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A Hierarchical Bayesian Approach for Aerosol
Retrieval Using MISR Data

Yueqing WANG, Xin JIANG, Bin YU, and Ming JIANG

Atmospheric aerosols can cause serious damage to human health and reduce life expectancy. Using the radiances observed by NASA’s
Multi-angle Imaging SpectroRadiometer (MISR), the current MISR operational algorithm retrieves aerosol optical depth (AOD) at 17.6 km
resolution. A systematic study of aerosols and their impact on public health, especially in highly populated urban areas, requires finer-
resolution estimates of AOD’s spatial distribution. We embed MISR’s operational weighted least squares criterion and its forward calculations
for AOD retrievals in a likelihood framework and further expand into a hierarchical Bayesian model to adapt to finer spatial resolution
of 4.4 km. To take advantage of AOD’s spatial smoothness, our method borrows strength from data at neighboring areas by postulating
a Gaussian Markov random field prior for AOD. Our model considers AOD and aerosol mixing vectors as continuous variables, whose
inference is carried out using Metropolis-within-Gibbs sampling methods. Retrieval uncertainties are quantified by posterior variabilities.
We also develop a parallel Markov chain Monte Carlo (MCMC) algorithm to improve computational efficiency. We assess our retrieval
performance using ground-based measurements from the AErosol RObotic NETwork (AERONET) and satellite images from Google Earth.
Based on case studies in the greater Beijing area, China, we show that 4.4 km resolution can improve both the accuracy and coverage
of remotely sensed aerosol retrievals, as well as our understanding of the spatial and seasonal behaviors of aerosols. This is particularly
important during high-AOD events, which often indicate severe air pollution.

KEY WORDS: Fine retrieval resolution; Hierarchical Bayesian model; MCMC; Remote sensing; Spatial dependence.

1. MOTIVATION

Atmospheric aerosols, complex mixtures of solid particles
and liquid droplets in the air, can significantly affect human
health and reduce life expectancy (Pöschl 2005). When inhaled,
aerosols can penetrate cell membranes, then migrate, and se-
riously damage human respiratory and cardiovascular systems
(Pope et al. 2002) and the brain (Monleau et al. 2005). Short-
term impacts include irritation to eyes, nose, and throat; upper
respiratory infections including pneumonia and bronchitis; and
stroke or death from cardiovascular causes. Continual expo-
sure to hazardous aerosols can aggravate or complicate medical
conditions in the elderly (De Gouw et al. 2011); aerosols from
silica and diesel can lead to diseases including silicosis and
black lung. Aerosols with an aerodynamic diameter less than
2.5 μm, such as black carbon, can severely reduce ground-level
visibility. Profiling spatial distribution of aerosols at fine reso-
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lution is thus critical for air quality and public health studies,
especially in urban areas with complex anthropogenic aerosol
sources, such as vehicles, power plants, and factories that burn
fossil fuels.

There are two approaches to measure the spatial distribution
of aerosols: through ground-based measurements and remote-
sensed radiance images. Both quantify the amount of aerosols
by spectral aerosol optical depth (AOD), defined as the negative
logarithm of the fraction of radiation (sunlight) not scattered or
absorbed by aerosols on a path in the Earth’s atmosphere.1 AOD
at different spectral bands can be viewed as known functions of
AOD at the green band using the Angström power law (Liou
2002). For notational simplicity, this article refers to AOD at the
green band. With either ground or remote-sensing approach, the
spatial and temporal variabilities of aerosols require continual
observations and computationally efficient analyses.

The AErosol RObotic NETwork (AERONET; Giles 2011)
provides a data archive of local AOD values using a network of
automatic sun photometers (see Figure 1, left panel) located at
more than 400 stations on the Earth’s surface. It measures AOD
from every half hour to every 2 hr, with uncertainties <±0.01 at
wavelengths >440 nm (Holben et al. 1998). AERONET mea-
surements are widely accepted as a gold standard to validate
AOD estimates based on other data sources. The sparse and het-
erogeneous locations of AERONET stations, however, make it
difficult to directly use their measurements to study the spatial
behaviors of aerosols.

Remote-sensing radiometers offer a better spatial coverage
by retrieving AOD from radiance images over the Earth’s entire
surface, such as the Multi-angle Imaging SpectroRadiometer

1For example, an AOD value of 2.5 corresponds to 92% of radiation scattered
or absorbed.
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Figure 1. AERONET sun photometer at Avignon, France (left), and
MISR cameras (right). The online version of this figure is in color.

(MISR) aboard the NASA Earth Observing System Terra
satellite (see Figure 1, right panel). MISR views the day-lit
Earth atmosphere almost simultaneously at nine angles along its
track. This unique design of multiple viewing angles provides
an enhanced sensitivity to aerosol scattering and cloud reflective
effects (Diner et al. 1998), giving MISR a significant advantage
over other remote-sensing instruments. MISR outputs four-
spectral images at 1.1 km resolution for the blue, green, and
near-infrared bands, and at 275 m for the red band. Based on
these images, MISR then produces AOD retrievals at 17.6 km
resolution. To quantitatively represent aerosol mixtures, aerosol
particles are characterized and categorized according to their
properties such as radius and single scattering albedo (SSA).2

Each category is referred to as a component aerosol. Then
an aerosol mixture is identified by a notion of composition: a
collection of M component aerosols and their mixing vector
relative to these M components. Elements of the M-dimensional
mixing vector sum up to 1, indicating mixing percentages of the
M components. To simplify remote-sensing retrieval, the MISR
operational algorithm considers only 21 component aerosols
and 74 prefixed compositions.3 Based on the known physical
and compositional properties of each component aerosol,
forward radiative transfer (RT) calculations are performed to
provide atmospheric radiation field in the 36 MISR channels
(9 viewing angles × 4 spectral bands). The results are stored
in the Simulated MISR Ancillary Radiative Transfer (SMART)
dataset. The MISR operational aerosol retrieval algorithm
adopts a weighted least squares criterion to determine whether
the RT calculated radiances provide good fits to the MISR-
observed radiances. Validated by AERONET measurements,
MISR field measurements, and airplane campaigns (Diner et al.
2002), MISR’s retrievals have been shown to be informative
in characterizing aerosols’ optical properties. Previous studies
include those on wildfire smoke (Kahn et al. 2008), mineral
dusts (Koven and Fung 2008), and climate-changing aerosols
(Solmon, Giorgi, and Liousse 2006).

