they are
maximally negative, the variance can be 0 or nearly 0. If they are maximally positive (as in the
case of a constant treatment effect), the variance can be twice what it would be if the outcomes
were uncorrelated.

2.1.2 Comparing the estimators
Both τ̂ps and τ̂ sd are unbiased, so their MSEs are the same as their variances. To compare τ̂ps
and τ̂ sd take the difference of their variances:

var.τ̂ sd|D′/−var.τ̂ps|D/=
[

1
n
{β1 σ̄2.1/+β0 σ̄2.0/+2 γ̄.1, 0/}

]

−
[

1
n

K∑
k=1

{(
nk

n
β1k − nk −1

n−1
β1

)
σ2

k .1/+
(

nk

n
β0k − nk −1

n−1
β0

)
σ2

k .0/

}

+ 2
n2

K∑
k=1

n−nk

n−1
γk.1, 0/

]
: .9/

Equation (9) breaks down into two parts as indicated by the square brackets. The first part,
β1 σ̄2.1/+β0 σ̄2.0/+2 γ̄.1, 0/, is the between-strata variation. It measures how much the mean
potential outcomes vary across strata and captures how well the stratification variable separates
out different units, on average. The larger the separation, the more to gain by post-stratifica-
tion. The second part represents the cost that is paid by post-stratification due to, primarily, the
chance of random imbalance in treatment causing units to be weighted differently. This second
part is non-positive and is a penalty except in some cases where the proportion of units treated
is extremely close to 0 or 1 or is radically different across strata.

If the between-strata variation is larger than the cost paid then equation (9) is positive and
it is good to post-stratify. If equation (9) is negative then it is bad to post-stratify. It can be
positive or negative depending on the parameters of the population. In particular, if there is
no between-strata difference in the mean potential outcomes, then the terms in the first square
brackets are 0, and post-stratification hurts. Post-stratification is not necessarily a good idea
when compared with doing no adjustment at all.

To assess the magnitude of the penalty paid compared with the gain, multiply equation (9)
by n. The first term, representing the between-strata variation, is now a constant, and the scaled
gain converges to it as n grows.

Theorem 3. Take an experiment with n units randomized under either complete randomiza-
tion or Bernoulli assignment. Let p be the expected proportion of units treated. Without loss
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of generality, assume that 0:5 �p < 1. Let f = min{nk=n : k = 1, . . . , K} be the proportional
size of the smallest stratum. Let σ2

max =maxk,l{σ2
k .l/} be the largest variance of all the strata.

Similarly define γmax. Then the scaled cost term is bounded:

|n{var.τ̂ sd|D′/−var.τ̂ps|D′/}−β1 σ̄2.1/−β0 σ̄2.0/−2 γ̄.1, 0/|�C
1
n

+O

(
1
n2

)

with

C =
{

8
f.1−p/2 + 2p

1−p

}
σ2

max +2Kγmax:

See Appendix B for the derivation. Theorem 3 shows us that the second part of equation (9),
the harm, diminishes quickly.

Conditioning τ̂ps on D and τ̂ sd on D′ is not ideal, but τ̂ sd conditioned on D can be biased if the
strata have unequal sizes and p �=0:5. However, owing to a similar argument to that in Section
2.2, this bias is small and equation (8) is close (i.e. within an exponentially small amount) to the
MSE of τ̂ sd conditioned on D. Thus theorem 3 holds for both estimators conditioned on D.
Indeed, theorem 3 holds unconditionally if the estimators are extended so they are reasonably
defined (e.g. set to 0) when ¬D occurs.

If the number of strata K grows with n, as is often so when coarsening a continuous covar-
iate, the story can change. The second terms in square brackets of equation (9) are sums over
K elements. The larger the number of strata K , the more terms in the sums and the greater the
potential penalty for stratification, unless the σ2

k .l/s shrink in proportion as K grows. For an
unrelated covariate, they will not tend to do so. To illustrate, we made a sequence of experiments
increasing in size with a continuous covariate z unrelated to outcome. For each experiment with
n units, we constructed b by cutting z into K =n=10 chunks. Post stratification was about 15%
worse, in this case, than the simple difference estimator regardless of n. See the on-line sup-
plementary materials for details as well as other illustrative examples. Theorem 3 captures the
dependence on the number of strata through f , the proportional size of the smallest strata. If
f ∝ 1=K then the difference will be O.K=n/. For example, if K grows at rate O{log.n/}, then
the scaled difference will be O{log.n/=n}, which is nearly O.1=n/.

Overall, post-stratifying on variables that are not strongly related to outcome is unlikely to
be worthwhile and can be harmful. Post-stratifying on variables that do relate to outcome is
likely to result in large between-strata variation and thus a large reduction in variance compared
with a simple difference estimator. More strata are not necessarily better, however. Simulations
suggest that there is often a law of diminishing returns. For example, we made a simulated
experiment with n=200 units with a continuous covariate z related to outcome. We then made
b by cutting z into K chunks for K =1, . . . , 20. As K increased from 1 there was a sharp drop in
variance and then, as the cost due to post-stratification increased, the variance levelled off and
then climbed. In this case, K=5 was ideal. We did a similar simulation for a covariate z unrelated
to outcome. Now, regardless of K , the σ2

k .l/ were all about the same and the between-strata var-
iation fairly low. As K grew, the overall variance climbed. In many cases a few moderate-sized
strata give a dramatic reduction in variance, but having more strata beyond that has little effect
and can even lead to an increase in τ̂ps’s variance. See the on-line supplementary material for
details.

2.1.3. Estimation
Equation (6) and equation (8) are the actual variances of the estimators. In practice, the vari-
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ance of an estimator, i.e. the squared standard error, would itself have to be estimated. Unfor-
tunately, however, it is usually not possible consistently to estimate the standard errors of
difference-in-means estimators owing to so-called identifiability issues as these standard errors
depend on rk, the typically unestimable correlations of the potential outcomes of the units being
experimented on (see Splawa-Neyman et al. (1990)). One approach to estimate these stan-
dard errors consistently is to impose structure to render this correlation estimable or known;
Reichardt and Gollob (1999), for example, demonstrated that quite strong assumptions must
be made to obtain an unbiased estimator for the variance of τ̂ sd. It is straightforward, how-
ever, to make a conservative estimate by assuming that the correlation is maximal. Sometimes
there can be nice tricks—Alberto and Imbens (2008), for example, estimated these parameters
for matched pairs by looking at pairs of pairs matched on covariates—but generally bound-
ing the standard error is the best that one can do. Furthermore, the increased uncertainty and
degrees-of-freedom issues from estimating the many variances composing the standard error of
τ̂ps would also have to be accounted for. Developing an appropriate method for this is an area
for future work.

