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Abstract

Methods based onℓ1-relaxation, such as basis pursuit and the Lasso, are very popular for sparse re-
gression in high dimensions. The conditions for success of these methods are now well-understood:
(1) exact recovery in the noiseless setting is possible if and only if the design matrixX satisfies the
restricted nullspace property, and (2) the squaredℓ2-error of a Lasso estimate decays at the minimax
optimal ratek logp

n , wherek is the sparsity of thep-dimensional regression problem with additive
Gaussian noise, whenever the design satisfies a restricted eigenvalue condition. The key issue is
thus to determine when the design matrixX satisfies these desirable properties. Thus far, there
have been numerous results showing that the restricted isometry property, which implies both the
restricted nullspace and eigenvalue conditions, is satisfied when all entries ofX are independent
and identically distributed (i.i.d.), or the rows are unitary. This paper proves directly that the re-
stricted nullspace and eigenvalue conditions hold with high probability for quite general classes of
Gaussian matrices for which the predictors may be highly dependent, and hence restricted isometry
conditions can be violated with high probability. In this way, our results extend the attractive theo-
retical guarantees onℓ1-relaxations to a much broader class of problems than the case of completely
independent or unitary designs.

Keywords: Lasso, basis pursuit, random matrix theory, Gaussian comparison inequality, concen-
tration of measure

1. Introduction

Many fields in modern science and engineering—among them computational biology, astrophysics,
medical imaging, natural language processing, and remote sensing—involve collecting data sets in
which the dimension of the datap exceeds the sample sizen. Problems of statistical inference in
this high-dimensional setting have attracted a great deal of attention in recent years. One concrete
instance of a high-dimensional inference problem concerns the standard linear regression model,
in which the goal is to estimate a vectorβ∗ ∈ R

p that connects a real-valued responsey to a vec-
tor of covariatesX = (X1, . . . ,Xp). In the settingp ≫ n, the classical linear regression model is
unidentifiable, so that it is not meaningful to estimate the parameter vectorβ∗ ∈ R

p. However,
many high-dimensional regression problems exhibit special structure thatcan lead to an identifiable
model. In particular, sparsity in the regression vectorβ∗ is an archetypal example of such struc-
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ture, and there is now a substantial and rapidly growing body of work on high-dimensional linear
regression with sparsity constraints.

Using theℓ1-norm to enforce sparsity has been very successful, as evidenced by the widespread
use of methods such as basis pursuit (Chen et al., 1998), the Lasso (Tibshirani, 1996) and the
Dantzig selector (Candes and Tao, 2007). There is now a well-developed theory on what condi-
tions are required on the design matrixX ∈ R

n×p for suchℓ1-based relaxations to reliably estimate
β∗. In the case of noiseless observation models, it is known that imposing arestricted nullspace
propertyon the design matrixX ∈ R

n×p is both necessary and sufficient for the basis pursuit linear
program to recoverβ∗ exactly. The nullspace property and its link to the basis pursuit linear pro-
gram has been discussed in various papers (Cohen et al., 2009; Donoho and Huo, 2001; Feuer and
Nemirovski, 2003). In the case of noisy observations, exact recovery of β∗ is no longer possible,
and one goal is to obtain an estimateβ̂ such that theℓ2-error‖β̂−β∗‖2 is well-controlled. To this
end, various sufficient conditions for the success ofℓ1-relaxations have been proposed, including
restricted eigenvalue conditions (Bickel et al., 2009; Meinshausen and Yu, 2009) and the restricted
Riesz property (Zhang and Huang, 2008). Of the conditions mentioned, one of weakest known suf-
ficient conditions for boundingℓ2-error are the restricted eigenvalue (RE) conditions due to Bickel
et al. (2009) and van de Geer (2007). In this paper, we consider a restricted eigenvalue condition
that is essentially equivalent to the RE condition in Bickel et al. (2009). As shown by Raskutti et al.
(2009), a related restriction is actually necessary for obtaining good control on theℓ2-error in the
minimax setting.

