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Minimax Rates of Estimation for High-Dimensional
Linear Regression Over -Balls
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Abstract—Consider the high-dimensional linear regression
model , where is an observation vector,

is a design matrix with , is an unknown
regression vector, and is additive Gaussian noise.
This paper studies the minimax rates of convergence for esti-
mating in either -loss and -prediction loss, assuming that
belongs to an -ball for some . It is shown

that under suitable regularity conditions on the design matrix ,
the minimax optimal rate in -loss and -prediction loss scales

as . The analysis in this paper reveals that
conditions on the design matrix enter into the rates for -error
and -prediction error in complementary ways in the upper and
lower bounds. Our proofs of the lower bounds are information
theoretic in nature, based on Fano’s inequality and results on the
metric entropy of the balls , whereas our proofs of the
upper bounds are constructive, involving direct analysis of least
squares over -balls. For the special case , corresponding
to models with an exact sparsity constraint, our results show
that although computationally efficient -based methods can
achieve the minimax rates up to constant factors, they require
slightly stronger assumptions on the design matrix than optimal
algorithms involving least-squares over the -ball.

Index Terms—Compressed sensing, minimax techniques, regres-
sion analysis.

I. INTRODUCTION

T HE area of high-dimensional statistical inference con-
cerns the estimation in the regime, where refers

to the ambient dimension of the problem and refers to the
sample size. Such high-dimensional inference problems arise
in various areas of science, including astrophysics, remote
sensing and geophysics, and computational biology, among
others. In the absence of additional structure, it is frequently
impossible to obtain consistent estimators unless the ratio
converges to zero. However, many applications require solving
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inference problems with , so that consistency is not
possible without imposing additional structure. Accordingly,
an active line of research in high-dimensional inference is
based on imposing various types of structural conditions, such
as sparsity, manifold structure, or graphical model structure,
and then studying the performance of different estimators.
For instance, in the case of models with some type of sparsity
constraint, a great deal of work has studied the behavior of
-based relaxations.
Complementary to the understanding of computationally ef-

ficient procedures are the fundamental or information-theoretic
limitations of statistical inference, applicable to any algorithm
regardless of its computational cost. There is a rich line of
statistical work on such fundamental limits, an understanding
of which can have two types of consequences. First, they can
reveal gaps between the performance of an optimal algorithm
compared to known computationally efficient methods. Second,
they can demonstrate regimes in which practical algorithms
achieve the fundamental limits, which means that there is little
point in searching for a more effective algorithm. As we will
see, the results in this paper lead to understanding of both types.

A. Problem Setup

The focus of this paper is a canonical instance of a high-di-
mensional inference problem, namely that of linear regression in
dimensions with sparsity constraints on the regression vector

. In this problem, we observe a pair
, where is the design matrix and is a vector of re-

sponse variables. These quantities are linked by the standard
linear model

(1)

where is observation noise. The goal is
to estimate the unknown vector of regression coef-
ficients. The sparse instance of this problem, in which the re-
gression vector satisfies some type of sparsity constraint,
has been investigated extensively over the past decade. A va-
riety of practical algorithms have been proposed and studied,
many based on -regularization, including basis pursuit [8], the
Lasso [28], and the Dantzig selector [5]. Various authors have
obtained convergence rates for different error metrics, including
-norm error [1], [5], [21], [35], prediction loss [1], [12], [30],

as well as model selection consistency [20], [32], [35], [37]. In
addition, a range of sparsity assumptions have been analyzed,
including the case of hard sparsity meaning that has exactly

nonzero entries, or soft sparsity assumptions, based on
imposing a certain decay rate on the ordered entries of . Intu-
itively, soft sparsity means that while many of the coefficients
of the covariates may be nonzero, many of the covariates only
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make a small overall contribution to the model, which may be
more applicable in some practical settings.
1) Sparsity Constraints: One way in which to capture the

notion of sparsity in a precise manner is in terms of the -balls1

for , defined as

Note that in the limiting case , we have the -ball

which corresponds to the set of vectors with at most nonzero
elements. For , membership of in enforces
a “soft” form of sparsity, in that all of the coefficients of may
be nonzero, but their absolute magnitude must decay at a rel-
atively rapid rate. This type of soft sparsity is appropriate for
various applications of high-dimensional linear regression, in-
cluding image denoising, medical reconstruction, and database
updating, in which exact sparsity is not realistic.
2) Loss Functions: Weconsiderestimators
that are measurable functions of the data . Given any

such estimator of the true parameter , there are many criteria
fordetermining thequalityof the estimate. In adecision-theoretic
framework, one introduces a loss function such that
represents the loss incurred by estimating when
is the true parameter. In the minimax formalism, one seeks to
choose an estimator that minimizes the worst case loss given by

(2)

Note that the quantity (2) is random since depends on the noise
, and therefore, we must either provide bounds that hold with
high probability or in expectation. In this paper, we provide re-
sults that hold with high probability, as shown in the statements
of our main results in Theorems 1–4.
Moreover, various choices of the loss function are possible,

including 1) themodel selection loss, which is zero if and only if
the support of the estimate agrees with the true support

, and one otherwise; 2) the -loss

(3)

and 3) the -prediction loss . In this paper, we
study the -loss and the -prediction loss.
In this paper, we define the following simplifying notation:

1Strictly speaking, these sets are not “balls” when , since they fail to
be convex.

In this paper, we provide upper and lower bounds on the four
quantities defined above.

B. Our Contributions

Our goal is to determine minimax rates for the high-dimen-
sional linear model (1) under the condition that the unknown
regression vector belongs to the ball for .
Themain contributions are derivations of optimal minimax rates
both for -norm and -prediction losses, and perhaps more
significantly, a thorough characterization of the conditions that
are required on the design matrix in each case. The core of the
paper consists of four main theorems, corresponding to upper
and lower bounds on minimax rate for the -norm loss (The-
orems 1 and 2, respectively) and upper and lower bounds on
-prediction loss (Theorems 3 and Theorem 4, respectively).

We note that for the linear model (1), the special case of orthog-
onal design (so that necessarily holds)
has been extensively studied in the statistics community (for ex-
ample, see [3] and [11] as well as references therein). In contrast,
our emphasis is on the high-dimensional setting , and our
goal is to obtain results for general design matrices .
More specifically, in Theorem 1, we provide lower bounds for

the -loss that involves a maximum of two quantities: a term
involving the diameter of the null space restricted to the -ball,
measuring the degree of nonidentifiability of the model, and a
term arising from the -metric entropy structure for -balls,
measuring the complexity of the parameter space. Theorem 2
is complementary in nature, devoted to upper bounds that are
obtained by direct analysis of a specific estimator. We obtain
upper and lower bounds that match up to factors that are inde-
pendent of the triple , but depend on constants related
to the structure of the design matrix (see Theorems 1 and 2).
Finally, Theorems 3 and 4 are for -prediction loss. For this
loss, we provide upper and lower bounds on minimax rates that
are again matching up to factors independent of , but
dependent again on the conditions of the design matrix.
A key part of our analysis is devoted to understanding the link

between the prediction seminorm—more precisely, the quantity
—and the norm . In the high-dimensional