That being said, all terms except the γk.1, 0/ in equation (9) are estimable with standard
sample variance, covariance and mean formulae. In particular, γ̄.1, 0/ is estimable. By then
making the conservative assumption that the γk.1, 0/ are maximal (i.e. that rk = 1 for all k so
γk.1, 0/=σ.1/σ.0/), we can estimate a lower bound on the gain. Furthermore, by then dividing
by a similar upper bound on the standard error of the simple difference estimator, we can give
a lower bound on the percentage reduction in variance due to post-stratification. We illustrate
this when we analyse an experiment in Section 7.

2.2. Not conditioning on D changes little
Our results are conditioned on D, the set of assignments such that Wk.l/ �=0 for all k =1, . . . , K

and l = 0, 1. This, it turns out, results in variances that are only slightly different from not
conditioning on D.

Set τ̂ps =0 if ¬D occurs, i.e. if Wk.l/=0 for some k and l. Other choices of how to define the
estimator when ¬D occurs are possible, including letting τ̂ps = τ̂ sd—the point is that this choice
does not much matter. In our case E[τ̂ps]=τPD. The estimate of the treatment is shrunk by PD
towards 0. It is biased by τP¬D. The variance is

var.τ̂ps/=var.τ̂ps|D/PD + τ2P¬DPD

and the MSE is

MSE.τ̂ps/=E[.τ̂ps − τ /2]=var.τ̂ps|D/PD + τ2P¬D:

Not conditioning on D introduces a bias term and some extra variance terms. All these terms
are small if P¬D is near 0, which it is: P¬D is O{nexp.−n/} (see Appendix B). Not conditioning
on D, then, gives substantively the same conclusions as conditioning on D, but the formulae are
a little more unwieldy. Conditioning on the set of randomizations where τ̂ps is defined is more
natural.

This of course applies to τ̂ sd and D′ as well—and with a faster rate of decay since the sin-
gle stratum is the entire sample. Furthermore, this also means conditioning on the ‘wrong’ D
is also negligible, i.e. τ̂ sd conditioned on D is effectively unbiased. So the difference between
conditioning on D and D′ is small and, more generally, the conditioning in the theorems pre-
sented in this paper can be effectively ignored.
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3. Comparing blocking with post-stratification

Let the assignment split W of a random assignment be the number of treated units in the strata:

W ≡ .W1.1/, . . . , Wk.1//:

A randomized block trial ensures that W is constant because we randomize within strata,
ensuring that a prespecified number of units are treated in each. This randomization is assign-
ment symmetric (definition 2) and under it the probability of being defined, D, is 1. For blocking,
the standard estimate of the treatment effect has the same expression as τ̂ps, but the Wk.l/s are
all fixed. If all blocks have the same proportion treated (i.e. Wk.1/=nk = W.1/=n for all k), τ̂ps
coincides with τ̂ sd.

Because W is constant

β1k =E

[
Wk.0/

Wk.1/

]
= Wk.0/

Wk.1/
= 1−pk

pk
, .10/

where pk is the proportion of units assigned to treatment in stratum k. Similarly, β0k =pk=.1−
pk/. Letting the subscript ‘blk’ denote this randomization, plug equation (10) into equation (6)
to obtain the variance of a blocked experiment:

varblk.τ̂ps/= 1
n

∑
k

nk

n

{
1−pk

pk
σ2

k .1/+ pk

1−pk
σ2

k .0/+2γk.1, 0/

}
: .11/

Post-stratification is similar to blocking, and the post-stratified estimator’s variance tends
to be close to that of a blocked experiment. Taking the difference between equation (6) and
equation (11) gives

var.τ̂ps|D/−varblk.τ̂ps/= 1
n

∑
k

nk

n

{(
β1k − 1−pk

pk

)
σ2

k .1/+
(

β0k − pk

1−pk

)
σ2

k .0/

}
: .12/

The γk.1, 0/ cancelled; equation (12) is identifiable and therefore estimable.
Randomization without regard to b can have block imbalance due to ill luck: W is random.

The resulting cost in variance of post-stratification over blocking is represented by the β1k −
.1−pk/=pk terms in equation (12). This cost is small, as shown by theorem 4, as follows.

Theorem 4. Take a post-stratified estimator for a completely randomized or Bernoulli assigned
experiment. Use the assumptions and definitions of theorem 3. Assume the common case for
blocking of pk =p for k =1, . . . , K. Then

n{var.τ̂ps|D/−varblk.τ̂ps/}� 8
.1−p/2

1
f

σ2
max

1
n

+O{exp.−fn/}:

See Appendix B for the derivation.
Theorem 4 bounds how much worse post-stratification can be compared with blocking. The

scaled difference is of the order of 1=n. The difference in variance is of order 1=n2. Generally
speaking, post-stratification is similar to blocking in terms of efficiency. The more strata, how-
ever, the worse this comparison becomes because of the increased chance of severe imbalance
with consequential increased uncertainty in the stratum level estimates. This is captured by the
1/p-term. Many strata are generally not helpful and can be harmful if b is not prognostic.

3.1. A note on blocking
Plug equation (10) into the gain equation (equation (9)) to see immediately under what circum-
stances blocking has a larger variance than the simple difference estimator for a completely
randomized experiment:
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var.τ̂ sd/−varblk.τ̂ps/= 1
n

{
1−p

p
σ̄2.1/+ p

1−p
σ̄2.0/+2 γ̄.1, 0/

}

− 1
n2

∑
k

n−nk

n−1

{
1−p

p
σ2

k .1/+ p

1−p
σ2

k .0/+2γk.1, 0/

}
: .13/

If p=0:5, this is identical to the results in the appendix of Imai et al. (2008). In the worst case
where there is no between-strata variation, the first term of equation (13) is 0 and so the overall
difference is O.K=n2/. The penalty for blocking is small, even for moderate-sized experiments,
assuming that the number of strata does not grow with n. (Neyman et al. (1935) noted this
in a footnote of his appendix where he derived the variance of a blocked experiment.) If the
first term is not 0, then it will dominate for sufficiently large n, i.e. blocking will give a more
precise estimate. For more general randomizations, equation (9) still holds but the βs differ. The
difference in variances is still O.1=n2/.

4. Conditioning on the assignment split W

By conditioning on the assignment split W we can break down the expressions for MSE to
understand better when τ̂ps outperforms τ̂ sd. For τ̂ÅÅ with ÅÅ≡ps, sd we have

MSE.τ̂ÅÅ|D/=EW [MSE.τ̂ÅÅ|W/|D]= ∑
w∈W

MSE.τ̂ÅÅ|W =w/P.W =w|D/

with W being the set of all allowed splits where τ̂ps is defined. The overall MSE is a weighted
average of the conditional MSE, with the weights being the probability of the given possible
splits W. This will give us insight into when var.τ̂ sd/ is large.