MISR’s ability to capture aerosol-related information makes
it well suited to assist studies on aerosols’ impact on public
health. However, the heterogeneity of urban aerosols within an
area of 17.6 × 17.6 km2, the spatial resolution of MISR AOD
retrievals, makes finer resolution desirable. For example, San
Francisco is represented by less than half of an MISR pixel.
Yet the residents of San Francisco are exposed to varying levels

2SSA is defined as the ratio of scattered radiation to total extinct radiation
(scattered and absorbed).
3The number of nonzero elements of the MISR’s 74 mixing vectors is no more
than three.

of air pollution. Case studies in Delhi show that 5-km AOD
has a significantly higher association with health-related partic-
ulate matters than an AOD of rougher resolution (Kumar, Chu,
and Foster 2007). As a result, we use 4.4 km as our retrieval
resolution, also to be compatible with the MISR observations
at 1.1 km. Also, observational studies indicate that the tropo-
spheric aerosol burden has increased at mid-latitudes and in the
Arctic, probably due to anthropogenic activities (Peterson et al.
1982; Shaw 1982). This suggests that more varieties beyond the
74 prefixed aerosol compositions are to be considered to capture
aerosols’ growing heterogeneity.

Finer-resolution retrievals with greater varieties of aerosol
compositions lead to a larger number of parameters to esti-
mate. This is possible if we take advantage of AOD’s spatial
smoothness and reduce the 21 component aerosols to a smaller
subset, say four, chosen according to current knowledge of the
study region’s aerosol conditions. In particular, a hierarchical
Bayesian model is proposed to retrieve AOD values and mixing
vectors based on MISR observations at 4.4 km resolution. We
adopt a likelihood framework based on MISR’s weighted least
squares and construct the Bayesian hierarchy to incorporate
AOD’s spatial smoothness using a Gaussian Markov Random
Field (GMRF) prior. The movement and dispersion of air par-
ticles in the atmosphere justify the spatial smoothness of AOD
from a physical viewpoint. To flexibly describe various aerosol
conditions, our model regards AOD values and mixing vectors
as continuous parameters. This expands the set of possible com-
positions beyond the 74 prefixed choices of MISR. We show
how this enriched variety is necessary to retrieve heterogeneous
urban aerosols. Our study takes an MISR block4 as a data unit
to balance the coverage of a greater metropolitan area and com-
putational cost.

The posterior inference of AOD and mixing vectors is car-
ried out using Markov chain Monte Carlo (MCMC) sampling
methods, particularly Metropolis-within-Gibbs. Such sampling
methods allow us to quantify the retrieval uncertainties by pos-
terior variabilities. The algorithm, however, is computationally
intense. We develop a parallel MCMC algorithm by partitioning
an MISR block into smaller patches, to enable parallel samplings
while maintaining the overall smoothness level using summary
statistics. We show that retrievals from the two algorithms are
consistent, with an increase in computational speed for the
parallel MCMC algorithm. To assess the performance of our
methods, we apply them to retrieve AOD values for the greater
Beijing area in China. Our retrievals are tested against ground-
based measurements of AOD from two AERONET stations in
the area. Results show improvement on retrieval accuracy and
coverage, especially during high-AOD events. We also include
geographical conditions and levels of anthropogenic activities
from Google Earth to qualitatively validate our results.

The rest of the article is organized as follows. Section 2
provides the rationale and details of our Bayesian model for
retrieving AOD values and mixing vectors, while Section 3
details our MCMC algorithms. Section 4 contains case stud-
ies for model validation and interpretation, comparing our re-
sults with MISR’s retrievals and AERONET measurements.

4MISR observes the Earth’s surface in 233 swaths; each swath contains
180,560 × 140 km2 MISR blocks.
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Section 4.3 illustrates the necessity to include a richer vari-
ety of aerosol compositions. Section 5 summarizes the results
and suggests directions for future research.

2. HIERARCHICAL BAYESIAN MODEL

Our objective is to establish a more detailed data-driven de-
scription of the relationship among radiances, AOD, and aerosol
compositions to assist aerosol-related health studies. The MISR
operational retrieval algorithm provides this information by
comparing the observed and the RT calculated radiances, but
it is limited within the 74 prefixed aerosol compositions and
a discrete grid of AOD values. We propose to allow a greater
variety of aerosol optical behaviors by considering AOD values
and mixing vectors as continuous variables, given a fixed set
of four component aerosols. For the greater Beijing area, this
set includes spherical nonabsorbing aerosols without sulfate,
spherical nonabsorbing aerosols with sulfate, spherical absorb-
ing aerosols, and grains (dust).

Each MISR block contains 256 pixels (8 rows× 32 columns)
at 17.6 km resolution in the MISR retrievals. The number of pix-
els in an MISR block rises to 4096 (32 rows × 128 columns) at
4.4 km resolution, presenting a more complex problem with ap-
proximately 16,384 parameters to estimate. On the other hand,
air particles interact in the atmosphere within a certain range;
they affect aerosol conditions in near neighborhoods (Winch-
ester and Nifong 1971; Bergametti et al. 1989). This suggests
a stronger spatial dependence among adjacent pixels at a finer
scale. When modeling at fine resolution, therefore, it is nec-
essary and beneficial to borrow strength from AOD’s spatial
smoothness to reduce model complexity. In particular, we con-
struct a hierarchical Bayesian model with a built-in spatial de-
pendence using a GMRF prior for AOD.