Thus, in the setting of linear regression with random design, the interesting question is the fol-
lowing: for what ensembles of design matrices do the restricted nullspace and eigenvalue conditions
hold with high probability? To date, the main routes to establishing these properties have been via
either incoherence conditions (Donoho and Huo, 2001; Feuer and Nemirovski, 2003) or via the re-
stricted isometry property (Candes and Tao, 2005), both of which are sufficient but not necessary
conditions (Cohen et al., 2009; van de Geer and Buhlmann, 2009). The restricted isometry property
(RIP) holds with high probability for various classes of random matrices withi.i.d. entries, includ-
ing sub-Gaussian matrices (Mendelson et al., 2008) with sample sizen= Ω(k log(p/k)), and for
i.i.d. subexponential random matrices (Adamczak et al., 2009) provided that n= Ω(k log2(p/k)). It
has also been demonstrated that RIP is satisfied for matrices from unitary ensembles (e.g., Guédon
et al., 2007, 2008; Romberg, 2009; Rudelson and Vershynin, 2008),for which the rows are gener-
ated based on independent draws from a set of uncorrelated basis functions.

Design matrices based on i.i.d. or unitary ensembles are well-suited to the task ofcompressed
sensing (Candes and Tao, 2005; Donoho, 2006), where the matrixX can be chosen by the user.
However, in most of machine learning and statistics, the design matrix is not under control of the
statistician, but rather is specified by nature. As a concrete example, suppose that we are fitting
a linear regression model to predict heart disease on the basis of a set of p covariates (e.g., diet,
exercise, smoking). In this setting, it is not reasonable to assume that the different covariates are
i.i.d. or unitary—for instance, one would expect a strong positive correlation between amount
of exercise and healthiness of diet. Nonetheless, at least in practice,ℓ1-methods still work very
well in settings where the covariates are correlated and non-unitary, butcurrently lacking is the
corresponding theory that guarantees the performance ofℓ1-relaxations for dependent designs.

The main contribution of this paper is a direct proof that both the restricted nullspace and eigen-
value conditions hold with high probability for a broad class of dependent Gaussian design matrices.
In conjunction with known results onℓ1-relaxation, our main result implies as corollaries that the
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basis pursuit algorithm reliably recoversβ∗ exactly in the noiseless setting, and that in the case
of observations contaminated by Gaussian noise, the Lasso and Dantzig selectors produces a so-

lution β̂ such that‖β̂− β∗‖2 = O(
√

k logp
n ). Our theory requires that the sample sizen scale as

n = Ω(k logp), wherek is the sparsity index of the regression vectorβ∗ and p is its dimensions.
For sub-linear sparsity (k/p→ 0), this scaling matches known optimal rates in a minimax sense for
the sparse regression problem (Raskutti et al., 2009), and hence cannot be improved upon by any
algorithm. The class of matrices covered by our result allows for correlation among different covari-
ates, and hence covers many matrices for which restricted isometry or incoherence conditions fail
to hold but the restricted eigenvalue condition holds. Interestingly, one caneven sample the rows
of the design matrixX from a multivariate Gaussian with a degenerate covariance matrixΣ, and
nonetheless, our results still guarantee that the restricted nullspace and eigenvalue conditions will
hold with high probability (see Section 3.3). Consequently, our results extend theoretical guarantees
on ℓ1-relaxations with optimal rates of convergence to a much broader class of random designs.

The remainder of this paper is organized as follows. We begin in Section 2 withbackground on
sparse linear models, the basis pursuit and Lassoℓ1-relaxations, and sufficient conditions for their
success. In Section 3, we state our main result, discuss its consequencesfor ℓ1-relaxations, and
illustrate it with some examples. Section 4 contains the proof of our main result, which exploits
Gaussian comparison inequalities and concentration of measure for Lipschitz functions.

2. Background

We begin with background on sparse linear models and sufficient conditions for the success of
ℓ1-relaxations.