setting (with with ), these norms are in gen-
eral incomparable, since the design matrix has a null space
of dimension at least . However, for analyzing sparse
linear regression models, it is sufficient to study the approxi-
mate equivalence of these norms only for elements lying in
the -ball, and this relationship between the two seminorms
plays an important role for the proofs of both the upper and
lower bounds. Indeed, for Gaussian noise models, the prediction
seminorm corresponds to the square-root
Kullback–Leibler (KL) divergence between the distributions on
indexed by and , and so reflects the discriminability of

these models. Our analysis shows that the conditions on enter
in quite a different manner for -norm and prediction losses.
In particular, for the case , proving upper bounds on
-norm error and lower bounds on prediction error require rela-

tively strong conditions on the design matrix , whereas lower
bounds on -norm error and upper bounds on prediction error
require only a very mild column normalization condition.
The proofs for the lower bounds in Theorems 1 and 3 in-

volve a combination of a standard information-theoretic tech-
niques (e.g., [2], [14], and [33]) with results in the approxima-
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tion theory literature (e.g., [13] and [17]) on the metric entropy
of -balls. The proofs for the upper bounds in Theorems 2 and
4 involve direct analysis of the least squares optimization over
the -ball. The basic idea involves concentration results for
Gaussian random variables and properties of the -norm over
-balls (see Lemma 5).
The remainder of this paper is organized as follows. In

Section II, we state our main results and discuss their conse-
quences. While we were writing up the results of this paper,
we became aware of concurrent work by Zhang [36], and
we provide a more detailed discussion and comparison in
Section II-E, following the precise statement of our results. In
addition, we also discuss a comparison between the conditions
on imposed in our work, and related conditions imposed in
the large body of work on -relaxations. In Section III, we
provide the proofs of our main results, with more technical
aspects deferred to the Appendix.

II. MAIN RESULTS AND THEIR CONSEQUENCES

This section is devoted to the statement of our main results,
and discussion of some of their consequences. We begin by
specifying the conditions on the high-dimensional scaling and
the design matrix that enter different parts of our analysis,
before giving precise statements of our main results.

A. Assumptions on Design Matrices

Let denote the th row of and denote the
column of . Our first assumption imposed throughout all of
our analysis is that the columns of the de-
sign matrix are bounded in -norm.

Assumption 1 (Column Normalization): There exists a con-
stant such that

(4)

This is a fairly mild condition, since the problem can always
be normalized to ensure that it is satisfied.Moreover, it would be
satisfied with high probability for any random design matrix for
which satisfies a subexponential tail
bound. This column normalization condition is required for all
the theorems except for achievability bounds for -prediction
error when .

We now turn to a more subtle condition on the design
matrix .
Assumption 2 (Bound on Restricted Lower Eigenvalue):

For , there exists a constant and a function
such that

(5)
A few comments on this assumption are in order. For the case
, this assumption is imposed when deriving upper bounds

for the -error and lower bounds for -prediction error. It is
required in upper bounding -error because for any two dis-
tinct vectors , the prediction seminorm

is closely related to the KL divergence, which quan-
tifies how distinguishable is from in terms of the linear re-
gression model. Indeed, note that for fixed and , the vector

, so that the KL divergence between the
distributions on indexed by and is given by

. Thus, the lower bound (5), when applied to the differ-
ence , ensures any pair that are well sep-
arated in -norm remain well separated in the -prediction
seminorm. Interestingly, Assumption 2 is also essential in estab-
lishing lower bounds on the -prediction error. Here the reason
is somewhat different—namely, it ensures that the set is
still suitably “large” when its diameter is measured in the -pre-
diction seminorm. As we show, it is this size that governs the
difficulty of estimation in the prediction seminorm.
The condition (5) is almost equivalent to bounding the

smallest singular value of restricted to the set
. Indeed, the only difference is the “slack” pro-

vided by . The reader might question why this
slack term is actually needed. In fact, it is essential in the case

, since the set spans all directions of the
space . (This is not true in the limiting case .) Since
must have a nontrivial null space when , the condition (5)
can never be satisfied with whenever
and .
Interestingly, for appropriate choices of the slack term

, the restricted eigenvalue condition is satisfied
with high probability for many random matrices, as shown by
the following result.

Proposition 1: Consider a random matrix formed
by drawing each row independent identically distributed (i.i.d.)
from a distribution. Define .

Then, there are universal constants , , such that

if for a sufficiently small
constant , then

(6)

for all with probability at least .

An immediate consequence of the bound (6) is that Assump-
tion 2 holds with

(7)

for some universal constant . We make use of this condition in
Theorems 2(a) and 3(a) to follow. The proof of Proposition 1,
provided in part A of the Appendix, follows as a consequence
of a randommatrix result in [25]. In the same paper, it is demon-
strated that there are many interesting classes of nonidentity co-
variance matrices, among them Toeplitz matrices, constant cor-
relation matrices, and spikedmodels, to which Proposition 1 can
be applied [25, pp. 2248–2249].
For the special case , the following conditions are

needed for upper and lower bounds in -norm error, and lower
bounds in -prediction error.

Assumption 3 (Sparse Eigenvalue Conditions):
a) There exists a constant such that

(8)
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b) There exists a constant such that

(9)

Assumption 2 was adapted to the special case of
corresponding to exactly sparse models; however, in this case,
no slack term is involved. As we discuss at more
length in Section II-E, Assumption 3 is closely related to con-
ditions imposed in analyses of -based relaxations, such as the
restricted isometry property [5] as well as related but less re-
strictive sparse eigenvalue conditions [1], [21], [30]. Unlike the
restricted isometry property, Assumption 3 does not require that
the constants and are close to one; indeed, they can be ar-
bitrarily large (respectively small), as long as they are finite and
nonzero. In this sense, it is most closely related to the sparse
eigenvalue conditions introduced by Bickel et al. [1], and we
discuss these connections at more length in Section II-E. The
set is a union of -dimensional subspaces, which does
not span all direction of . Since the condition may be satis-
fied for , no slack term is required in the case

.
In addition, our lower bounds on -error involve the set de-

fined by intersecting the null space (or kernel) of with the
-ball, which we denote by . We

define the -kernel diameter in the -norm

(10)

The significance of this diameter should be apparent: for any
“perturbation” , it follows immediately from the
linear observation model (1) that no method could ever dis-
tinguish between and . Consequently, this

-kernel diameter is a measure of the lack of identifia-
bility of the linear model (1) over .
It is useful to recognize that Assumptions 2 and 3 are closely

related to the diameter condition (10); in particular, these as-
sumptions imply an upper bound on the -kernel diam-
eter in -norm, and hence limit the lack of identifiability of the
model.

Lemma 1:
a) Case : If Assumption 2 holds, then the

-kernel diameter in -norm is upper bounded as

b) Case : If Assumption 3(b) is satisfied, then
. (In other words, the only element

of in the kernel of is the -vector.)

These claims follow in a straightforward way from the defini-
tions given in the assumptions. In Section II-E, we discuss fur-
ther connections between our assumptions, and the conditions
imposed in analysis of the Lasso and other -based methods
[1], [5], [20], [22], for the case .