Conditioning on the split W maintains assignment symmetry and sets βlk =Wk.1− l/=Wk.l/

for k ∈1, . . . , K and βl =W.1− l/=W.l/. For τ̂ps we immediately obtain

var.τps|W/= 1
n

∑
k

nk

n

{
Wk.0/

Wk.1/
σ2

k .1/+ Wk.1/

Wk.0/
σ2

k .0/+2γk.1, 0/

}
: .14/

Under conditioning τ̂ps is still unbiased and so the conditional MSE is the conditional vari-
ance. τ̂ sd, however, can be biased with a conditional MSE larger than the conditional variance
if the extra bias term is non-zero. Theorem 5 shows the conditional bias and variance of τ̂ sd, as
follows.

Theorem 5. The bias of τ̂ sd conditioned on W is

E[τ̂ sd|W ]− τ = ∑
k∈B

[{
Wk.1/

W.1/
− nk

n

}
ȳk.1/−

{
Wk.0/

W.0/
− nk

n

}
ȳk.0/

]
,

which is not 0 in general, even with a constant treatment effect. τ̂ sd’s variance conditioned on
W is

var.τ̂ sd|W/= ∑
k∈B

W1kW0k

nk

{
1

W2
1

σ2
k .1/+ 1

W2
0

σ2
k .0/+ 2

W1W0
γk.1, 0/

}
:

See Appendix A for a sketch of these two derivations. They come from an argument that is
similar to the proof for the variance of τ̂ps, but with additional weighting terms.

The conditional MSE of τ̂ sd has no nice formula that we are aware of and is simply the sum
of the variance and the squared bias:
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MSE.τ̂ sd|W/=var.τ̂ sd|W/+{E[τ̂ sd|W ]− τ}2: .15/

In a typical blocked experiment, W would be fixed at Wblk where Wblk
k =nkp for k =1, . . . , K.

For complete randomization, E[W ]=Wblk. We can now gain insight into the difference between
the simple difference and post-stratified estimators. If W equals Wblk, then the conditional var-
iance formulae for both estimators reduce to that of blocking, i.e. equation (14) and equation
(15) reduce to equation (11). For τ̂ps, the overall variance for each stratum is a weighted sum
of Wk.0/=Wk.1/ and Wk.1/=Wk.0/. The more unbalanced these terms, the larger the sum is.
Therefore the more W deviates from Wblk—i.e. the more imbalanced the assignment is—the
larger the post-stratified variance formula will tend to be. The simple difference estimator, in
contrast, tends to have smaller variance as W deviates further from Wblk due to the greater
restrictions on the potential random assignments.

τ̂ps has no bias under conditioning, but τ̂ sd does if b is prognostic, and this bias can radi-
cally inflate the MSE. This bias increases with greater imbalance. Overall, then, as imbalance
increases, the variance (and MSE) of τ̂ps moderately increases. In contrast, for τ̂ sd the variance
can moderately decrease but the bias sharply increases, giving an overall MSE that can grow
quite large.

Because the overall MSE of these estimators is a weighted average of the conditional MSEs,
and because under perfect balance the conditional MSEs are the same, we know that any differ-
ences in the unconditional variance (i.e. MSE) between τ̂ sd and τ̂ps come from what happens
when there is bad imbalance: τ̂ sd has a much higher MSE than τ̂ps when there is potential for
large bias and its MSE is smaller when there is not. With post-stratification, we pay for unbi-
asedness with a little extra variance—we are making a bias–variance trade-off that is different
from that with simple differences.

The split W is directly observable and gives hints to the experimenter about the success, or
failure, of the randomization. Unbalanced splits tell us that we have less certainty whereas bal-
anced splits are comforting. For example, take a hypothetical balanced completely randomized
experiment with n= 32 subjects: half men and half women. Compare the case where only one
man ends up in treatment with the case with eight men. In the former case, a single man gives
the entire estimate for average treatment outcome for men and a single woman gives the entire
estimate for average control outcome for women. This seems very unreliable. In the latter case,
each of the four mean outcomes are estimated with eight subjects, which seems more reliable.
Our estimates of uncertainty should take this observed split W into account, and we can take
it into account by using the conditional MSE rather than overall MSE when estimating uncer-
tainty. The conditional MSE estimates how close one’s actual experimental estimate is likely to
be from the SATE. The overall MSE estimates how close such estimates will generally be to the
SATE over many trials.

This idea of using all observed information is not new. When sampling to find the mean of
a population, Holt and Smith (1979) argued that, for estimators adjusted by using post-strati-
fication, variance estimates should be conditioned on the distribution of units in the strata as
this gives a more relevant estimate of uncertainty. Sundberg (2003) sharpened this argument
by presenting it as one of prediction. Under this view, it becomes more clear what should be
conditioned on and what not. In particular, if an estimator is conditionally unbiased when con-
ditioned on an ancillary statistic, then conditioning on the ancillary statistic increases precision.
This is precisely the case when conditioning the above estimators on the observed split, assum-
ing assignment symmetry. Similarly, in the case of sampling, Särndal et al. (1989) compared
variance estimators for the sample totals that incorporate the mean of measured covariates com-
pared with the population to obtain what they argued are more appropriate estimates. Pocock



382 L. W. Miratrix, J. S. Sekhon and B.Yu

et al. (2002) extended Senn (1989) and examined conditioning on the imbalance of a continuous
covariate in analysis of covariance. They showed that not correcting for imbalance (measured
as a standardized difference in means) gives one inconsistent control on the error rate when
testing for an overall treatment effect.

5. Extension to an infinite population model

The results presented apply to estimating the treatment effect for a specific sample of units, but
there is often a larger population of interest. One approach is to consider the sample to be a
random draw from this larger population, which introduces an additional component of ran-
domness capturing how the SATE varies about the population average treatment effect (PATE).
See Imbens (2011). But, if the sample has not been so drawn, using this PATE model might not
be appropriate. The SATE perspective should instead be used, with additional work then to
generalize the results. See Hartman et al. (2011) or Imai et al. (2008). Regardless, under the
PATE approach, the variances of all the estimators increase, but the substance of this paper’s
findings remains.

Let fk, k = 1, . . . , K, be the proportion of the population in stratum k. The PATE can then
be broken down by strata:

τÅ =
K∑

k=1
fkτ

Å
k

with τÅ
k being the PATE in stratum k. Let the sample S be a stratified draw from this population

holding the proportion of units in the sample to fk (i.e. nk=n=fk for k =1, . . . , K). (See below
for different types of draws from the population.) The SATE τ depends on S and is therefore
random. Owing to the size of the population, the sampling is close to being with replacement.
An alternative view is drawing the sample with multiple independent draws from a collection
of K distributions, one for each stratum. Let σ2

k .l/Å, γ2
k .1, 0/Å, etc., be population parameters.

Then the PATE level MSE of τ̂ps is

var.τ̂ps/= 1
n

∑
k

fk{.β1k +1/σ2
k .1/Å + .β0k +1/σ2

k .0/Å}: .16/

See Appendix A for the derivation. Imbens (2011) has a similar formula for the two-strata case.
Compare with equation (6): all the ‘correlations of potential outcomes’ terms γk.1, 0/ vanish
when moving to the PATE. This is due to a perfect trade-off: the more they are correlated, the
more difficult it is to estimate the SATE τ for the sample, but the easier it is to draw a sample
with an SATE τ that is close to the overall PATE τÅ. Also, the variance is generally larger under
the PATE view.