2.1 Defining the Likelihood Function

Let p = 1, . . . , P index the P = 4096 pixels on a two-
dimensional lattice in an MISR block at 4.4 km resolu-
tion and L = (L1, . . . , LP ) denote the MISR-observed top-of-
atmosphere radiances. For each pixel p, Lp = (L1p, . . . , LCp) ∈
RC corresponds to MISR’s C = 36 channels. For every channel
c = 1, . . . , C, the MISR retrieval algorithm sets a measurement
error of size σc as 5% of the smaller value between 0.04 and
L̄c = (

∑P
p=1 Lcp)/P . For pixel p, our goal is to estimate its AOD

value τp ∈ R and mixing vector θp = (θp1, . . . , θpM ) ∈ RM ,
relative to the M component aerosols involved (θp ≥ 0 and∑M

m=1 θpm = 1). Each of MISR’s 74 prefixed aerosol mixtures
contain two or three component aerosols. We expand to allow
mixtures of four component aerosols by setting M = 4; case
studies confirm the sufficiency of this choice.

Given the geolocation of pixel p, its AOD value τp, a set of
component aerosols, and their mixing vector θp, RT equations
are used to simulate radiances LRT = (LRT

1 , . . . , LRT
C ) (Diner

et al. 1999); their precomputed values at discrete points are
stored in MISR’s SMART dataset.5 Thus, LRT can be viewed
as functions of (τp, θp), relative to the M component aerosols

5The other parameters, such as the ambient pressure, take the default values
unless otherwise specified. The MISR team has kindly given us access to the
SMART dataset.

involved. For each pixel p independently, the MISR operational
retrieval algorithm uses a weighted least squares criterion to
measure the closeness of an observed radiance vector to a par-
ticular RT simulated radiance vector. The weighted least squares
take the following form (Diner et al. 2008):

χ2
p =

C∑
c=1

(
Lcp − LRT

c (τp, θp)
)2

2σ 2
c

. (1)

The MISR retrieval algorithm exhaustively searches over all
combinations of prefixed AOD values and 74 aerosol compo-
sitions to match LRT to the observed L. The combinations of
AOD and compositions satisfying a pre-established threshold
of χ2

p in (1) are considered good fits to the observations; the
average of all such AODs is the MISR retrieval at pixel p.

Inspired by MISR’s weighted least squares criterion, we pro-
pose to use the weighted differences between observed L and
RT simulated LRT in (1) to form the following operational like-
lihood function:

p(L|τ , θ ) ∝ exp

⎧⎨
⎩−

C∑
c=1

P∑
p=1

(
Lcp − LRT

c (τp, θp)
)2

2σ 2
c

⎫⎬
⎭. (2)

If we carry out a maximum likelihood estimation, the above
Gaussian likelihood function coincides with MISR’s weighted
least squares criterion, assessing how relatively probable are the
unobserved parameters τ = (τ1, . . . , τP ) and θ = (θ1, . . . , θP ),
given the MISR observations L. More importantly, this oper-
ational likelihood provides a formal device for us to construct
a spatial smoothness structure for the AOD values τ into the
Bayesian hierarchy.

Even though the exact distribution of the weighted differences
in (2) is difficult to determine due to the complex origins for
these differences,6 histograms of retrieval residuals based on (2)
display a single modal distribution; this supports our choice for
a Gaussian-shaped operational likelihood. Another assumption
in both (1) and (2) is that the differences between LRT and L
are independent of the channel c,7 if the correct values of (τ , θ )
have been selected.

Now we are ready to describe our hierarchical model through
building conditional relationships within the Bayesian hierarchy
and assigning reasonable priors to the unobserved variables.

2.2 Construction of Priors and Conditional Probabilities

For fixed atmospheric pressures, humidity, wind levels, and a
set of component aerosols involved, the top-of-atmosphere ra-
diances L are mainly determined by AOD τ and aerosol mixing
vectors θ . Our Bayesian hierarchy’s first level depicts this de-
pendence of L on τ and θ . Prior distribution for τ is postulated
to capture the spatial smoothness, calibrated by hyperparameter
κ . We further assume independence between priors for τ and θ

6Such origins include MISR camera measurement errors, RT calculation noises,
differences between the proposed and true values for AOD and mixing vec-
tors, choices of component aerosols, and errors in estimating surface-leaving
radiances.
7We found close-to-0 correlations (−0.0445) between our retrievals’ residuals at
different viewing angles, but nontrivial correlations (0.5714) between residuals
at different spectral bands. In the current work, we are building this dependence
structure among different bands in our model.
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to simplify computation, that is, p(τ , θ ) = p(τ )p(θ ). The infer-
ence of parameters and hyperparameters using MCMC sampling
methods is discussed in Section 3.

2.2.1 Prior Beliefs About AOD’s Spatial Dependence. We
characterize the spatial dependence of AOD values τ using an
intrinsic GMRF prior of first order (Rue and Held 2005). Define
κ as the homogenous scaler precision and use ∼ to indicate
spatial adjacency. The following prior is invariant to perturbation
by the same constant to τ of all pixels (Besag 1974):

p(τ |κ) ∝ κ
P−1

2 exp

⎧⎨
⎩−κ

2

∑
p′∼p

(τp′ − τp)2

⎫⎬
⎭. (3)

This allows us to model AOD’s spatial smoothness by penalizing
sharp changes of τ among adjacent pixels, regardless of their un-
known overall level. The prior in (3) is calibrated by κ as AOD’s
precision. The larger the κ , the smoother are the region’s AOD
values. For some regions, however, a more complicated GMRF
prior might be necessary. For example, a constant wind pattern
might require distinguishing an upwind pixel from a downwind
pixel. This article works with a homogenous precision κ and
thus has its limitations.