2.1 High-dimensional Sparse Models andℓ1-relaxation

In the classical linear model, a scalar outputyi ∈ R is linked to ap-dimensional vectorXi ∈ R
p of

covariates via the relationyi = XT
i β∗+wi , wherewi is a scalar observation noise. If we make a set

of n such observations, then they can be written in the matrix-vector form

y = Xβ∗+w, (1)

wherey ∈ R
n is the vector of outputs, the matrixX ∈ R

n×p is the set of covariates (in which row
Xi ∈ R

p represents the covariates forith observation), andw ∈ R
n is a noise vector wherew ∼

N (0,σ2In×n). Given the pair(y,X), the goal is to estimate the unknown regression vectorβ∗ ∈ R
p.

In many applications, the linear regression model is high-dimensional in nature, meaning that
the number of observationsn may be substantially smaller than the number of covariatesp. In this
p ≫ n regime, it is easy to see that without further constraints onβ∗, the statistical model (1) is
not identifiable, since (even whenw = 0), there are many vectorsβ∗ that are consistent1 with the
observationsy andX. This identifiability concern may be eliminated by imposing some type of
sparsity assumption on the regression vectorβ∗ ∈ R

p. The simplest assumption is that ofexact
sparsity: in particular, we say thatβ∗ ∈ R

p is s-sparse if its support set

S(β∗) :=
{

j ∈ {1, . . . , p} | β∗
j 6= 0

}

1. Indeed, any vectorβ∗ in the nullspace ofX, which has dimension at leastp−n, leads toy= 0 whenw= 0.
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has cardinality at mosts.
Disregarding computational cost, the most direct approach to estimating ans-sparseβ∗ in the

linear regression model would be solving a quadratic optimization problem with an ℓ0-constraint,
say

β̂ ∈ arg min
β∈Rp

‖y−Xβ‖2
2 such that‖β‖0 ≤ s,

where‖β‖0 simply counts the number of non-zero entries inβ. Of course, this problem is non-
convex and combinatorial in nature, since it involves searching over all

(p
s

)
subsets of sizes. A

natural relaxation is to replace the non-convexℓ0 constraint with theℓ1-norm, which leads to the
constrained form of the Lasso(Chen et al., 1998; Tibshirani, 1996), given by

β̂ ∈ arg min
β∈Rp

‖y−Xβ‖2
2 such that‖β‖1 ≤ R,

whereR is a radius to be chosen by the user. Equivalently, by Lagrangian duality,this program can
also be written in the penalized form

β̂ ∈ arg min
β∈Rp

{
‖y−Xβ‖2

2+λ‖β‖1
}
,

whereλ > 0 is a regularization parameter. In the case of noiseless observations, obtained by setting
w = 0 in the observation model (1), a closely related convex program is thebasis pursuit linear
program(Chen et al., 1998), given by

β̂ ∈ arg min
β̂∈Rp

‖β‖1 such thatXβ = y. (2)

Chen et al. (1998) also study the constrained Lasso (2.1), which they refer to as relaxed basis pursuit.
Another closely related estimator based onℓ1-relaxation is the Dantzig selector (Candes and Tao,
2007).

2.2 Sufficient Conditions for Success

The high-dimensional linear model under the exact sparsity constraint has been extensively ana-
lyzed. Accordingly, as we discuss here, there is a good understandingof the necessary and sufficient
conditions for the success ofℓ1-based relaxations such as basis pursuit and the Lasso.

2.2.1 RESTRICTEDNULLSPACE IN NOISELESSSETTING

In the noiseless setting (w= 0), it is known that the basis pursuit linear program (LP) (2) recovers
β∗ exactly if and only if the design matrixX satisfies a restricted nullspace condition. In particular,
for a given subsetS⊂ {1, . . . , p} and constantα ≥ 1, let us define the set

C (S;α) :=
{

θ ∈ R
p | ‖θSc‖1 ≤ α‖θS‖1

}
.