B. Universal Constants and Nonasymptotic Statements

Having described our assumptions on the design matrix,
we now turn to the main results that provide upper and lower

bounds on minimax rates. Before doing so, let us clarify our
use of universal constants in our statements. Our main goal is to
track the dependence of minimax rates on the triple ,
as well as the noise variance and the properties of the design
matrix . In our statement of the minimax rates themselves, we
use to denote a universal positive constant that is independent
of , the noise variance and the parameters of the
design matrix . In this way, our minimax rates explicitly track
the dependence of all of these quantities in a nonasymptotic
manner. In setting up the results, we also state certain condi-
tions that involve a separate set of universal constants denoted

, etc.; these constants are independent of but
may depend on properties of the design matrix.
In this paper, our primary interest is the high-dimensional

regime in which . Our theory is nonasymptotic, applying
to all finite choices of the triple . Throughout the anal-
ysis, we impose the following conditions on this triple. In the
case , we require that the sparsity index satisfies

. These bounds ensure that our probabilistic state-
ments are all nontrivial (i.e., are violated with probability less
than ). For , we require that for some choice of uni-
versal constants and , the triple
satisfies

(11)

The condition ii) ensures that the dimension is sufficiently
large so that our probabilistic guarantees are all nontrivial (i.e.,
hold with probability strictly less than ). In the regime
that is of interest in this paper, the condition i) on
is satisfied as long as the radius does not grow too quickly
in the dimension . (As a concrete example, the bound

for some is one sufficient condition.)

C. Optimal Minimax Rates in -Norm Loss

We are now ready to state minimax bounds, and we begin
with lower bounds on the -norm error.

Theorem 1 (Lower Bounds on -Norm Error): Consider the
linear model (1) for a fixed design matrix .
a) Case : Suppose that is column normal-
ized (Assumption 1 holds with ). Then,
there are universal positive constants such that
as long as , then with probability
greater than , the minimax -error over the ball

is lower bounded by

(12)
b) Case : Suppose that Assumption 3(a) holds with

. Then, there are universal constants such that
as long as , then with probability greater
than , the minimax -error is lower
bounded by

(13)
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The choice of probability is a standard convention for
stating minimax lower bounds on rates.2 Note that both lower
bounds consist of two terms. The first term corresponds to the
diameter of the set , a quantity
which reflects the extent which the linear model (1) is uniden-
tifiable. Clearly, one cannot estimate any more accurately
than the diameter of this set. In both lower bounds, the ratios

(or ) correspond to the inverse of the signal-to-
noise ratio, comparing the noise variance to the magnitude of
the design matrix measured by . As the proof will clarify, the
term in the lower bound (12), and similarly the term

in the bound (13), are reflections of the complexity of the
-ball, as measured by its metric entropy. For many classes of

random Gaussian design matrices, the second term is of larger
order than the diameter term, and hence determines the rate.
We now state upper bounds on the -normminimax rate over
balls. For these results, we require the column normaliza-

tion condition (Assumption 1), and Assumptions 2 and 3. The
upper bounds are proven by a careful analysis of constrained
least squares over the set —namely, the estimator

(14)

Theorem 2 Upper Bounds on -Norm Loss: Consider the
model (1) with a fixed design matrix that is column
normalized (Assumption 1 with ).
a) For : There are universal constants and

such that if and
satisfies Assumption 2 with and

, then

(15)

with probability greater than .
b) For : If satisfies Assumption 3(b) with ,
then there exist universal constants such that

(16)

with probability greater than . If, in
addition, the design matrix satisfies Assumption 3(a) with

, then

(17)

with probability greater than .

In the case of -error and design matrices that satisfy the
assumptions of both Theorems 1 and 2, these results identify
the minimax optimal rate up to constant factors. In particular,
for , the minimax rate in -norm scales as

(18)

2This probability may be made arbitrarily close to by suitably modifying
the constants in the statement.

whereas for , the minimax -norm rate scales as

(19)

D. Optimal Minimax Rates in -Prediction Norm

In this section, we investigate minimax rates in terms of the
-prediction loss , and provide both lower

and upper bounds on it. The rates match the rates for , but the
conditions on designmatrix enter the upper and lower bounds
in a different way, and we discuss these complementary roles in
Section II-F.

Theorem 3 (Lower Bounds on Prediction Error): Consider
the model (1) with a fixed design matrix that is
column normalized (Assumption 1 with ).
a) For : There are universal constants such

that if , and the design matrix

satisfies Assumption 2 with and

, then with probability greater than

(20)

b) For : Suppose that satisfies Assumption 3(b)
with , Assumption 3(a) with . Then,
there are universal constants such that as long as

, with probability greater than

(21)

In the other direction, we state upper bounds obtained via
analysis of least squares constrained to the ball , a pro-
cedure previously defined (14).

Theorem 4 (Upper Bounds on Prediction Error): Consider
the model (1) with a fixed design matrix .
a) Case : If satisfies the column normalization
condition, then there exist universal constants
such that

(22)

with probability greater than
.

b) Case : For any , there are universal constants
such that

(23)

with probability greater than .

We note that Theorem 4(b) was stated and proven in [4] (see
Theorem 3.1). However, we have included the statement here
for completeness and so as to facilitate discussion.
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E. Some Remarks and Comparisons

In order to provide the reader with some intuition, let us make
some comments about the scalings that appear in our results. We
comment on the conditions we impose on in the next section.
• For the case , there is a concrete interpretation of the
rate , which appears in Theorems 1(b), 2(b), 3(b),
and 4(b). Note that there are subsets of size within

, and by standard bounds on binomial coef-
ficients [10], we have . Conse-
quently, the rate corresponds to the log number
of models divided by the sample size . Note that in the
regime where for some , this rate is equiv-
alent (up to constant factors) to .

• For , the interpretation of the rate

, which appears in parts (a) of
Theorems 1–4 can be understood as follows. Suppose that
we choose a subset of size of coefficients to estimate,
and ignore the remaining coefficients. For instance,
if we were to choose the top coefficients of in
absolute value, then the fast decay imposed by the -ball
condition on would mean that the remaining
coefficients would have relatively little impact. With this
intuition, the rate for can be interpreted as the rate

that would be achieved by choosing ,
and then acting as if the problem were an instance of a
hard-sparse problem with . For such a
problem, we would expect to achieve the rate ,

which is exactly equal to . Of course, we
have only made a very heuristic argument here; we make
this truncation idea and the optimality of the particular
choice precise in Lemma 5 to follow in the rest of the
paper.

• It is also worthwhile considering the form of our results in
the special case of the Gaussian sequence model, for which

and . With these special settings, our
results yield the same scaling (up to constant factors) as
seminal work by Donoho and Johnstone [11], who deter-
mined minimax rates for -losses over -balls. Our work
applies to the case of general , in which the sample size
need not be equal to the dimension ; however, we re-

capture the same scaling as Donoho and
Johnstone [11] when specialized to the case
and . Other work by van de Geer and Loubes [31]
derives bounds on prediction error for general thresholding
estimators, again in the case , and our results agree
in this particular case as well.