To estimate κ , we assign it a hyperprior. Due to AOD’s large
variability within a day and the lack of pre-existing records to
specify a prior belief of τ ’s behaviors, we consider a nonin-
formative prior: p(κ) ∝ 1/κ . The posterior is a proper Gamma
distribution,

p(κ|τ ) ∝ κ
P−1

2 −1 exp

⎧⎨
⎩−κ

2

∑
p′:p′∼p

(τp′ − τp)2

⎫⎬
⎭. (4)

For the above prior to work well, the number of groups, namely
P, is to be larger than 5 (Gelman 2006). In our case, P is com-
monly larger than 1000 at 4.4 km resolution. The simulation to
be described in Section 3.2 shows good agreement between the
true and retrieved values of κ using our MCMC algorithm. For
example, we observed 100 (true) and 92.08 (retrieved) in one
simulation, while 500 (true) and 485.76 (retrieved) in another.

2.2.2 Prior Specification for Aerosol Compositions. Prior
information on aerosol compositions is incorporated in the
model through choices of the M = 4 component aerosols in-
volved, based on geophysical knowledge of the study region.
To model the mixing vectors θ of the M component aerosols,
we use an M-dimensional Dirichlet prior with Dirichlet param-
eter α = (α1, . . . , αM ). Conditioning on α, the mixing vectors
{θp}Pp=1 are considered to be independent of each other,

p(θ |α)=
P∏

p=1

p(θp|α) =
P∏

p=1

�(
∑M

m=1 αm)∏M
m=1 �(αm)

θ
α1−1
p1 . . . θ

αM−1
pM . (5)

Even though the mixing vectors’ spatial smoothness is not ex-
plicitly formulated, it is still captured and implicitly enforced by
the spatial structure of AOD τ through their dependence on the
observed radiances L. In fact, our estimates of mixing vectors
θ indeed display spatial smoothness. The model and algorithms
remain relatively simple and computationally efficient.

We can further control the overall sparsity of the mix-
ings of component aerosols by adjusting the magnitude of

α. In general, we obtain no prior information on the mix-
ing’s sparsity; we assign α a hyperprior to estimate it. Since
(5) belongs to an exponential family, we adopt its conjugate:
p(α) ∝ exp(

∑M
m=1(1− αm)). This prior of α gives larger prob-

ability to a smaller sum of αm’s, which suggests a sparse mix-
ing of component aerosols, that is, mixtures with one or two
dominant components. This is supported by results from ob-
servational studies on aerosol mixings (Diner et al. 1999). The
posterior has the following form:

p(α|θ ) ∝ exp

⎧⎨
⎩

M∑
m=1

(αm − 1)

⎛
⎝ P∑

p=1

log θpm + 1

⎞
⎠− P

×
(

M∑
m=1

log �(αm)− log �

(
M∑

m=1

αm

))⎫⎬
⎭.

2.2.3 Hyperprior for σ 2. In our approach, we regard
{σ 2

c }Cc=1 as unknown and they are estimated together with (τ , θ ).
The likelihood function for σ 2 = (σ 2

1 , . . . , σ 2
C), p(L|σ 2, τ , θ ),

follows a normal distribution with known mean and unknown
variance. We adopt a noninformative scaled inverse-χ2 hyper-
prior for σ 2 to model the channel weights { 1

2σ 2
c
}Cc=1: p(σ 2

c ) ∝
σ−2

c . This hyperprior suggests that values for the unknown
weights become less likely in inverse proportion to their values;
it is also a choice of computational convenience. The conditional
posterior also follows the scaled inverse-χ2 distribution,

p
(
σ 2

c |τ , θ , L
) ∝ (σ 2

c

)−( P
2 +1)

× exp

{
−
∑P

p=1

(
Lcp − LRT

c (τp, θ p)
)2

2σ 2
c

}
.

3. MCMC RETRIEVAL ALGORITHMS

Based on the hierarchical Bayesian model previously devel-
oped, this section first derives marginal posterior distributions of
AOD values τ and mixing vectors θ . We then devise two MCMC
algorithms to sample from the posteriors. Using MISR observed
radiances as input, we take the sampled posterior means as out-
puts.

3.1 Posterior Distributions of AOD Values
and Mixing Vectors

The full Bayesian model discussed above can be summarized
as follows:

Lp|τp, θ p ∼ N (LRT(τp, θp), σ 2), p = 1, . . . , P ,

τ |κ ∼ GMRF(κ),

θ |α ∼ Dirichlet(α),

σ 2 ∼ scaled inverse-χ2(ν0),

κ ∼ Gamma(α0, β0),

p(α) ∼ Exp

(
M∑

m=1

(1− αm)

)
.

With no additional information on the hyperparameters, ν0, α0,
and β0 are chosen to be 0 for convenience and later shown to be
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robust. The marginal posterior of AOD values τ is

p(τ |θ, κ, σ 2, L) ∝ exp

⎧⎨
⎩−1

2
κ
∑

p′:p′∼p

(τp′ − τp)2

−
C∑

c=1

P∑
p=1

(
Lcp − LRT

c (τp, θp)
)2

2σ 2
c

⎫⎬
⎭. (6)

The marginal posterior distribution of the mixing vectors θ can
be expressed as

p(θ |τ ,α, σ 2, L) ∝ exp

⎧⎨
⎩

P∑
p=1

M∑
m=1

(αm − 1) log θpm

−
C∑

c=1

P∑
p=1

(
Lcp − LRT

c (τp, θp)
)2

2σ 2
c

⎫⎬
⎭. (7)

Both posteriors contain RT simulated LRT, which can be ob-
tained at necessary values through interpolations from the
MISR’s SMART dataset, using τp and θp as inputs (Diner et al.
1999). The resulted nonclosed-form posteriors, however, are
difficult to directly sample from. A Metropolis-within-Gibbs
sampler is thus used.