5.1. The simple difference estimator
For the simple difference estimator, use equation (16) with K =1 to obtain

var.τ̂ sd|D′/= 1
n
{.β1 +1/σ2.1/Å + .β0 +1/σ2.0/Å}: .17/

Now let σ̄2.l/Å be a weighted sum of the squared differences of the strata means to the overall
mean:

σ̄2.l/Å =
K∑

k=1
fk{ȳÅ

k .l/− ȳÅ.l/}2:
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The population variances then decompose into σ̄2.l/Å and strata level terms:

σ2.l/Å = σ̄2.l/Å +
K∑

k=1
fk σ2

k .l/Å:

Plug this decomposition into equation (17) to obtain

var.τ̂ sd|D′/= 1
n

[
.β1 +1/

{
σ̄2.1/Å +

K∑
k=1

fk σ2
k .1/Å

}
+ .β0 +1/

{
σ̄2.0/Å +

K∑
k=1

fk σ2
k .0/Å

}]
:

.18/

5.2. Variance gain from post-stratification
For comparing the simple difference with the post-stratified estimator at the PATE level, take
the difference of equation (18) and equation (16) to obtain

var.τ̂ sd|D′/−var.τ̂ps|D/= 1
n

.β1 +1/ σ̄2.1/Å + 1
n

.β0 +1/ σ̄2.0/Å

− 1
n

K∑
k=1

fk{.β1k −β1/σ2
k .1/Å + .β0k −β0/σ2

k .0/Å}:

Similar to the SATE view, we again have a gain component (the first two terms) and a cost (the
last term). For binomial assignment and complete randomization, βl � βlk for all k, making
the cost non-negative. There are no longer terms for the correlation of potential outcomes, and
therefore this gain formula is directly estimable. The cost is generally smaller than for the SATE
model owing to the missing γk.1, 0/ terms.

5.3. Variance of blocking under population average treatment effect
For equal proportion blocking, Wk.1/ = pnk and Wk.0/ = .1 − p/nk. Using this and βlk + 1 =
E[nk=Wk.l/], the PATE level MSE for a blocked experiment is then

varblk.τ̂ps/= 1
n

∑
k

nk

n

{
1
p

σ2
k .1/Å + 1

1−p
σ2

k .0/Å
}

:

For comparing complete randomization (with pn units assigned to treatment) with blocked
experiments, plug in the βs. The .βl −βlk/-terms all cancel, leaving

varblk.τ̂ sd/−var.τ̂ps/= 1
n

1
p

σ̄2.1/Å + 1
n

1
1−p

σ̄2.0/Å �0:

Unlike from the SATE perspective, blocking can never hurt from the PATE perspective.

5.4. Not conditioning on the nk
Allowing the nk to vary introduces some complexity, but the gain formulae remain unchanged.
If the population proportions are known, but the sample is a completely random draw from the
population, the natural post-stratified estimate of the PATE would use the population weights
fk. These weights can be carried through and no problems result. Another approach is to estimate
the fk with nk=n in the sample. In this case, we first condition on the seen vector N ≡n1, . . . , nk

and define a τN based on N. Conditioned on N , both τ̂ps and τ̂ sd are unbiased for estimating
τN , and we can use the above formula with nk=n instead of fk. Now use the tower property of
expectations and variances. This results in an extra variance of a multinomial to capture how
τN varies about τ as N varies. The variances of both the estimators will each be inflated by this
extra term, which therefore cancels when looking at the difference.
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6. Comparisons with other methods

Post-stratification is a simple adjustment method that ideally exploits a baseline categorical
covariate to reduce the variance of an SATE estimate. Other methods allow for continuous or
multiple covariates and are more general. The method that is appropriate for a given application
depends on the exact assumptions that we are willing to make.

Recently, Freedman (2008a,b) studied the most common form of adjustment—linear regres-
sion—under the Neyman–Rubin model. Under this model, Freedman, for an experimental
setting, showed that traditional ordinary least squares (in particular analysis of covariance) is
biased (although it is asymptotically unbiased), that the asymptotic variance can be larger than
with no adjustment and, worse, that the standard estimate of this variance can be quite off, even
asymptotically.

Freedman’s results differ from those in traditional textbooks because, in part, he used the
Neyman–Rubin model with its focus on the SATE. Subsequently, Lin (2012) expanded these
results and showed that ordinary least squares with all interactions cannot be asymptotically
less efficient than using no adjustment and, further, that Huber–White sandwich estimators of
the standard error are asymptotically appropriate. Freedman (2008a, b) and Lin (2012) focus
primarily on continuous covariates rather than categorical, but their results are general. Our
post-stratified estimator is identical to a fully saturated ordinary linear regression with the strata
as dummy variables and all strata-by-treatment interactions—i.e. a two-way analysis-of-vari-
ance analysis with interactions. Therefore, our results apply to this regression estimator, and,
in turn, all of Lin’s asymptotic results apply to our τ̂ps.

Tsiatis et al. (2008) proposed a semiparametric method where the researcher independently
models the response curve for the treatment group and the control group and then adjusts the
estimated average treatment effect with a function of these two curves. This approach is partic-
ularly appealing in that concerns about data mining and pre-test problems are not an issue—i.e.
researchers can search over a wide class of models looking for the best fit for each arm (assuming
that they do not look at the consequent estimated treatment effects). With an analysis assuming
only the randomization and the infinite superpopulation model, Tsiatis et al. (2008) showed that
asymptotically such estimators are efficient. This semiparametric approach can accommodate
covariates of multiple types: because the focus is modelling the two response curves, there is
basically no limit to what information can be incorporated.

A method that does not have the superpopulation assumption is the inference method for
testing for treatment effect proposed by Koch and co-workers (e.g. Koch et al. (1982, 1998)),
who observed that, under the Fisherian sharp null of no treatment effect, one can directly
compute the covariance matrix of the treatment indicator and any covariates. Therefore, using
the fact that under randomization the expected difference of the covariates should be 0, one
can estimate how far the observed mean difference in outcomes is from expected by using a
χ2-approximation. (One could also use a permutation approach to obtain an exact P-value.)
However, rejecting Fisher’s sharp null, distinct from the null hypothesis of no difference in aver-
age treatment effect, does not necessarily demonstrate an overall average effect. Nonetheless,
this approach is very promising. Koch et al. (1982, 1998) also showed that with an additional
superpopulation assumption one can use these methods to generate confidence intervals for
average treatment effects.