• As noted in the introduction, during the process of writing
up our results, we became aware of concurrent work by
Zhang [36] on the problem of determining minimax upper
and lower bounds for -losses with -sparsity for
and . There are notable differences between our
results and the results in Zhang [36]. First, we treat the
-prediction loss not covered by Zhang, and also show

how assumptions on the design enter in complemen-
tary ways for -loss versus prediction loss. We also have

results for the important case of hard sparsity ,
not treated in Zhang’s paper. On the other hand, Zhang
provides tight bounds for general -losses , not
covered in this paper. It is also worth noting that the un-
derlying proof techniques for the lower bounds are very
different. We use a direct information-theoretic approach
based on Fano’s method and metric entropy of -balls. In
contrast, Zhang makes use of an extension of the Bayesian
least favorable prior approach used by Donoho and John-
stone [11]. Theorems 1 and 2 from his paper [36] (in the
case ) are similar to Theorems 1(a) and 2(a) in our
paper, but the conditions on the design matrix imposed
by Zhang are different from the ones imposed here. Fur-
thermore, the conditions in Zhang are not directly com-
parable so it is difficult to say whether our conditions are
stronger or weaker than his.

• Finally, in the special cases and , subsequent
work by Rigollet and Tsybakov [26] has yielded sharper
results on the prediction error [compare our Theorems 3
and 4 to (5.24) and (5.25) in their paper]. They explicitly
take effects of the rank of into account, yielding tighter
rates in the case . In contrast, our results are
based on the assumption . A comparison of
their result to our earlier posting [24] is also provided in
their work [26, pp. 15–16].

F. Role of Conditions on

In this section, we discuss the conditions on the design matrix
involved in our analysis, and the different roles that they play

in upper/lower bounds and different losses.
1) Upper and Lower Bounds Require Complementary Condi-

tions: It is worth noting that the minimax rates for -prediction
error and -norm error are essentially the same except that the
design matrix structure enters minimax rates in very different
ways. In particular, note that proving lower bounds on predic-
tion error for requires imposing relatively strong condi-
tions on the design —namely, Assumptions 1 and 2 as stated
in Theorem 3. In contrast, obtaining upper bounds on prediction
error requires very mild conditions. At the most extreme, the
upper bound for in Theorem 3 requires no assumptions
on while for only the column normalization condi-
tion is required. All of these statements are reversed for -norm
losses, where lower bounds for can be proved with only
Assumption 1 on (see Theorem 1), whereas upper bounds re-
quire both Assumptions 1 and 2.
In order to appreciate the difference between the conditions

for -prediction error and error, it is useful to consider a
toy but illuminating example. Consider the linear regression
problem defined by a design matrix
with identical columns—that is, for all .
We assume that vector is suitably scaled so that
the column-normalization condition (Assumption 1) is satisfied.
For this particular choice of design matrix, the linear observa-
tion model (1) reduces to . For the case
of hard sparsity , an elementary argument shows that
the minimax rate in -prediction error scales as . This
scaling implies that the upper bound (23) from Theorem 4 holds
(but is not tight). It is trivial to prove the correct upper bounds for
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prediction error using an alternative approach.3 Consequently,
this highly degenerate design matrix yields a very easy problem
for -prediction, since the rate is essentially low-dimen-
sional parametric. In sharp contrast, for the case of -norm
error (still with hard sparsity ), the model becomes uniden-
tifiable. To see the lack of identifiability, let denote the
unit vector with in position , and consider the two regression
vectors and , for some constant .
Both choices yield the same observation vector , and since the
choice of is arbitrary, the minimax -error is infinite. In this
case, the lower bound (13) on -error from Theorem 1 holds
(and is tight, since the kernel diameter is infinite). In contrast,
the upper bound (16) on -error from Theorem 2(b) does not
apply, because Assumption 3(b) is violated due to the extreme
degeneracy of the design matrix.
2) Comparison to Conditions Required for -Based

Methods: Naturally, our work also has some connections to the
vast body of work on -based methods for sparse estimation,
particularly for the case of hard sparsity . Based on
our results, the rates that are achieved by -methods, such as
the Lasso and the Dantzig selector, are minimax optimal up
to constant factors for -norm loss, and -prediction loss.
However the bounds on -error and -prediction error for the
Lasso and Dantzig selector require different conditions on the
design matrix. We compare the conditions that we impose in
our minimax analysis in Theorem 2(b) to various conditions
imposed in the analysis of -based methods, including the re-
stricted isometry property of Candes and Tao [5], the restricted
eigenvalue condition imposed in Meinshausen and Yu [21],
the partial Riesz condition in Zhang and Huang [35], and the
restricted eigenvalue condition of Bickel et al. [1]. We find
that in the case where is known, “optimal” methods which
are based on minimizing least squares directly over the -ball
can succeed for design matrices where -based methods are
not known to work for , as we discuss at more length
in Section II-F2 to follow. As noted by a reviewer, unlike the
direct methods that we have considered, -based methods
typically do not assume any prior knowledge of the sparsity
index, but they do require knowledge or estimation of the noise
variance.
One set of conditions, known as the restricted isometry prop-

erty (RIP) [5], is based on very strong constraints on the condi-
tion numbers of all submatrices of up to size , requiring that
they be near-isometries (i.e., with condition numbers close to ).
Such conditions are satisfied by matrices with columns that are
all very close to orthogonal [e.g., when has i.i.d. en-
tries and ], but are violated for many reasonable
matrix classes (e.g., Toeplitz matrices) that arise in statistical
practice. Zhang and Huang [35] imposed a weaker sparse Riesz
condition, based on imposing constraints (different from those
of RIP) on the condition numbers of all submatrices of up to
a size that grows as a function of and . Meinshausen and Yu
[21] impose a bound in terms of the condition numbers or min-
imum and maximum restricted eigenvalues for submatrices of
up to size . It is unclear whether the conditions in [21]

3Note that the lower bound (21) on the -prediction error from Theorem 3
does not apply to this model, since this degenerate design matrix with identical
columns does not satisfy Assumption 3(b).

are weaker or stronger than the conditions in [35]. Bickel et al.
[1] show that their restricted eigenvalue condition is less severe
than both the RIP condition [5] and an earlier set of restricted
eigenvalue conditions due to Meinshausen and Yu [21].
Here we state a restricted eigenvalue condition that is very

closely related to the condition imposed in [1], and as shown by
Negahban et al. [22], and is sufficient for bounding the -error
in the Lasso algorithm. In particular, for a given subset

and constant , let us define the set

(24)

where is the true parameter. With this notation, the restricted
eigenvalue condition in [22] can be stated as follows: there ex-
ists a function such that

for all

Negahban et al. [22] show that under this restricted eigen-
value condition (under the title restricted strong convexity),
the Lasso estimator has squared -error upper bounded by

. For the case , the analogous

restricted lower eigenvalue condition we impose is Assumption
2. Recall that this states that for , the eigenvalues
restricted to the set

and

are bounded away from zero.
Both conditions impose lower bounds on the restricted eigen-

values over sets of weakly sparse vectors.
3) Comparison With Restricted Eigenvalue Condition in [1]:

It is interesting to compare the restricted eigenvalue condition in
[1] with the condition underlying Theorem 2, namely Assump-
tion 3(b). In the case , the condition required by the esti-
mator that performs least squares over the -ball—namely, the
form of Assumption 3(b) used in Theorem 2(b)—is not stronger
than the restricted eigenvalue condition in [1]. This fact was pre-
viously established by Bickel et al. (see [1, p. 7]). We now pro-
vide a simple pedagogical example to show that the -based
relaxation can fail to recover the true parameter while the op-
timal -based algorithm succeeds. In particular, let us assume
that the noise vector , and consider the design matrix

corresponding to a regression problem with and .
Say that the regression vector is hard sparse with
one nonzero entry (i.e., ). Observe that the vector

belongs to the null space of , and more-
over but . All the submatrices
of have rank two; we have , so that
by known results from [9] (see, in particular, their Lemma 3.1),
the condition implies that (in the noise-
less setting ) the -based algorithm can exactly recover
any -sparse vector. On the other hand, suppose that, for in-
stance, the true regression vector is given by .