3.2 Metropolis-Within-Gibbs Sampling From
the Posterior Distributions

The Gibbs sampler (Geman and Geman 1984) is a
numerical technique to sample from a joint distribution,
p(τ , θ , σ 2, κ,α|L) in our case. We sample for τp and θp us-
ing a Metropolis–Hastings (M-H) sampler, for each pixel p on
the MISR block column by column and pixel by pixel. The
following proposal distribution is used in M-H sampler for τp:

p(τp|τ−p) ∝ exp

⎛
⎜⎝−npκ

2

⎛
⎝τp − 1

np

∑
p′:p′∼p

τp′

⎞
⎠

2
⎞
⎟⎠,

where np is the number of adjacent pixels to pixel p and
κ is the scalar precision of the Markov Random Field. A
Dirichlet proposal distribution with parameter α is used in
M-H for θp. Denote vector (τp, . . . , τp′ ) by τp:p′ and simi-
larly for θ and their Dirichlet parameter α. Given initializations

Metropolis-Within-Gibbs (M-w-G) Algorithm
At step t , iterate the following process:

1: for p = 1 to P do
2: Use M-H to sample τ (t)

p ∼ p(τp|τ (t)
1:(p−1), τ

(t−1)
(p+1):P , θ (t−1),

(σ 2)(t−1), κ (t−1), L).
3: for p = 1 to P do
4: Use M-H to sample θ (t)

p ∼ p(θp|τ (t), θ
(t)
1:(p−1), θ

(t−1)
(p+1):P ,

(σ 2)(t−1),α(t−1), L).
5: for c = 1 to C do
6: Use M-H to sample (σ 2

c )(t) ∼ p(σ 2
c |τ (t), θ (t), (σ 2

1:(c−1))
(t),

(σ 2
(c+1):C)(t−1), L).

7: Sample κ (t) ∼ p(κ|τ (t)).
8: for m = 1 to M do
9: Use M-H to sample α(t)

m ∼ p(αm|θ (t),α
(t)
1:(m−1),α

(t−1)
(m+1):M ).

(τ (0), θ (0), (σ 2)(0), κ (0),α(0)), the sampler proceeds as described
in the following Metropolis-within-Gibbs Algorithm:

Each cycle of the algorithm generates a realization of a
Markov chain, which gives approximate samples from the
marginal posteriors after a successful burn-in process (Geman
and Geman 1984). We check that the acceptance rate of the M-H
sampler is roughly between 25% and 50% for adequate mixing
of posterior samples (Gelman, Roberts, and Gilks 1996). The
potential scale reduction R̂ (Gelman and Rubin 1992) is also
used to check the convergence of the Markov chains. We run
the chains until R̂ is less than 1.1 or 1.2, using R̂ of the logarithm
of the posterior distribution as a benchmark. A geometric decay
of the autocorrelation as a function of the lag also suggests well
mixing of our chains.

We also conduct a simulation study to verify the M-w-G’s
ability to converge to the target distribution.

The trace plots of the MCMC samples of AOD values
(Figure 98) show good convergence after approximately 400
iterations, whether the initialization is close to the true value or
not. We observe similar convergence rates for mixing vectors.
Assigning different values to the hyperparameters, the corre-
lation between the true AOD and the MCMC-retrieved AOD
ranges between 0.78 and 0.90, and the coefficient of variation of
the rooted-mean-square error ranges between 4.24% and 9.26%.

Algorithm Example Simulation to Verify Convergence of M-
w-G

1: Select the same four component aerosols as in the Beijing
case studies (Section 4).

2: κ ← 100 (or 500 for different runs).
3: α← (0.8, 0.4, 0.2, 0.2) (or (2, 4, 0.1, 0.1) for different

runs).
4: Sample τ (0) ∼ (3).
5: Sample θ (0) ∼ (5).
6: Considering (τ (0), θ (0)) as the true values, simulate radi-

ances Lsim using the SMART lookup table and an additive
Gaussian noise.9

7: Input Lsim into M-w-G retrieval algorithm to estimate AOD
and mixing vectors.

Finally, we use the sampled posterior mean to estimate AOD
values and mixing vectors. Although the MCMC algorithm en-
ables us to handle a hierarchy whose complexity precludes fit-
ting by analytical methods, its computational intensity limits its
operational use. Next, we propose a parallel MCMC algorithm
to reduce computational cost.

3.3 A Parallel MCMC Algorithm

Many MCMC sampling algorithms for spatial data suffer
from high computational cost caused by the large dimensional-
ity of data. At 4.4 km resolution, our MCMC algorithm simulates
samples for more than 16,000 variables10 for one MISR block.

8We attach in the Appendix two trace plots showing one example of each type,
up to the first 1000 iterations.
9The noise’s standard deviation σ is set as 10% of the averaged radiance, while
the MISR operational algorithm estimates σ as 5% of the same average.
10Excluding cloudy pixels can sometimes reduce the total dimensions to around
5000 for one MISR block.
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The large computational cost is exacerbated by the nonclosed
form of the posterior distributions. It is possible, however, to
develop a faster algorithm to sample from a distribution that
approximates the target posterior of the original MCMC algo-
rithm.