For a given sparsity indexk ≤ p, we say that the matrixX satisfies therestricted nullspace (RN)
condition of order k if null(X)∩ C (S;1) = {0} for all subsetsS of cardinality k. Although this
definition appeared in earlier work (Donoho and Huo, 2001; Feuer andNemirovski, 2003), the
terminology of restricted nullspace is due to Cohen et al. (2009).
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This restricted nullspace property is important, because the basis pursuit LP recovers any vector
k-sparse vectorβ∗ exactly if and only ifX satisfies the restricted nullspace property of orderk.
See the papers (Cohen et al., 2009; Donoho and Huo, 2001; Elad and Bruckstein, 2002; Feuer and
Nemirovski, 2003) for more discussion of restricted nullspaces and equivalence to exact recovery
of basis pursuit.

2.2.2 RESTRICTEDEIGENVALUE CONDITION FOR ℓ2 ERROR

In the noisy setting, it is impossible to recoverβ∗ exactly, and a more natural criterion is to bound
the ℓ2-error betweenβ∗ and an estimatêβ. Various conditions have been used to analyze theℓ2-
norm convergence rate ofℓ1-based methods, including the restricted isometry property (Candes and
Tao, 2007), various types of restricted eigenvalue conditions (van de Geer, 2007; Bickel et al., 2009;
Meinshausen and Yu, 2009), and a partial Riesz condition (Zhang and Huang, 2008). Of all these
conditions, the least restrictive are the restricted eigenvalue conditions due to Bickel et al. (2009)
and van de Geer (2007). As shown by Bickel et al. (2009), their restricted eigenvalue (RE) condition
is less severe than both the RIP condition (Candes and Tao, 2007) and anearlier set of restricted
eigenvalue conditions due to Meinshausen and Yu (2009). All of these conditions involve lower
bounds on‖Xθ‖2 that hold uniformly over the previously defined setC (S;α),

Here we state a condition that is essentially equivalent to the restricted eigenvalue condition due
to Bickel et al. (2009). In particular, we say that thep× p sample covariance matrixXTX/n satisfies
therestricted eigenvalue (RE) conditionoverSwith parameters(α,γ) ∈ [1,∞)× (0,∞) if

1
n

θTXTXθ =
1
n
‖Xθ‖2

2 ≥ γ2‖θ‖2
2 for all θ ∈ C (S;α).

If this condition holds uniformly for all subsetsS with cardinalityk, we say thatXTX/n satisfies
a restricted eigenvalue condition of order k with parameters(α,γ). On occasion, we will also say
that a deterministicp× p covariance matrixΣ satisfies an RE condition, by which we mean that
‖Σ1/2θ‖2 ≥ γ‖θ‖2 for all θ ∈ C (S;α). It is straightforward to show that the RE condition for some
α implies the restricted nullspace condition for the sameα, so that the RE condition is slightly
stronger than the RN property.

Again, the RE condition is important because it yields guarantees on theℓ2-error of any Lasso
estimatêβ. For instance, ifX satisfies the RE condition of orderk with parametersα ≥ 3 andγ > 0,
then it can be shown that (with appropriate choice of the regularization parameter) any Lasso esti-

mateβ̂ satisfies the error bound‖β̂−β∗‖2 = O(
√

k logp
n ) with high probability over the Gaussian

noise vectorw. A similar result holds for the Dantzig selector provided the RE condition is satis-
fied for α ≥ 1. Bounds with this scaling have appeared in various papers on sparse linear models
(Bunea et al., 2007; Bickel et al., 2009; Candes and Tao, 2007; Meinshausen and Yu, 2009; van de
Geer, 2007; van de Geer and Buhlmann, 2009). Moreover, thisℓ2-convergence rate is known to be
minimax optimal (Raskutti et al., 2009) in the regimek/p→ 0.

3. Main Result and Its Consequences

Thus, in order to provide performance guarantees (either exact recovery orℓ2-error bounds) forℓ1-
relaxations applied to sparse linear models, it is sufficient to show that the REor RN conditions
hold. Given that our interest is in providing sufficient conditions for these properties, the remainder
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of the paper focuses on providing conditions for the RE condition to hold for random designs, which
implies that the RN condition is satisfied.