RASKUTTI et al.: MINIMAX RATES OF ESTIMATION FOR HIGH-DIMENSIONAL LINEAR REGRESSION OVER -BALLS 6983

If applied to this problem with no noise, the Lasso would in-
correctly recover the solution since

.
Although this example is low dimensional with
, higher dimensional examples of design matrices that

satisfy the conditions required for the minimax rate but not
satisfied for -based methods may be constructed using similar
arguments. This construction highlights that there are instances
of design matrices for which -based methods fail to
recover the true parameter for while the optimal
-based algorithm succeeds.
In summary, for the hard sparsity case , methods

based on -relaxation can achieve the minimax optimal rate
for -error. However the current analyses of these

-methods [1], [5], [21], [30] are based on imposing stronger
conditions on the design matrix than those required by the
estimator that performs least squares over the -ball with
known.

III. PROOFS OF MAIN RESULTS

In this section, we provide the proofs of our main theorems,
with more technical lemmas and their proofs deferred to the Ap-
pendix. To begin, we provide a high-level overview that outlines
the main steps of the proofs.

A. Basic Steps for Lower Bounds

The proofs for the lower bounds follow an information-theo-
retic method based on Fano’s inequality [10], as used in classical
work on nonparametric estimation [16], [33], [34]. A key ingre-
dient is a sharp characterization of the metric entropy structure
of balls [7], [17]. At a high level, the proof of each lower
bound follows three basic steps. The first two steps are general
and apply to all the lower bounds in this paper, while the third
is different in each case:
1) Let be the cardinality of a maximal
packing of the ball in some metric , say
with elements . A precise definition of a
packing set is provided in the next section. A standard
argument (e.g., [15], [33], and [34]) yields a lower bound
on the minimax rate in terms of the error in a multiway
hypothesis testing problem: in particular, we have

where the random vector is uniformly distributed
over the packing set , and the estimator
takes values in the packing set. For the lower bounds on
-norm error (Theorem 1), we have , while

for the lower bounds on prediction error, the norm is
the prediction seminorm.

2) Next, we lower bound by applying Fano’s in-
equality [10]

where is the mutual information between random
parameter in the packing set and the observation
vector . (Recall that for two random vari-
ables and , the mutual information is given by

.) The distribution
is the conditional distribution of on , where is the
uniform distribution on over the packing set and is
the Gaussian distribution induced by model (1).

3) The final and most challenging step involves upper
bounding so that . For each
lower bound, the approach to upper bounding
is slightly different. Our proof for is based on
generalized Fano method [14], whereas for the case

, we upper bound by a more intricate
technique introduced by Yang and Barron [33]. We derive
an upper bound on the -covering set for with
respect to the -prediction seminorm. Using Lemma 3
in Section III-C2 and the column normalization condition
(Assumption 1), we establish a link between covering
numbers in -prediction seminorm to covering numbers
in -norm. Finally, we choose the free parameters
and so as to optimize the lower bound.

B. Basic Steps for Upper Bounds

The proofs for the upper bounds involve direct analysis of the
natural estimator that performs least squares over the -ball:

The proof is constructive and involves two steps, the first of
which is standard while the second step is more specific to each
problem.
1) Since the vector satisfies the constraint
meaning is a feasible point, we have

. Defining and performing some
algebra, we obtain the inequality

2) The second and more challenging step involves computing
upper bounds on the supremum of the Gaussian process

over , which allows us to upper bound .
For each of the upper bounds, our approach is slightly dif-
ferent in the details. Common steps include upper bounds
on the covering numbers of the ball , as well as
on the image of these balls under the mapping
. We also make use of some chaining and peeling re-

sults from empirical process theory (e.g., [29]). For upper
bounds in -norm error (Theorem 2), Assumptions 2 for

and 3(b) for are used to upper bound in
terms of .

C. Packing, Covering, and Metric Entropy

The notion of packing and covering numbers play a crucial
role in our analysis, so we begin with some background, with
emphasis on the case of covering/packing for -balls in
metric.

Definition 1 (Covering and Packing Numbers): Consider a
compact metric space consisting of a set and a metric

.
a) An -covering of in the metric is a collection

such that for all , there exists
some with . The -covering
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number is the cardinality of the smallest
-covering.

b) A -packing of in the metric is a collection
such that for all

. The -packing number is the cardi-
nality of the largest -packing.

It is worth noting that the covering and packing numbers are
(up to constant factors) essentially the same. In particular, the in-
equalities are stan-
dard (e.g., [23]). Consequently, given upper and lower bounds
on the covering number, we can immediately infer similar upper
and lower bounds on the packing number. Of interest in our re-
sults is the logarithm of the covering number , a
quantity known as the metric entropy.
A related quantity, frequently used in the operator theory liter-

ature [7], [17], [27], are the (dyadic) entropy numbers ,
defined as follows for :

(25)

By definition, note that we have if and only if
. For the remainder of this paper, the only

metric used will be , so to simplify notation, we denote
the -packing and covering numbers by and .
1) Metric Entropies of -Balls: Central to our proofs is the

metric entropy of the ball when the metric is the
-norm, a quantity which we denote by . The

following result, which provides upper and lower bounds on this
metric entropy that are tight up to constant factors, is an adapta-
tion of results from the operator theory literature [13], [17]; see
part A of the Appendix for the details. All bounds stated here
apply to a dimension .

Lemma 2: For there is a constant , depending

only on such that for all

(26)

Conversely, suppose in addition that and

for some fixed , depending
only on . Then, there is a constant , depending only
on , such that

(27)

Remark: In our application of the lower bound (27), our typ-

ical choice of will be of the order . It can be
verified that under the condition (11) from Section II-B, we are
guaranteed that lies in the range required for the upper and
lower bounds (26) and (27) to be valid.

2) Metric Entropy of -Convex Hulls: The proofs of the
lower bounds all involve the KL divergence between the dis-
tributions induced by different parameters and in .
Here we show that for the linear observationmodel (1), these KL
divergences can be represented as -convex hulls of the columns
of the design matrix, and provide some bounds on the associated
metric entropy.

For two distributions and that have densities and
with respect to some basemeasure , the KL divergence is given
by . We use to denote the dis-
tribution of under the linear regression model—in par-
ticular, it corresponds to the distribution of a
random vector. A straightforward computation then leads to

(28)

Note that the KL divergence is proportional to the squared
prediction seminorm. Hence control of KL divergences is equiv-
alent up to constant to control of the prediction seminorm. Con-
trol of KL divergences requires understanding of the metric en-
tropy of the -convex hull of the rescaled columns of the design
matrix . In particular, we define the set

We have introduced the normalization by for later tech-
nical convenience.
Under the column normalization condition, it turns out that

the metric entropy of this set with respect to the -norm is es-
sentially no larger than the metric entropy of , as sum-
marized in the following.