McHugh and Matts (1983) compared post-stratification with blocking using an additive lin-
ear population model and a sampling framework, implicitly using potential outcomes for some
results. They considered linear contrasts of multiple treatments as the outcome of interest,
which is more general than this paper, but also imposed assumptions on the population such as
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constant variance and, implicitly, a constant treatment effect. Using asymptotics, they isolated
the main terms of the estimators’ variance and dropped lower order terms.

Relative to post-stratification, there are three concerns with these other adjustment methods.
First, many of these methods make the assumption of the infinite population sampling model
that was discussed in Section 5 (which is equivalent to any model that has independent random
errors, e.g. regression). The consequences of violating this assumption can be unclear. Therefore,
one may prefer to estimate sample treatment effects, and then generalizing beyond the given
experimental sample by using methods such as those of Hartman et al. (2011). Second, methods
within the SATE framework that depend on a Fisherian sharp null for testing for a treatment
effect have certain limitations. In some circumstances, this null may be considered restrictive and
generating confidence intervals can be tricky without assuming a strong treatment effect model
such as additivity. Third, asymptotic analyses may not apply when analysing small or mid-sized
experiments, and experiments with such samples sizes are where the need for adjustment is the
greatest.

Notwithstanding these concerns, if we are in a context where these concerns do not hold, or
we have done work showing that their effect is minor, these alternative methods of adjustment
depend on relatively weak assumptions and also allow for continuous covariates and multiple
covariates—a distinct advantage over post-stratification. These other methods, owing to their
additional modelling assumptions, may be more efficient as well. Different estimators may be
more or less appropriate depending on the assumptions that we are willing to make and the
covariates that we have.

Post-stratification is close in conceptual spirit to blocking. This paper shows that this concep-
tual relationship bears out. Blocking, however, is a stronger approach because it requires the
choice of which covariates to adjust for to be determined before randomization. Blocking has the
profound benefit that it forces the analyst to decide how covariates are incorporated to improve
efficiency before any outcomes are observed. Therefore, blocking eliminates the possibility of
searching over post-adjustment models until we are happy with the results. The importance of
this feature is difficult to overstate. Blocking is, however, not always possible. In medical trials
when patients are entered serially, for example, randomization must be done independently.
Natural experiments, where randomization is due to processes that are outside the researchers’
control, are another example that is particularly of interest in the social sciences. In these cases,
post-stratification can give much the same advantages with much the same simplicity. But again,
as ‘Student’ (W. S. Gosset) observed,

‘there is great disadvantage in correcting any figures for position [of plots in agricultural experiments],
inasmuch as it savours of cooking, and besides the corrected figures do not represent anything real. It
is better to arrange in the first place so that no correction is needed’ (Student, 1923).

7. Pulmonary artery catheterization data illustration

We apply our methods to evaluating pulmonary artery catheterization (PAC), an invasive and
controversial cardiac monitoring device that was, until recently, widely used in the management
of critically ill patients (Dalen, 2001; Finfer and Delaney, 2006). Controversy arose regarding
the use of PAC when a non-random study using propensity score matching found that PAC
insertion for critically ill patients was associated with increased costs and mortality (Connors
et al., 1996). Other observational studies came to similar conclusions leading to reduced PAC
use (Chittock et al., 2004). However, a randomized controlled trial found no difference in mor-
tality between PAC and no-PAC groups (Harvey et al., 2005), which substantiated the concern
that the observational results were subject to selection bias (Sakr et al., 2005).
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The PAC trial has 1013 subjects with half treated. The outcome variable investigated here is
‘qalys’ or quality-adjusted life years. Higher values indicate, generally, longer life and higher
quality of life. Death at the time of possible PAC insertion or shortly after receives a value of 0.
Living 2 years in full health would be a 2. There is a large amount of fluctuation in these data.
There is a large point mass at 0 (33% of the patients) and a long tail.

Unfortunately, the randomized controlled trial itself had observed covariate imbalance in
predicted probability of death, a powerful predictor of the outcome, which calls into question
the reliability of the simple difference estimate of the treatment effect. More low risk patients
were assigned to receive treatment, which could induce a perceived treatment effect even if none
were present. Post-stratification could help with this potential bias and decrease the variance of
the estimate of treatment effect. To estimate the treatment effect by using post-stratification we
first divide the continuous probability of death covariate into K K -tiles. We then estimate the
treatment effect within the resulting strata and average appropriately.

This analysis is simplified for illustration. We are looking at only one of the outcomes and
have dropped several potentially important covariates for clarity. Statistics on the strata for
K = 4 are listed in Table 1, including the numbers of units treated, Tx, or not, Co, for each
stratum. A higher proportion of subjects in the first two groups were treated than we would
expect given the randomization. Imbalance in the first group, with its high average outcome,
could heavily influence the overall treatment effect estimate of τ̂ sd.

We estimate the minimum gain in precision due to post-stratification by calculating point
estimates of all the within- and between-strata variances and the between-strata covariance and
plugging these values into equation (9). We are not taking the variability of these estimates
into account. By assuming that the strata rk are maximal, i.e. rk = 1 for all k, we estimate
a lower bound on the reduction in variance due to post-stratification. The βs are estimated
by numerical simulation of the randomization process (with 50000 trials) and are therefore
exact up to uncertainty in this Monte Carlo calculation; these values do not depend on the
population characteristics and so there is no sampling variability here. We show the resulting
estimates for several stratifications. For K=4, we estimate the percentage reduction of variance,
100% × {var.τ̂ps/− var.τ̂ sd/}=var.τ̂ sd/, to be no less than 12%. If the true rk were less than 1,
the benefit would be greater. More strata appear somewhat superior, but gains level off rather
quickly: Table 2.

The estimate of treatment effect changes under post-stratification. The estimates τ̂ps hover
around −0:28 for K = 4 and higher, as compared with the −0:13 from the simple difference
estimator. The post-stratified estimator appears to be correcting the bias from the random
imbalance in treatment assignment.

We can also estimate the MSE for both the simple difference and the post-stratified estima-
tor conditioned on the imbalance by plugging point estimates for the population parameters

Table 1. Strata level statistics for the PAC illustration

Strata Tx Co SDk(1) SDk(0) ŷk(1) ŷk(0) τ̂ k

Low risk 136 118 5.80 5.68 5.57 5.41 0.15
Moderate risk 142 111 3.42 4.17 1.69 2.70 −1.01
High risk 106 147 3.60 3.75 1.97 2.36 −0.39
Extreme risk 122 131 3.41 3.10 1.37 1.19 0.18

Overall 506 507 4.56 4.48 2.72 2.84 −0.13
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Table 2. Estimated standard errors for PAC†

K τ̂ps τ̂ sd Results for unconditional Results for MSE conditioned on W
variance

τ̂ps τ̂ sd % MSE(τ̂ps) var(τ̂ sd) bias(τ̂ sd) MSE(τ̂ sd) %

2 −0.34 −0.13 0.077 0.081 5 0.077 0.076 0.207 0.118 35
4 −0.27 −0.13 0.071 0.081 12 0.072 0.070 0.137 0.089 19