3.1 Statement of Main Result

Our main result guarantees that the restricted eigenvalue (and hence restricted nullspace) conditions
hold for a broad class of random Gaussian designs. In particular, we consider the linear model
yi = XT

i β∗+wi , in which each rowXi ∼ N (0,Σ). We defineρ2(Σ) = maxj=1,...,p Σ j j to be the
maximal variance, and letΣ1/2 denote the square root ofΣ.

Theorem 1 For any Gaussian random design X∈ R
n×p with i.i.d. N (0,Σ) rows, there are univer-

sal positive constants c,c′ such that

‖Xv‖2√
n

≥ 1
4
‖Σ1/2v‖2−9ρ(Σ)

√
logp

n
‖v‖1 for all v ∈ R

p, (3)

with probability at least1−c′exp(−cn).

The proof of this claim is given later in Section 4. Note that we have not tried toobtain sharpest
possible leading constants (i.e., the factors of 1/4 and 9 can easily be improved).

In intuitive terms, Theorem 1 provides some insight into the eigenstructure ofthe sample co-
variance matrix̂Σ = XTX/n. One implication of the lower bound (3) is that the nullspace ofX
cannot contain any vectors that are “overly” sparse. In particular, for any vectorv ∈ R

p such that

‖v‖1/‖Σ1/2v‖2 = o(
√

n
logp), the right-hand side of the lower bound (3) will be strictly positive,

showing thatv cannot belong to the nullspace ofX. In the following corollary, we formalize this
intuition by showing how Theorem 1 guarantees that whenever the population covarianceΣ satisfies
the RE condition of orderk, then the sample covariancêΣ = XTX/n satisfies the same property as
long as the sample size is sufficiently large.

Corollary 1 (Restricted eigenvalue property) Suppose thatΣ satisfies the RE condition of order
k with parameters(α,γ). Then for universal positive constants c,c′,c′′, if the sample size satisfies

n > c′′
ρ2(Σ)(1+α)2

γ2 k logp, (4)

then the matrix̂Σ = XTX/n satisfies the RE condition with parameters(α, γ
8) with probability at

least1−c′exp(−cn).

Proof Let Sbe an arbitrary subset of cardinalityk, and suppose thatv∈ C (S;α). By definition, we
have

‖v‖1 = ‖vS‖1+‖vSc‖1 ≤ (1+α)‖vS‖1,

and consequently‖v‖1 ≤ (1+α)
√

k‖v‖2. By assumption, we also have‖Σ1/2v‖2 ≥ γ‖v‖2 for all
v∈ C (S;α). Substituting these two inequalities into the bound (3) yields

‖Xv‖2√
n

≥
{

γ
4
−9(1+α)ρ(Σ)

√
k logp

n

}
‖v‖2.
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Under the assumed scaling (4) of the sample size, we have

9(1+α)ρ(Σ)
√

k logp
n

≤ γ/8,

which shows that the RE condition holds forXTX/n with parameter(α,γ/8) as claimed.

Remarks:

(a) From the definitions, it is easy to see that if the RE condition holds withα = 1 and any
γ > 0 (even arbitrarily small), then the RN condition also holds. Indeed, if the matrixXTX/n

satisfies the(1,γ)-RE condition, then for anyv ∈ C (S;1)\{0}, we have‖Xv‖2√
n ≥ γ‖v‖2 > 0,

which implies thatC (S,1)∩ (X) = {0}.

(b) As previously discussed, it is known (Bickel et al., 2009; van de Geer, 2000; van de Geer
and Buhlmann, 2009) that ifXTX/n satisfies the RE condition, then theℓ2 error of the Lasso
under the sparse linear model with Gaussian noise satisfies the bound

‖β̂−β∗‖2 = O(

√
k logp

n
) with high probability.

Consequently, in order to ensure that theℓ2-error is bounded, the sample size must scale as
n= Ω(k logp), which matches the scaling (4) required in Corollary 1, as long as the sequence
of covariance matricesΣ have diagonal entries that stay bounded.