Lemma 3: Suppose that satisfies the column nor-
malization condition (Assumption 1 with constant ) and

. Then, there is a constant

depending only on such that

The proof of this claim is provided in part A of the Appendix.
Note that apart from a different constant, this upper bound on
the metric entropy is identical to that for from
Lemma 2.

D. Proof of Lower Bounds

We begin by proving our main results that provide lower
bounds on minimax rates, namely Theorems 1 and 3.
Proof of Theorem 1: Recall that for -norm error, the lower

bounds in Theorem 1 are the maximum of two expressions, one
corresponding to the diameter of the set intersected with
the -ball, and the other correspond to the metric entropy of the
-ball.
We begin by deriving the lower bound based on the diameter

of . The minimax rate is lower
bounded as

where the inequality follows from the inclusion
. For any , we have ,

so that contains no information about . Con-
sequently, once is chosen, there always exists an element

such that .
Indeed, if , then the adver-
sary chooses . On the other hand, if

, then there exists such
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that . By triangle inequality, we then
have . Overall,
we conclude that

In the following subsections, we follow steps 1)–3) outlined ear-
lier which yield the second term in the lower bounds for -norm
error and the lower bounds on -prediction error. As has al-
ready been mentioned, steps 1) and 2) are general, but step 3) is
different in each case.
Proof of Theorem 1(a): Let be the cardi-

nality of a maximal packing of the ball in the metric,
say with elements . Then, by the standard argu-
ments referred to earlier in step 1)

where the random vector is uniformly distributed over
the packing set , and the estimator takes values
in the packing set. Applying Fano’s inequality [step 2)] yields
the lower bound

(29)

where is the mutual information between random pa-
rameter in the packing set and the observation vector .
It remains to upper bound the mutual information [step 3)];

we do so using a procedure due to Yang and Barron [33]. It is
based on covering the model space under
the square-root KL divergence. As noted prior to Lemma 3,
for the Gaussian models given here, this square-root KL diver-
gence takes the form .
Let be the minimal cardinality of an -cov-
ering of in -norm. Using the upper bound on the
metric entropy of provided by Lemma 3, we con-
clude that there exists a set such that for
all , there exists some index such that

for some . Following the
argument of Yang and Barron [33], we obtain that the mutual
information is upper bounded as

Combining this upper bound with the Fano lower bound (29)
yields

(30)

The final step is to choose the packing and covering radii ( and
, respectively) such that the lower bound (30) is greater than
. In order to do so, suppose that we choose the pair

such that

(31a)

(31b)

As long as , we are then guaranteed that

as desired.
It remains to determine choices of and

that satisfy the relations (31). From Lemma 2, re-
lation (31a) is satisfied by choosing such that

, or equivalently such

that

In order to satisfy the bound (31b), it suffices to choose
such that

or equivalently such that

Substituting into (12), we obtain

for some absolute constant . This completes the proof of
Theorem 1(a).
Proof of Theorem 1(b): In order to prove Theorem 1(b), we

require some definitions and an auxiliary lemma. For any integer
, we define the set

Although the set depends on , we frequently drop this de-
pendence so as to simplify notation. We define the Hamming
distance between the vectors
and . Next we require the following known result [3].

Lemma 4: For even and , there exists a subset

with cardinality such that

for all .

For completeness, we provide a proof of Lemma 4 in
part A of the Appendix. Note that if and/or is odd, we can
embed into a and/or -dimensional hypercube and
the result holds. Now consider a rescaled version of the set ,

say for some to be chosen. For any elements

, we have
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Therefore, by applying Lemma 4 and noting that
for all , we have the following bounds on the -norm

of their difference for all elements :

(32a)

and

(32b)

Consequently, the rescaled set is an -packing set

of in norm with elements, say
. Using this packing set, we now follow the same

classical steps as in the proof of Theorem 1(a), up until the Fano
lower bound (29) [steps 1) and 2)].
At this point, we use an alternative upper bound on

the mutual information [step 3)], namely the bound
, which follows from the

convexity of mutual information [10]. For the linear observa-
tion model (1), we have .
Since by construction, from the assumptions
on and the upper bound (32b), we conclude that

Substituting this upper bound into the Fano lower bound (29),
we obtain

Setting ensures that this probability is at
least . Consequently, combined with the lower bound (12),
we conclude that

As long as the ratio , we have
for some constant , from which the result

follows.
Proof of Theorem 3: We use arguments similar to the proof

of Theorem 1 in order to establish lower bounds on prediction
error .
Proof of Theorem 3(a): For some universal constant

to be chosen, define

(33)

and let be an packing of the ball in
the metric, say with a total of elements.
We first show that if is sufficiently large, then this set is
also a -packing set in the prediction (semi)norm. From
the theorem assumptions, we may choose universal con-

stants such that and

. From Assumption 2, for each ,
we are guaranteed that

(34)

as long as . Consequently, for any
fixed , we are guaranteed that

where inequality i) follows since is a -packing set.
Here step ii) follows because the theorem conditions imply that

and we may choose as small as we please. (Note that
all of these statements hold for an arbitrarily small choice
of , which we will choose later in the argument.)

Since by assumption, the

lower bound (34) guarantees that form a
-packing set in the prediction (semi)norm .

Given this packing set, we now follow a standard approach,
as in the proof of Theorem 1(a), to reduce the problem of lower
bounding the minimax error to the error probability of a mul-
tiway hypothesis testing problem. After this step, we apply the
Fano inequality to lower bound this error probability via

where now represents the mutual information4 be-
tween random parameter (uniformly distributed over the
packing set) and the observation vector .
From Lemma 3, the -covering number of the set

is upper bounded (up to a constant factor) by the
covering number of in -norm, which we denote by

. Following the same reasoning as in Theorem
2(a), the mutual information is upper bounded as

Combined with the Fano lower bound, is lower
bounded by

(35)

Last, we choose the packing and covering radii ( and re-
spectively) such that the lower bound (35) remains bounded
below by . As in the proof of Theorem 1(a), it suffices to
choose the pair to satisfy the relations (31a) and (31b).

4Despite the difference in notation, this mutual information is the same as
, since it measures the information between the observation vector

and the discrete index .
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The same choice of ensures that relation (31a) holds; more-
over, by making a sufficiently small choice of the universal con-
stant in the definition (33) of , we may ensure that the rela-
tion (31b) also holds. Thus, as long as , we are then
guaranteed that

as desired.
Proof of Theorem 3(b): Recall the assertion of Lemma 4,

which guarantees the existence of a set is an -packing
set in -norm with elements, say

, such that the bounds (32a) and (32b) hold, and
such that . By construction, the difference
vectors , so that by Assumption 3(a), we
have

(36)

In the reverse direction, since Assumption 3(b) holds, we have

(37)

We can follow the same steps as in the proof of Theorem 1(b),
thereby obtaining an upper bound of the mutual information of
the form . Combined with the Fano lower
bound, we have

Remembering the extra factor of from the lower bound (37),
we obtain the lower bound

Repeating the argument from the proof of Theorem 1(b) allows
us to further lower bound this quantity in terms of ,
leading to the claimed form of the bound.