10 −0.25 −0.13 0.070 0.081 14 0.071 0.069 0.119 0.083 15
15 −0.24 −0.13 0.070 0.081 14 0.070 0.067 0.115 0.081 13
30 −0.28 −0.13 0.069 0.081 15 0.068 0.064 0.148 0.086 21
50 −0.32 −0.13 0.068 0.081 15 0.066 0.061 0.190 0.097 32

†The table shows both conditioned and unconditioned estimates for different numbers of strata. ‘%’ denotes the
percentage variance reduction.

into equation (15) and equation (14). We again assume that the correlations rk are maximal.
We estimate bias by plugging in the estimated ŷk.l/ for the mean potential outcomes of the
strata. These results are the last columns of Table 2; the percentage gain in this case is higher
primarily because of the correction of the bias term from the imbalance. When conditioning on
the imbalance W , the estimated MSE (i.e. variance) of the post-stratified estimator is slightly
higher than the variance of the simple difference estimator but is substantially lower than its
overall MSE. This is due to the bias correction. Because the true variances and the rk for strata
are unknown, these gains are estimates only. They do, however, illustrate the potential value of
post-stratification. Measuring the uncertainty of these estimates is an area of future work.

7.1. Matched pairs estimation
We can also estimate the gains by building a fake set of potential outcomes by matching
treated units to control units on observed covariates. We match as described in Sekhon and
Grieve (2011). We then consider each matched pair a single unit with two potential outcomes.
We use this synthetic set to calculate the variances of the estimators by using the formula from
Section 2.

Matching treatment to controls and controls to treatment gives 1013 observations with all
potential outcomes ‘known’. The correlation of potential outcomes is 0.21 across all strata.
τ =−0:031. The unconditional variance for the simple difference and post-stratified estimators
are 0.048 and 0.038 respectively. The percentage reduction in variance due to post-stratification
is 19.6%.

We can use this data set to explore the effect of conditioning further. Assume that the treat-
ment probability is p=0:5 and repeatedly randomly assign a treatment vector and compute the
resulting conditional MSE. Also compute the ‘imbalance score’ for the treatment vector with a
χ2-statistic:

imbalance≡∑
k

{Wk.1/−pnk}2

pnk
:

This procedure produces Fig. 1. As imbalance increases, the MSE (variance) of τ̂ps steadily, but
slowly, increases as well. The MSE of τ̂ps is quite resistant to large imbalance. This is not so for
τ̂ sd, however. Generally, high imbalance means high conditional MSE. This is due to the bias
term which can become exceedingly large if there is imbalance between different heterogeneous
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Fig. 1. PAC MSE conditioned on imbalance: the figure uses the constructed matched data set; points indi-
cate the conditional MSE of τ̂ps ( ) and τ̂sd ( ) given various specific splits of W ; the x -axis is the imbalance
score for the split; the dotted curves interpolate point clouds; the horizontal broken lines mark unconditional
variances for the two estimators; the curve at the bottom is the density of the imbalance statistic

strata. Also, for a given imbalance, the simple difference estimator can vary widely depending
on whether stratum level bias terms are cancelling out or not. This variability is not apparent
for the post-stratified estimator, where only the number of units treated drives the variance; the
post-stratified points cluster closely to their trend line.

The curve at the bottom of Fig. 1 shows the density of the realized imbalance score: there
is a good chance of a fairly even split with low imbalance. In these cases, the variance of τ̂ sd
is smaller than the unconditional formula would suggest. If the randomization turns out to be
‘typical’ the unconditional variance formula would be conservative. If the imbalance is large,
however, the unconditional variance may be overly optimistic. This chance of large imbalance
with large bias is why the unconditioned MSE of τ̂ sd is larger than that of τ̂ps.

The observed imbalance for the actual assignment was about 2.37. The conditional MSE is
0.083 for τ̂ sd and 0.039 for τ̂ps, which is a 53% reduction in variance. The conditional MSE for
the simple difference estimator is 75% larger than its unconditional MSE owing to the bias that is
induced by the imbalance. We would be overly optimistic if we were to use var.τ̂ sd/ as a measure
of certainty, given the observed, quite imbalanced, split W. For the post-stratified estimator,
however, the conditional variance is only about 1% higher than the unconditional; the degree



Adjusting Treatment Effect Estimates 389

of imbalance is not meaningfully impacting the precision. Generally, with post-stratification,
the choice of using an unconditional or conditional formula is less of a concern.

7.2. Discussion
The PAC randomized controlled trial has a strong predictor of outcome. Using it to post-stratify
substantially increases the precision of the treatment effect estimate. Furthermore, post-stratifi-
cation mitigates the bias that is induced by an unlucky randomization. When concerned about
imbalance, it is important to calculate conditional standard errors—not doing so could give
overly optimistic estimates of precision. This is especially true when using the simple difference
estimator. The matched pairs investigation shows this starkly; τ̂ sd’s conditional MSE is 75%
larger than the unconditional.

8. Conclusions

Post-stratification is a viable approach to experimental design in circumstances where blocking
is not feasible. If the stratification variable is determined beforehand, post-stratification is nearly
as efficient as a randomized block trial would have been: the difference in variances between
post-stratification and blocking is a small O.1=n2/. However, the more strata, the larger is the
potential penalty for post-stratification. There is no guarantee of gains.

Conditioning on the observed distribution of treatment across strata allows for a more appro-
priate assessment of precision. Most often the observed balance will be good, even in moder-
ate-sized experiments, and the conditional variance of both the post-stratified and the simple
difference estimator will be smaller than estimated by the unconditional formula. However, when
balance is poor, the conditional variance of the estimators, especially for the simple difference
estimator, may be far larger than what the unconditional formula would suggest. Furthermore,
in the unbalanced case, if a truly prognostic covariate is available post-stratification can sig-
nificantly improve the precision of one’s estimate. For a covariate that is unrelated to outcome,
however, a simple difference estimator can be superior.

When viewing a post-stratified or a blocked estimate as an estimate of the PATE, under the
assumption that the sample is a draw from a larger population, our findings generally hold
although the potential for decreased precision is reduced. However, in most cases the sample in
a randomized trial is not such a random draw. We therefore advocate for viewing the estimators
as estimating the SATE, not the PATE.

Problems arise when stratification is determined after treatment assignment. The results of
this paper assume that the stratification is based on a fixed and defined covariate b. However,
in practice covariate selection is often done after the fact in part because, as is pointed out by
Pocock et al. (2002), it is often quite difficult to know which of a set of covariates are signifi-
cantly prognostic a priori. But variable selection invites ‘fishing expeditions’, which undermine
the credibility of any findings. Doing variable selection in a principled manner is still notori-
ously difficult and is often poorly implemented; Pocock et al. (2002), for example, found that
many clinical trial analyses select variables inappropriately. Tsiatis et al. (2008) summarized the
controversy in the literature and, in an attempt to move away from strong modelling, and to
allow for free model selection, proposed a semiparametic approach as a solution.