(c) Finally, we note that Theorem 1 guarantees that the sample covarianceXTX/n satisfies a
property that is slightly stronger than the RE condition. As shown by Negahban et al. (2009),
this strengthening also leads to error bounds for the Lasso whenβ∗ is not exactlyk-sparse, but
belongs to anℓq-ball. The resulting rates are known to be minimax-optimal for theseℓq-balls
(Raskutti et al., 2009).

3.2 Comparison to Related Work

At this point, we provide a brief comparison of our results with some related results in the literature
beyond the papers discussed in the introduction. Haupt et al. (2010) showed that a certain class of
random Toeplitz matrices, where the entries in the first row and first column are Bernoulli random
variables and the rest fill out the Toeplitz structure satisfy RIP ( and hence the weaker RE condition)
provided thatn= Ω(k3 log(p/k)). In Section 3.3, we demonstrate that Gausssian design matrices
where the covariance matrix is a Toeplitz matrix satisfies the RE condition under the milder scaling
requirementn= Ω(k log(p)). It would be of interest to determine such scaling can be established
for the random Toeplitz matrices considered by Haupt et al. (2010).

It is worth comparing the scaling (4) to a related result due to van de Geer and Buhlmann
(2009). In particular, their Lemma 10.1 also provides sufficient conditionsfor a restricted eigenvalue
condition to hold for design matrices with dependent columns. They show thatif the true covariance
matrix satisfies an RE condition, and if the elementwise maximum‖Σ̂−Σ‖∞ between the sample
covariancêΣ = XTX/n and true covarianceΣ is suitably bounded, then the sample covariance also
satisfies the RE condition. Their result applied to the case of Gaussian random matrices guarantees
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that Σ̂ satisfies the RE property as long asn = Ω(k2 logp) andΣ satisfies the RE condition. By
contrast, Corollary 1 guarantees the RE condition with the less restrictive scaling n = Ω(k logp).
Note that ifk= O(

√
n), our scaling condition is satisfied while their condition fails. This quadratic-

linear gap in sparsity betweenk2 andk arises from the difference between a local analysis (looking
at individual entries of̂Σ) versus the global analysis of this paper, which studies the full random
matrix. On the other hand, the result of van de Geer and Buhlmann (2009) applies more generally,
including the case of sub-Gaussian random matrices (e.g., those with bounded entries) in addition
to the Gaussian matrices considered in Theorem 1.

Finally, in work that followed up on the initial posting of this work (Raskutti et al., 2009), a paper
by Zhou (2009) provides an extension of Theorem 1 to the case of correlated random matrices with
sub-Gaussian entries. Theorem 1.6 in her paper establishes that certainfamilies of sub-Gaussian
matrices satisfy the RE condition w.h.p. with sample sizen= Ω(slog(p/s). This extension is based
on techniques developed by Mendelson et al. (2008), while we use Gaussian comparison inequalities
and simple concentration results for the case of Gaussian design.

3.3 Some Illustrative Examples

Let us illustrate some classes of matrices to which our theory applies. We will see that Corollary 1
applies to many sequences of covariance matricesΣ = Σp×p that have much more structure than
the identity matrix. Our theory allows for the maximal eigenvalue ofΣ to be arbitrarily large, or
for Σ to be rank-degenerate, or for both of these degeneracies to occur atthe same time. In all
cases, we consider sequences of matrices for which the maximum varianceρ2(Σ) = maxj=1,...,p Σ j j

stays bounded. Under this mild restriction, we provide several examples where the RE condition
is satisfied with high probability. For suitable choices, these same examples show that the RE
condition can hold with high probability, even when the restricted isometry property (RIP) of Candes
and Tao (2005) is violated with probability converging to one.

Example 1 (Toeplitz matrices) Consider a covariance matrix with the Toeplitz structureΣi j =
a|i− j| for some parameter a∈ [0,1). This type of covariance structure arises naturally from au-
toregressive processes, where the parameter a allows for tuning of the memory in the process. The
minimum eigenvalue ofΣ is 1−a> 0, independent of the dimension p, so that the population matrix
Σ clearly satisfies the RE condition. Sinceρ2(Σ) = 1, Theorem 1 implies that the sample covariance
matrix Σ̂ = XTX/n obtained by sampling from this distribution will also satisfy the RE condition
with high probability as long as n= Ω(k logp). This provides an example of a matrix family with
substantial correlation between covariates for which the RE property still holds.