E. Proof of Achievability Results

We now turn to the proofs of our main achievability results,
namely Theorems 2 and 4, that provide upper bounds on min-
imax rates. We prove all parts of these theorems by analyzing
the family of -estimators

(38)

Note that (38) is a nonconvex optimization problem for
, so it is not an algorithm that would be implemented in

practice. Step 1) for upper bounds provided above implies that
if , then

(39)

The remaining sections are devoted to step 2), which involves

controlling for each of the upper bounds.
Proof of Theorem 2: We begin with the proof of Theorem 2,

in which we upper bound the minimax rate in squared -norm.
Proof of Theorem 2(a): Recall that this part of the theorem

deals with the case . We split our analysis into two
cases, depending on whether the error is smaller or larger
than .
Case 1: First, suppose that . Recall that

the theorem is based on the assumption .
As long as the constant is sufficiently small [but still
independent of the triple ], we can assume that

This inequality, together with the assumption

imply that the error satisfies the
bound (15) for all .
Case 2: Otherwise, we may assume that

. In this case, Assumption 2 implies that

, and hence, in conjunction with the
inequality (39), we obtain

Since and the columns of are normalized,
each entry of is zero-mean Gaussian vector with vari-
ance at most . Therefore, by union bound and standard
Gaussian tail bounds, we obtain that the inequality

(40)

holds with probability greater than .
It remains to upper bound the -norm in terms of the -norm

and a residual term. Since both and belong to , we
have . We exploit the following
lemma.

Lemma 5: For any vector and any positive
number , we have

(41)

Although this type of result is standard (e.g., [11]), we provide
a proof in part A of the Appendix.

We can exploit Lemma 5 by setting ,

thereby obtaining the bound , and hence

Viewed as a quadratic in the indeterminate , this
inequality is equivalent to the constraint
, with

and
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Since and the positive root of occurs at
, some algebra shows that we

must have

with high probability [stated in Theorem 2(a)], which completes
the proof of Theorem 2(a).
Proof of Theorem 2(b): In order to establish the bound (16),

we follow the same steps with , thereby obtaining
the following simplified form of the bound (40):

By definition of the estimator, we have , from which
we obtain . Canceling out a factor of
from both sides yields the claim (16).
Establishing the sharper upper bound (17) requires more pre-

cise control on the right-hand side of the inequality (39). The
following lemma, proved in part A of the Appendix, provides
this control.

Lemma 6: Suppose that for all ,
Then there are universal constants such that for any

, we have

with probability greater than .

Lemma 6 holds for a fixed radius , whereas we would
like to choose , which is a random quantity. To
extend Lemma 6 so that it also applies uniformly over an
interval of radii (and hence also to a random radius within
this interval), we use a “peeling” result, stated as Lemma 9 in
part B of the Appendix. In particular, we define the event as

Then, we claim that

for some . This claim follows from Lemma 9
in part B of the Appendix by choosing the function

, the set , the se-
quence , and the functions , and

. For any ,

we are guaranteed that , and
, so that Lemma 9 may be applied.

We use a similar peeling argument for two of our other achiev-
ability results.
Returning to the main thread, we have

with high probability. By Assumption 3(b), we have
. Canceling out a factor of

and rearranging yields with high
probability as claimed.
Proof of Theorem 4: We again make use of the elementary

inequality (39) to establish upper bounds on the prediction error.
Proof of Theorem 4(a): So as to facilitate tracking of con-

stants in this part of the proof, we consider the rescaled obser-
vation model, in which and . Note
that if satisfies Assumption 1 with constant , then sat-
isfies it with constant . Moreover, if we establish a
bound on , then multiplying by recovers a
bound on the original prediction loss.
We first deal with the case . In particular, we have

where the second inequality holds with probability
, using standard Gaussian tail bounds. (In

particular, since , the variate is
zero-mean Gaussian with variance at most .) This com-
pletes the proof for .
Turning to the case , in order to establish

upper bounds over , we require the following
analog of Lemma 6, proved in part A of the Appendix.
So as to lighten notation, let us introduce the shorthand

.

Lemma 7: For , suppose that there is a universal
constant such that . Then, there are
universal constants , , such that for any fixed
radius with , we have

with probability greater than .

Once again, we require the peeling result (Lemma 9 from
part B of the Appendix) to extend Lemma 7 to hold for random
radii. In this case, we define the event as

then by Lemma 9 with the choices
, and

, we have
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Returning to the main thread, from the basic inequality (39),
when the event from (42) holds, we have

Canceling out a factor of , squaring both sides, multi-
plying by , and simplifying yields

as claimed.
Proof of Theorem 4(b): For this part, we require the following

lemma, proven in part B of the Appendix:

Lemma 8: As long as , then for any , we have

with probability greater than .

By using a peeling technique (see Lemma 9 in
part B of the Appendix), we now extend the result to hold
uniformly over all radii. Define the event as

such that

We now apply Lemma 9 with the function
, the set , the sequence , and

the functions and .

We take , which implies that

, and in Lemma 9. Conse-
quently, we are guaranteed that

Combining this tail bound with the basic inequality (39), we
conclude that

with high probability, from which the result follows.

IV. CONCLUSION

The main contribution of this paper is to obtain optimal min-
imax rates of convergence for the linear model (1) under high-
dimensional scaling, in which the sample size and problem di-
mension are allowed to scale, for general design matrices .
We provided matching upper and lower bounds for the -norm

and -prediction loss, so that the optimal minimax rates are de-
termined in these cases. To our knowledge, this is the first paper
to present minimax optimal rates in -prediction error for gen-
eral design matrices and general . We also derive
optimal minimax rates in -error, with similar rates obtained in
concurrent work by Zhang [36] under different conditions on .
Apart from the rates themselves, our analysis highlights how

conditions on the design matrix enter in complementary
manners for the -norm and -prediction loss functions. On
the one hand, it is possible to obtain lower bounds on -norm
error (see Theorem 1) or upper bounds on -prediction error
(see Theorem 4) under very mild assumptions on —in par-
ticular, our analysis requires only that the columns of
have bounded -norms (see Assumption 1). On the other hand,
in order to obtain upper bounds on -norm error (Theorem 2)
or lower bound on -norm prediction error (Theorem 3), the
design matrix must satisfy, in addition to column normal-
ization, other more restrictive conditions. Indeed both lower
bounds in prediction error and upper bounds in -norm error
require that elements of are well separated in prediction
seminorm . In particular, our analysis was based
on imposing on a certain type of restricted lower eigenvalue
condition on measured over the -ball, as formalized
in Assumption 2. As shown by our results, this lower bound is
intimately related to the degree of nonidentifiability over the
-ball of the high-dimensional linear regression model.