Beach and Meier (1989) suggested that, at minimum, all potential covariates for an exper-
iment be listed in the original protocol. Call these z. In our framework, variable selection is
then to build a stratification b from z and T after having randomized units into treatment and
control. Stratification b (now B) is random as it depends on T. Questions immediately arise:
how do we define the variance of the estimator? Can substantial bias be introduced by the strata
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building process? The key to these questions probably depends on appropriately conditioning
on both the final, observed, strata and the process of constructing B. This is an important area
of future work.
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Appendix A

A.1. Proof of theorem 1
The proof of theorem 1 is based on iterated expectations and a large amount of unpleasant algebra. The
following outline shows the highlights. We leave the conditioning on D implicitly in the expectations for
cleaner presentation. See the on-line supplementary material for a version with more detail. We first set
up a few simple expectations. Under assignment symmetry,

E

[
Ti

Wk.1/

]
=E

[
E

[
Ti

Wk.1/
|Wk.1/

]]
=E

[
1
nk

]
= 1

nk

:

Rearrange β1k ≡E[Wk.0/=Wk.1/]=nk E[1=Wk.1/]−1 to obtain E[1=Wk.1/]= .β1k +1/=nk and

E

[
T 2

i

W2
k .1/

]
=E

[
E

[
Ti

W2
k .1/

|Wk.1/

]]
= 1

nk

E

[
1

Wk.1/

]
= β1k +1

n2
k

: .19/

These derivations are easier if we use α1k ≡ E[1=Wk.1/], but the βs are more interpretable and lead to a
nicer final formula. There are analogous formulae for the control unit terms and cross-terms. We use these
relationships to compute means and variances for the strata level estimators.

A.2. Unbiasedness
The strata level estimators are unbiased:

E[τ̂ k]=E

[ ∑
i:bi=k

Ti

Wk.1/
yi.1/− ∑

i:bi=k

1−Ti

Wk.0/
yi.0/

]

= ∑
i:bi=k

E

[
Ti

Wk.1/

]
yi.1/− ∑

i:bi=k

E

[
1−Ti

Wk.0/

]
yi.0/

= ∑
i:bi=k

1
nk

yi.1/− ∑
i:bi=k

1
nk

yi.0/= τk:

A.3. Variance
var.τ̂ k/=E[τ̂ 2

k ]− τ 2
k . Expand τ 2

k into three parts a′ −b′ + c′:

τ 2
k =

{ ∑
i:bi=k

1
nk

yi.1/

}2

︸ ︷︷ ︸
a′

−2
{ ∑

i:bi=k

1
nk

yi.1/

}{ ∑
i:bi=k

1
nk

yi.0/

}
︸ ︷︷ ︸

b′

+
{ ∑

i:bi=k

1
nk

yi.0/

}2

︸ ︷︷ ︸
c′

:

Similarly, expand the square of E[τ̂ 2
k ] to obtain a−b+c. Simplify these parts with algebra and relationships

such as shown in equation (19). We then obtain, for example,
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a=E

[ ∑
i:bi=k

Ti

Wk.1/
yi.1/

]2

= β1k +1
n2

k

∑
i:bi=k

y2
i .1/+ −β1k +nk −1

n2
k.nk −1/

∑
i�=j

yi.1/yi.1/:

Parts b and c are similar.
The variance is then var.τ̂ k/ = a − a′ − b + b′ + c − c′, a sum of several ugly differences. Algebra, and

recognizing formulae for the sample variances and covariances, gives

a−a′ = β1k

nk

σ2
k .1/,

b′ −b= 2
nk

γk.1, 0/

and

c− c′ = β0k

nk

σ2
k .0/:

Sum these differences to obtain equation (5).

A.4. Proof of theorem 2
The mean is immediate. For the variance, observe that

var.τ̂ ps/=E

[{
K∑

k=1

nk

n
.τ̂ k − τk/

}2 ]

=
K∑

k=1

(nk

n

)2
E[.τ̂ k − τk/

2]+∑
k �=r

nknr

n2
E[.τ̂ k − τk/.τ̂ r − τr/]:

The first sum is what we want. The second is 0 since, using the tower property and assignment symmetry,

E[E[.τ̂ k − τk/.τ̂ r − τr/|W ]]=E[E[.τ̂ k − τk/|W ]E[.τ̂ r − τr/|W ]]=E[0×0]=0:

A.5. Proof of theorem 5
Calculate the MSE of τ̂ sd conditioned on the split W with a slight modification to the above derivation.
Define a new estimator that is a weighted difference in means:

α̂k ≡Ak

∑
i:bi=k

Ti

Wk.1/
yi.1/−Bk

∑
i:bi=k

1−Ti

Wk.0/
yi.0/

with Ak and Bk constant. α̂k is an unbiased estimator of the difference in means weighted by Ak and Bk:

E[α̂k]=E

[
Ak

∑
i:bi=b

Ti

Wk.1/
yi.1/−Bk

∑
i:bi=b

Tk

Wi.0/
yi.0/

]
=Ak ȳk.1/−Bk ȳk.0/:

Now follow the derivation of the variance of τ̂ k propagating Ak and Bk through. These are constant and
they come out, giving

var.α̂k/= 1
nk

{
A2

kβ1k σ2
k .1/+B2

kβ0k σ2
k .0/+2AkBk γk.1, 0/

}
:

Expand τ̂ sd into strata terms:

τ̂ sd =
K∑

k=1

{
W1k

W1

∑
i:bi=k

Ti

W1k

yi.1/− W0k

W0

∑
i:bi=k

1−Ti

W0k

yi.0/

}
=

K∑
k=1

α̂k

with Ak =W1k=W1 and Bk =W0k=W0. Conditioning on W makes the Ak and the Bk constants, β1k =W0k=W1k

and β0k =W1k=W0k. Assignment symmetry ensures that, conditional on W , the stratum assignment patterns
are independent, so the α̂k are as well, and the variances then add:



392 L. W. Miratrix, J. S. Sekhon and B.Yu

var.τ̂ sd|W/=
K∑

k=1
var.α̂k|W/:

The bias is E[τ̂ sd|W ]− τ with

E[τ̂ sd|W ]=
K∑

k=1
E[α̂k|W ]=

K∑
k=1

Ak ȳk.1/−Bk ȳk.0/:

Expand τ as in equation (2) and rearrange terms.