By this token, we devise a parallel MCMC algorithm to im-
prove the computational efficiency: each MISR block is divided
into 2 × 8 patches of equal size with at least four overlapping
columns and rows for adjacent patches; the Metropolis-within-
Gibbs sampler is applied to each patch independently to gener-
ate samples for (τ , θ). This independent sampling on different
patches can, therefore, benefit from parallel computing.

Information on AOD’s spatial dependence structure is to be
communicated across the entire MISR block to estimate AOD’s
spatial smoothness level. On that account, we let the patches
periodically exchange spatial smoothness information across
the entire MISR block. Given κ’s conditional posterior,

p(κ|τ ) ∝ κ (P−1)/2−1 exp

⎧⎨
⎩−1

2
κ
∑
p∼p′

(τp − τp′ )
2

⎫⎬
⎭ ,

and summary statistic, Tκ =
∑

p∼p′ (τp − τp′ )2, it follows that
p(κ|τ ) = p(κ|Tκ ). Hence, Tκ summarizes the information on
calibration κ for AOD’s spatial smoothness across the entire
MISR block. Given that the hyperparameters control the spatial
smoothness level of model parameters in all patches, the parallel
MCMC algorithm provides an approximation to the posterior of
AOD values τ , while the patch-samplings in parallel improve the
computational efficiency. We now describe the parallel MCMC
algorithm in detail:

Parallel MCMC Algorithm
Obtain an MISR block of 32×128 pixels at 4.4 km resolution and
divide the block into 2× 8 patches, each of 20× 20 pixels, with
at least 4 overlapping columns/rows between adjacent patches.
At step t , iterate the following process:

1: Use M-w-G algorithm to sample τ ∼ p(τ |θ, κ, σ 2, L), θ ∼
p(θ |τ ,α, σ 2, L), σ 2 ∼ p(σ 2|T (t)

σ ), κ ∼ p(κ|T (t)
κ ), α ∼

p(α|T (t)
α ) within each patch in parallel for 50 iterations.

2: Average the samples of the overlapping pixels between any
two adjacent patches.

3: Calculate summary statistics using current samples,

T (t+1)
σc
=∑P

p=1(Lcp − LRT
c (τp, θp))2, c = 1, . . . , C,

T (t+1)
κ =∑p∼p′ (τp − τp′ )2,

T (t+1)
αm
=∑P

p=1 log θpm,m = 1, . . . ,M .

The above process can be automated using the Perl program-
ming language. For an MISR block at 4.4 km resolution, the
computational time of the parallel MCMC algorithm is less than
one-fifth of that of the global MCMC sampling algorithm, ac-
counting for overhead time of communication among different
patches.

This parallel MCMC sampling scheme can be generalized
to improve the computational efficiency of MCMC sampling
based on spatial data of a large scale. By conditioning on a
summary statistic that preserves the global spatial dependence
level, we can partition the original sampling problem into many

sub-samplings and distribute them to different processing units
concurrently. Samples generated from each processing unit can
be periodically collected to renew the summary statistic, which
is then returned to each processing unit to update the subsam-
plings. Although this scheme samples from an approximation to
the target distribution, it can largely speed up the computation.

The global and the parallel MCMC algorithms produce rea-
sonably consistent results. The outputs generally agree, except
for a small group of pixels that mostly lie on the patch edges.
The spatial smoothness is interrupted between patches; the ben-
efits of a stabilizing factor from neighboring pixels are lost. This
confirms that maintaining an appropriate spatial structure is im-
portant and that our parallel MCMC algorithm’s outputs are
only an approximation to the target distribution. Increasing the
number of iterations and communications of summary statistics
and smoothing the patch edges reduce the disagreement. The
next section evaluates the performance of our retrievals using
case studies. For nonoperational model validations, we apply
the global MCMC algorithm to avoid inconsistency in number
of iterations for different retrievals.

4. VALIDATION AND RESULTS: CASE STUDIES
ON AEROSOL RETRIEVALS FOR THE GREATER

BEIJING AREA, CHINA

In this section, we compare our retrievals to MISR outputs for
the greater Beijing area (latitude: 38.95N∼40.15N; longitude:
115.57E∼119.50E) and discuss their differences. We validate
our results using AERONET measurements and Google Earth
satellite images. Through case studies, we demonstrate the im-
portance of fine-resolution retrievals and a greater variety of
compositions to improve retrieval accuracy and coverage.

4.1 Comparison With MISR Retrievals

Figure 2 displays the MISR AOD retrievals at 17.6 km reso-
lution in panel (a) and our Bayesian AOD retrievals at 4.4 km
resolution in panel (b). Shared information in MISR and our re-
trievals is observed, such as the coastline on the right, the overall
AOD level, and its spatial patterns. This consistency is con-
firmed by the scatterplots of MISR outputs and Bayesian AOD
retrievals aggregated to 17.6 km resolution (see Figure 3, left
panel). The black pixels in Figure 2 represent missing retrievals,
mostly due to two common reasons. First, aerosol retrievals are
not attempted when clouds are detected. MISR averages the
1.1 km observations into a pixel at 17.6 km resolution and ig-
nores clouds, when the cloudless areas are more than 1

16 of the
pixel. Clouds negligible at 17.6 km resolution, however, might
be significant at 4.4 km resolution; we tend to have more missing
retrievals in some areas, intrinsically determined by the observa-
tions. Second, when none of the 74 MISR-designated composi-
tions satisfy MISR’s weighted least squares criterion, MISR op-
erational algorithm marks the retrieval as missing. Our Bayesian
retrievals, allowing for a richer variety of compositions, elimi-
nate such unnecessarily missing retrievals (Section 4.3).