APPENDIX

A. Proof of Proposition 1

Under the stated conditions, Theorem 1 from [25] guarantees
that

(42)

for all with probability greater than .
When , we can use Lemma 5 which guarantees
that

for all . We now set and substitute the result
into the lower bound (42). Following some algebra, we find that

As long as , we are
guaranteed that

for all as claimed.
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B. Proof of Lemma 2

The result is obtained by inverting known results on (dyadic)
entropy numbers of -balls; there are some minor technical
subtleties in performing the inversion. For a -dimensional
ball with , it is known [13], [17], [27] that for all in-
tegers , the dyadic entropy numbers of the ball

with respect to the -norm scale as

(43)

Moreover, for , we have .
We first establish the upper bound on the metric entropy.

Since , we have

Inverting this inequality for and allowing
for a ball radius yields

(44)

as claimed. The conditions and

and ensures that .
We now turn to proving the lower bound on the metric en-

tropy, for which we require the existence of some fixed
such that . Under this assumption, we have

, and hence

Accounting for the radius as was done for the upper bound
yields

as claimed.
Finally, let us check that our assumptions on needed to per-

form the inversion are ensured by the conditions that we have
imposed on . The condition is ensured by setting

. Turning to the condition , from the bound (44)

on , it suffices to choose such that

. This condition is ensured by enforcing the lower bound

for some .

C. Proof of Lemma 3

We deal first with (dyadic) entropy numbers, as previously
defined (25), and show that is
upper bounded by

(45)

We prove this intermediate claim by combining a number of
known results on the behavior of dyadic entropy numbers.
First, using Corollary 9 from [13], for all

is upper bounded as follows:

Using Corollary 2.4 from [6], is
upper bounded as follows:

where denotes the norm of viewed as an operator
from . More specifically, we have

Overall, we have shown that

, as claimed. Finally,

under the stated assumptions, we may invert the upper bound
(45) by the same procedure as in the proof of Lemma 2 (see
part B of the Appendix), thereby obtaining the claim.

D. Proof of Lemma 4

Our proof is inspired by related results from the approxima-
tion theory literature (see, e.g., [17] and [3]). For each even in-
teger , let us define the set

(46)

Note that the cardinality of this set is , and more-
over, we have for all pairs . We now
define the Hamming distance on via

. For some fixed element , consider the
set . Note that its cardinality is
upper bounded as
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To see this, note that we simply choose a subset of size
where and agree and then choose the other coordinates
arbitrarily.
Now consider a set with cardinality at most

. The set of elements that are within

Hamming distance of some element of has cardinality
at most

for some

where the final inequality holds since . Con-
sequently, for any such set with cardinality , there ex-
ists a such that for all . By
inductively adding this element at each round, we then create a
set with with such that for
all .
To conclude, let us lower bound the cardinality . We have

where the final inequality uses the fact that the ratio is
decreasing as a function of (see [17, pp. 122–123] and [3,
Lemma 4] for details).

E. Proof of Lemma 5

Defining the set , we have

Since for all , we obtain

Finally, we observe , from which
the result follows.

F. Proof of Lemma 6

For a given radius , define the set

and the random variables given by

For a given to be chosen, let us upper bound the
minimal cardinality of a set that covers up to -ac-
curacy in -norm. We claim that we may find such a covering

set with cardinality
that is upper bounded as

To establish this claim, note that here are subsets of size
within . Moreover, for any -sized subset, there
is an -covering in -norm of the ball with at most

elements (e.g., [19]).
Consequently, for each , we may find some

such that . By triangle inequality, we then have

Given the assumptions on , we have
. Moreover, since the variate

is with degrees of freedom, we have with
probability , using standard tail bounds (see
part B of the Appendix). Putting together the pieces, we con-
clude that

with high probability. Taking the supremum over on both sides
yields

It remains to bound the finite maximum over the covering
set. We begin by observing that each variate is zero-
mean Gaussian with variance . Under the given
conditions on and , this variance is at most , so
that by standard Gaussian tail bounds, we conclude that

(47)

with probability greater than .

Finally, suppose that . With this choice and
recalling that by assumption, we obtain

where the final line uses standard bounds on binomial coeffi-
cients. Since by assumption, we conclude that our
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choice of guarantees that . Sub-
stituting these relations into the inequality (47), we conclude
that

as claimed. Since , this event
occurs with probability at least

as claimed.

G. Proof for Theorem 4

This Appendix is devoted to the proofs of technical lemmas
used in Theorem 4.
1) Proof of Lemma 7: For , let us define the set

We seek to bound the random variable
, which we do by a chaining re-

sult—in particular, Lemma 3.2 in [29]. Adopting the notation
from this lemma, we seek to apply it with , and .
Suppose that , and

(48a)

(48b)

where is the covering number for in the

-prediction norm (defined by ). As long as
, Lemma 3.2 guarantees that

By tail bounds on random variables (see
part B of the Appendix), we have

. Consequently, we conclude that

For some , let us set

and let us verify that the conditions (48a) and (48b) hold. Given
our choice of , we find that

By the condition (11), the dimension is lower bounded so that
condition (48a) holds. Turning to verification of the inequality
(48b), we first provide an upper bound for . Setting

and from the definition (29) of , we
have

We may apply the bound in Lemma 3 to conclude that

is upper bounded by .
Using this upper bound, we have

Using the definition of , the condition

, and the condition (11), it

is straightforward to verify that lies in the range of
specified in Lemma 3.
Using this upper bound, let us verify that the inequality (48b)

holds as long as , as assumed

in the statement of Lemma 7. With our choice of , we have

so that condition (48b) will hold as long as we choose
large enough. Overall, we conclude that

,
which concludes the proof.
2) Proof of Lemma 8: First, consider a fixed subset

of cardinality . Applying the singular value
decomposition to the submatrix , we have

, where has orthonormal columns, and
. By construction, for any , we have

. Since has orthonormal columns, the vector
has i.i.d. entries. Consequently, for any

such that , we have
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Now the variate is with degrees of freedom, so
that by standard tail bounds (see part B of the Appendix), we
have

valid for all

Setting and noting that by
assumption, we have (after some algebra)

We have thus shown that for each fixed subset, we have the
bound

with probability at least .

Since there are subsets of size , applying a
union bound yields that

as claimed.

H. Peeling Argument

In this Appendix, we state a result on large deviations of
the constrained optimum of random objective functions of the
form , where is the vector to be optimized
over, and is some random vector. Of interest is the problem

, where is some nonneg-
ative and increasing constraint function, and is a nonempty
set. With this setup, our goal is to bound the probability of the
event defined by

where is nonnegative and strictly increasing.

Lemma 9: Suppose that for all , and that there
exists some constant such that for all , we have the
tail bound

for some . Then, we have

Proof: Our proof is based on a standard peeling technique
(e.g., see [29, p. 82]). By assumption, as varies over , we
have . Accordingly, for , defining
the sets

we may conclude that if there exists such that
, then this must occur for some and . By

union bound, we have

such that

If and , then by definition of ,
we have . Since for any
, we have , we combine these inequalities to

obtain

fromwhich the stated claim follows by upper bounding this geo-
metric sum.

I. Some Tail Bounds for -Variates

The following large-deviations bounds for centralized are
taken from [18]. Given a centralized -variate with de-
grees of freedom, then for all

(49a)

and

(49b)

The following consequence of this bound is useful: for ,
we have

(50)

Starting with the bound (49a), setting yields
, Since for

, we have for all .
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