A.6. Extending to population average treatment effect
First, decompose the variance:

var.τ̂ ps|D/=ES [var.τ̂ ps|S, D/|D]+varS.E[τ̂ ps|S, D]|D/:

The first term is simply the expectation of equation (6): the SATE variance formula. Since S is random, so
are the σ2

k .l/, etc. The expectation of these quantities over S gives the population parameters as they are
unbiased estimators. The βs are all constant, and D is independent of S. Therefore ES [X|D]=ES [X] and

ES [var.τ̂ ps|S, D/|D]=ES

[
1
n

∑
k

nk

n
{β1k σ2

k .1/+β0k σ2
k .0/+2 γk.1, 0/}

]

= 1
n

∑
k

nk

n
{β1k σ2

k .1/Å +β0k σ2
k .0/Å +2 γk.1, 0/Å}: .20/

The second term is

var.E[τ̂ ps|S, D]/=var.τ /

=var
(

K∑
k=1

nk

n
τk

)

= n2
k

n2

K∑
k=1

var.ȳk1 − ȳk0/

= n2
k

n2

K∑
k=1

1
nk

{σ2
k .1/Å +σ2

k .0/Å −2 γk.1, 0/Å}: .21/

Sum equation (20) and equation (21) to obtain the PATE level MSE.

Appendix B

βlk can be approximated by E[Wk.1− l/]=E[Wk.l/]. For example, in the complete-randomization case β1k ≈
.1 − p/=p. Generally, the βs are larger than their approximations. They can be less, but only by a small
amount. For complete randomization and Bernoulli assignment, the difference between the βs and their
approximations is bounded by the following theorem.

Theorem 6. Take an experiment with n units randomized under either complete randomization or Ber-
noulli assignment. Let p be the expected proportion of units treated. Let D be the event that τ̂ ps is
defined. Let pmax =max.p, 1−p/ and nmin be the smallest strata size. Then β1k − .1−p/=p is bounded
above:

β1k−1−p

p
� 4

p2

1
nk

− 1
p

1
nk +1

+max
{(

nk

2
− 4

p2nk

)
exp

(
−p2

2
nk

)
, 0

}
+2nk K.pmax/nmin

= 4
p2

1
nk

+O{nkexp.−nmin/}:

Furthermore, it is tightly bounded below:
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β1k − 1−p

p
�− 2

p
.1−p/nk −2nk K.pmax/nmin =−O{nkexp.−nmin/}:

Similar results apply to the β0k and βl.

Proof. Start without conditioning on D. W1k =ΣTi with Ti ∈ {0, 1}. For Bernoulli assignment, the Ti

are independent identically distributed Bernoulli variables with probability p of being 1. For completely
randomized experiments, the W1k are distributed according to a hypergeometric distribution, i.e. as the
number of white balls drawn in nk draws without replacement from an urn of n balls with np white balls.
Regardless, E[W1k]=nkp.

Define Ynk
≡ nk=W1k × 1{W1k>0}. Owing to the indicator function, Ynk

� nk. Given D, the event that all
strata level estimators are well defined, Ynk

=nk=W1k, so

β1k − 1−p

p
=E

[
W0k

W1k

|D
]

− 1−p

p
=E

[
nk

W1k

|D
]

− 1
p

=E[Ynk
|D]− 1

p
:

We first show that the probability of ¬D is very small, which will allow for approximating the expectation
of the conditioned Ynk

with the unconditioned. If nmin is the size of the smallest strata, then

P¬D �
K∑

k=1
P.W1k =0 or W0k =0/

�2K max
l=0,1;k=1,…,K

P.Wlk =0/

�2K.pmax/nmin :

Expand the expected value of Y as

E[Ynk
]=E[Ynk

|D]PD +E[Ynk
|¬D]P¬D:

Use this and the bound Ynk
�nk to obtain∣∣E[Ynk

|D]−E[Ynk
]
∣∣= ∣∣E[Ynk

|D]−E[Ynk
|D]PD −E[Ynk

]|¬D]P¬D∣∣
= ∣∣E[Ynk

]|D].1−PD/−E[Ynk
|¬D]P¬D∣∣

= ∣∣E[Ynk
|D]−E[Ynk

|¬D]
∣∣P¬D

�nkP¬D =2nk K.pmax/nmin : .22/

This shows that E[Ynk
|D] is quite close to E[Ynk

], i.e.

E[Ynk
]− 1

p
−2nK.pmax/nmin �β1 − 1−p

p
�E[Ynk

]− 1
p

+2nK.pmax/nmin :

Now we need the following lemma to bound E[Ynk
]−1=p.

Lemma 1. Let W be a binomial .n, p/ random variable or a hypergeometric .n, w, N/ random variable,
i.e. a sample of size n from coin flips with probability of heads p or an urn with N =nc balls, c > 1, of
which w =ncp are white. Then for Y = .n=W/1{W>0}:

− 2
p

.1−p/n �E[Y ]− 1
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� 4
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1
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− 1
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1
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n

2
− 4

p2n

)
exp

(
−p2

2
n

)
, 0

}
:

See the on-line supplementary material for a proof, which uses results from Hoeffding (1963). Use
lemma 1 on E[Ynk

]. This gives our stated bounds.

B.1. Remark on lemma 1
Numerical calculation shows that the constants of the 1=n-term are overly large, but the rate of 1=n appears
to be correct. Fig. 2 shows a log–log-plot of the actual percentage increase of E[Y ] over 1=p for several
values of p and n along with the calculated bounds. When the exponential term becomes negligible, the
bound appears to be about 4, 7 and 31 times bigger for p=0:1, 0:5, 0:9 respectively, i.e. the constants on
the 1=n-term are overstated by this much. For low p, the exponential terms can remain for quite some time
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Fig. 2. Log–log-plot comparing actual percentage difference with a given bound: the percentage difference
is calculated as 100%� .E[Y ]�1=p/=.1=p/, with Y as defined in lemma 1; three probabilities of assignment
are shown .pD0.1, 0.5, 0.9/; the actual differences are computed with Monte Carlo sampling;Y is generated
with a Bernoulli distribution

in the bound and there is significant bias in actuality due to the high chance of 0 units being assigned to
treatment. The log–log-slope is −1, suggesting the 1=n-relationship.

B.2. Proof of theorem 3
Assume the conditions stated for theorem 3 and consider equation (9). Replace all σs and γs with σ2

max
and γ2

max. Replace all βl0 with β̃0, the largest such β for some stratum k, and the same for β̃1. Collapse the
sums to obtain

scaled cost�
(

β̃0 − n−K

n−1
β0

)
σ2

max +
(

β̃1 − n−K

n−1
β1

)
σ2

max +2
K −1
n−1

γmax:

Then, ∣∣∣∣β̃0 − n−K

n−1
β0

∣∣∣∣� |β̃0 −β0|+
∣∣∣∣n−K

n−1
β0 −β0

∣∣∣∣
� 4

.1−p/2

1
fn

+ K −1
n−1

p

1−p
+O

(
1
n2

)
:

Because the lower bound is so tight, we do not need to double the bound from theorem 6 for bounding
the difference |β̃ − β0|. Because the β1-expression will be smaller at the end, we can simply double the
β0-expression. This gives the bound.
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B.3. Proof of theorem 4
The proof of theorem 4 is handled the same way as for theorem 3 but is more direct.
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