On the other hand, Figure 2 also demonstrates increased diver-
sity in our Bayesian-retrieved AOD across the MISR block, as
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Figure 2. AOD estimates from MISR and our Bayesian retrievals. (a) MISR AOD retrievals at 17.6 km resolution. (b) Bayesian AOD retrievals
using MCMC at 4.4 km resolution.

the retrieval resolution improves. This is expected, since a finer
resolution leads to more information observed and piped into
the model. The reliability of such diversity needs to be further
validated by other independent sources such as ground-based
measurements, as discussed in the next section.

4.2 Model Validation for Bayesian Retrievals by
Ground-Based Measurements and Google Earth

Ground-based measurements are collected at AERONET Bei-
jing and AERONET Xianghe stations, as well as via a hand-held
MICROTOPS II Sunphotometer at several locations in urban
Beijing area. The fixed locations of the AERONET stations and
the limited travel range of the Sunphotometer’s human opera-
tor make it impossible to validate retrievals of all pixels on the
MISR block under study. Instead, we focus on the pixels that
contain the AERONET stations or our Sunphotometer-visited
locations. To match the AOD values at the same wavelength, we
first convert AERONET measurements to those at 550 nm using
AERONET estimates of Angström exponent. We then average
the measurements within a 1-hr window when Terra—carrying
MISR—passes over the AERONET stations (Jiang et al. (2007)
showed that a narrower time window better captures the correla-
tion between AERONET measurements and MISR retrievals).

The area’s frequent cloudy weather and its latitude11 contribute
to the scarcity of the remote-sensed versus ground-based data
pairs for validation.

As a result of this scarcity of ground-based validation, we
also carry out qualitative validation using satellite images from
Google Earth and discuss the findings in Section 4.2.3.

4.2.1 Retrieval Validation at AERONET Beijing Station.
Figure 4 shows a boxplot of our Bayesian AOD retrievals for
the pixel that contains the AERONET Beijing Station,12 with
estimated uncertainties indicated by the box edges for inter-
quartile ranges of posteriors and the whiskers drawn to the 5th
and 95th percentiles. The three retrievals on March 15, April
30, and May 16, 2009, are plotted separately in the right panel
to keep an appropriate scale for the left panel.

As long as a pixel is cloudless, our MCMC algorithms provide
an AOD retrieval. However, the MISR operational retrieval algo-
rithm shows missing values for 24% of the 21 cases in Figure 4.
This results from the increasingly heterogeneous aerosol con-
ditions in Beijing and the limited choices of aerosol composi-
tions in MISR retrievals. In the coarse-resolution retrievals, high

11The Beijing station is visited by the Terra satellite every 5 to 9 days.
12Latitude: 39.97689◦ North; longitude: 116.38137◦ East.

Figure 3. Scatterplots of MISR against MCMC retrievals at an aggregated 17.6 km resolution (left, r.m.s. = 0.0295) and a 4.4 km resolution
(right, r.m.s. = 0.0309).
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Figure 4. Validation of our AOD retrievals by measurements at the AERONET Beijing Station. The online version of this figure is in color.

AOD values are averaged down by its neighbors and low AOD
values averaged up, resulting in a loss of useful information.
Our Bayesian retrievals show improvement in accuracy; de-
tailed information on aerosols are revealed by the fine-resolution
retrievals. The three high AOD values in the right panel of
Figure 4 indicate Beijing’s extreme air conditions, correspond-
ing to 86%, 71%, and 81% reduced radiation by aerosols. For
example, records of news from Xinhua Headlines show that on
March 15, 2009, the city was trapped in a sandstorm originated
in Inner Mongolia.

We would like to discuss one particular case when the
Bayesian retrieval (0.8560) is much worse than MISR output
(0.6750), compared to the AERONET measurement (0.5455):
the third to last case in Figure 4 (left panel), May 25, 2009.
AERONET reports no measurement when Terra carrying MISR
passed above Beijing. Instead, we use the measurement of
0.5455, which is the closest in time but 3 hr earlier. This record
reached the lowest of that day, with others between 0.6521 and
1.5366. It suggests that the particular AERONET record we
used might not be ideal to validate the remote-sensed retrieval,
but our best option.

4.2.2 Retrieval Validation at AERONET Xianghe Station.
Figure 5 compares the remote-sensed retrievals to AERONET
measurements at the pixel that contains the AERONET Xianghe
station.13 From December to February, AERONET measure-
ments are mostly higher than remote-sensed retrievals, but no
distinctive pattern afterward.

The AERONET Xianghe station has the Jingshen Expressway
to its north, which is a major path connecting the two hub cities:
Beijing and Shenyang.14 The northwest wind in winter carries
car exhaust to the AERONET Xianghe station, possibly leading
to high AOD measurements. Yet for remote-sensing retrievals,
the green fields in a larger neighborhood balance this factor,
which possibly results in a washed-out signal. However, the
fine-resolution retrievals seem to suffer less from the balancing
factors and display a better accuracy.

13Latitude: 39.75360◦ North; longitude: 116.96150◦ East.
14The capital and largest city of Liaoning Province in Northeast China.

We would like to discuss one of the cases where our AOD
retrieval is much higher than AERONET measurement: the first
data point in Figure 5, December 25, 2008. MISR produced
no output for this day. To the east of the Xianghe station in
Hebei Province lie several major malls for furniture exhibition
and manufacture. On December 25, 2008, the furniture compa-
nies started renovating their exhibition halls. The construction
could have caused localized aerosol loadings not observed by
the Xianghe AERONET site 2 km away upwind within 1 day, but
detected by the MISR instrument and captured by our retrievals.

4.2.3 Qualitative Validation Using Google Earth in Absence
of Ground Measurements. We observe other disagreements in
our Bayesian-retrieved AOD values and those of MISR, in ad-
dition to those at the two pixels that contain the two AERONET
stations in the MISR block. Since they are retrievals at different
spatial scales, they could very well be different, that is, they
could both be valid. An indirect way to validate our retrieved
AOD values is to see whether they reasonably reflect the region’s
geographical and anthropogenic conditions, such as existence of
heavy industries and transportation patterns. These conditions
can be easily assessed using the satellite images from Google
Earth, making them indirect validation for our retrievals as a
reasonable and detailed profiling of AOD spatial distribution.
Here we focus on pixels with Bayesian AOD retrievals largely
disagreeing with those of their adjacent pixels or pixels with
locally highly variable Bayesian AOD retrievals. Since our re-
trieval pixels are only 1

16 of the size of an MISR retrieval pixel,
these AOD locations cannot be identified in the corresponding
MISR retrievals.

In particular, we project our Bayesian AOD values onto
Google Earth (see Figure 6) and examine the pixels with lo-
cally highly variable AOD values. We thus identify a hub of
the Jingshen and Jingtang Highways (pin A in Figure 6) and
construction sites producing pollution (pin C), supporting the
high AOD values indicated by only our Bayesian retrievals. The
Olympic Park (pin D) and Beidaihe (pin F), a famous beach
resort, also confirm the reasonability of the low AOD values
captured by only the Bayesian retrievals at a finer resolution.
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Figure 5. Validation of our AOD retrieval results by AERONET measurements in Xianghe. The online version of this figure is in color.

4.3 Case Study for Including a Richer Variety
of Aerosol Compositions

This section emphasizes the necessity to expand MISR’s 74
aerosol compositions. This expansion improves retrieval cov-
erage and detects more features of aerosol behaviors, such as
seasonality of component aerosols.

To illustrate the improvement in retrieval coverage, we ex-
amine AOD values for March 15, 2009. MISR failed to re-
trieve AOD for the majority of the block (see Figure 7, upper
panel). Our Bayesian retrievals provide better coverage and the
retrievals give distinctly high AOD values with a clear path of
aerosols migrating from west to east and into the ocean. This
unusual discrepancy leads us to examine the weather records:
on that day, the area suffered from a sandstorm that originated in
Inner Mongolia, which later passed into eastern China. For areas
such as Beijing, which experience occasional sandstorms, the
limited compositions containing grains (dust) among MISR’s
74 choices could easily result in a low coverage of MISR re-
trievals. Similar situations might exist for other locations with
usual aerosol conditions. The retrieved mixing vectors also con-
tain information on the regional aerosol composition and can be
used to identify pollution type and source. For example, results
show that component No. 6 with sulfate tends to dominate the
composition in winter due to coal burning for heating, while with
No. 19, grains (dust) dominate in spring due to sandstorms.

Figure 8 shows the mixing percentages of component No. 19
over December 2008 to June 2009, at the four different locations:
the AERONET Beijing station, the AERONET Xianghe station,
location (A), and (F) marked in Figure 6. For the AERONET
Beijing station, the percentage of grains (dust) only rose in the
spring, due to the sandstorms, while the construction activity
around AERONET Xianghe might have raised the percentage
earlier in the year. Location (A), where major highways inter-
sect, showed a high amount of dust in its aerosol compositions
through the warm seasons when traffic typically increases. The
mixing percentage of No. 19 at location (F), the Beidaihe Re-
sort, moved relatively consistently with the AERONET Beijing
station. We hope to explore this trend in future research. In
general, by correctly identifying the major pollutants for each
season, we can better understand the transitions of aerosols and,
therefore, take efforts to improve air quality in a more specific
and to the point manner. For accuracy and coverage, it is nec-
essary to expand the MISR-designated 74 aerosol compositions
to a richer variety.

5. DISCUSSION

Aerosols serve as an important factor in air quality and public
health. A profile of AOD’s spatial distribution can eventually ex-
pand the potential of remote-sensed observations in facilitating
urban air quality monitoring and public health studies (Tatem,

Figure 6. Retrieval results projected on Google Earth.
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Figure 7. Case study of AOD retrievals on March 15, 2009.

Figure 8. Mixing percentages of component No. 19 from winter to spring.

Figure 9. Example of sampling trace plots of AOD retrievals.
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Goetz, and Hay 2004; Tinkle et al. 2007). The heterogeneity of
urban aerosols due to anthropogenic activities calls for a profile
of aerosols at a fine resolution and a larger variety of aerosol
compositions.

In this article, we have presented a hierarchical Bayesian
model to retrieve AOD values and mixing vectors relative to a
collection of four component aerosols at an improved resolution
of 4.4 km using MISR observations. The model incorporates a
spatial dependence structure to gain strength from AOD’s spa-
tial smoothness; it also allows for a richer variety of aerosol
mixing vectors to better capture the growing heterogeneity of
urban aerosols and the increasingly severe weather conditions,
such as sand storms. A more detailed AOD spatial profile is pro-
vided and further validated by AERONET and Google Earth;
an improved accuracy and better retrieval coverage is obtained
due to the improved resolution and flexible choices of aerosol
compositions. This improvement is particularly important dur-
ing high-AOD events, which often indicate severe air pollution.
We further develop a parallel MCMC algorithm to improve the
computational efficiency, which can be generalized to speed up
other MCMC sampling algorithms based on spatial data.

From the case studies, we become more aware of the com-
plexity in aerosol conditions and thus hope to use our results
to study the aerosols’ impact on public health in urban areas at
the enhanced resolution. We also hope to explore the possibil-
ity of improving the retrieval accuracy by incorporating more
prior knowledge in the model, such as wind measurements and
dependence among the four spectral bands.

APPENDIX

Figure 9 shows example trace plots of MCMC samples for AOD in the
simulation study (see Section 3.2).

[Received July 2011. Revised July 2012.]
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