However, regardless of the sample size, the submatrices of the sample covarianceΣ̂ will not
satisfy restricted isometry properties (RIP) if the parameter a is sufficientlylarge. For instance,
defining S= {1,2, . . . ,k}, consider the sub-block̂ΣSSof the sample covariance matrix. Satisfying
RIP requires that that the condition numberλmax(Σ̂SS)/λmin(Σ̂SS) be very close to one. As long
as n= Ω(k logp), known results in random matrix theory (Davidson and Szarek, 2001) guarantee
that the eigenvalues of̂ΣSSwill be very close to the population versionsΣSS; see also the concrete
calculation in Example 2 to follow. Consequently, imposing RIP amounts to requiring that the
population condition numberλmax(ΣSS)/λmin(ΣSS) be very close to one. This condition number
grows as the parameter a∈ [0,1) increases towards one (Gray, 1990), so RIP will be violated once
a< 1 is sufficiently large.
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We now consider a matrix family with an even higher amount of dependency among the covariates,
where the RIP constants are actually unbounded as the sparsityk increases, but the RE condition is
still satisfied.

Example 2 (Spiked identity model) For a parameter a∈ [0,1), the spiked identity model is given
by the family of covariance matrices

Σ := (1−a)Ip×p+a~1~1T ,

where~1∈R
p is the vector of all ones. The minimum eigenvalue ofΣ is 1−a, so that the population

covariance clearly satisfies the RE condition for any fixed a∈ [0,1). Since this covariance matrix
has maximum varianceρ2(Σ) = 1, Corollary 1 implies that a sample covariance matrixΣ̂ = XTX/n
will satisfy the RE property with high probability with sample size n= Ω(k logp).

On the other hand, the spiked identity matrixΣ has very poorly conditioned sub-matrices, which
implies that a sample covariance matrix̂Σ = XTX/n will violate the restricted isometry property
(RIP) with high probability as n grows. To see this fact, for an arbitrary subset S of size k, consider
the associated k× k submatrixΣSS. An easy calculation shows thatλmin(ΣSS) = 1− a > 0 and
λmax(ΣSS) = 1+a(k−1), so that the population condition number of this sub-matrix is

λmax(ΣSS)

λmin(ΣSS)
=

1+a(k−1)
1−a

.

For any fixed a∈ (0,1), this condition number diverges as k increases. We now show that the
same statement applies to the sample covariance with high probability, showing that the RIP is
violated. Let u∈ R

k and v∈ R
k denote (respectively) unit-norm eigenvectors corresponding to the

minimum and maximum eigenvalues ofΣSS, and define the random variables Zu = ‖Xu‖2
2/n and

Zv = ‖Xv‖2
2/n. Since〈Xi , v〉 ∼ N(0,λmax(ΣSS)) by construction, we have

Zv =
1
n

n

∑
i=1

〈Xi , v〉2 d
= λmax(ΣSS)

{1
n

n

∑
i=1

y2
i

}
,

where yi ∼ N(0,1) are i.i.d. standard Gaussians, and
d
= denotes equality in distribution. Byχ2 tail

bounds, we haveP[1
n ∑n

i=1y2
i ≥ 1

2

]
≤ c1exp(−c2n), so that Zv ≥ λmax(ΣSS)/2 with high probability.

A similar argument shows that Zu ≤ 2λmin(ΣSS) with high probability, and putting together the
pieces shows that w.h.p.

λmax(Σ̂SS)

λmin(Σ̂SS)
≥ 1

4
λmax(ΣSS)

λmin(ΣSS)
≥ 1

4
1+a(k−1)

1−a
,

which diverges as k increases.

In both of the preceding examples, the minimum eigenvalue ofΣ was bounded from below and
the diagonal entries ofΣ were bounded from above, which allowed us to assert immediately that
the RE condition was satisfied for the population covariance matrix. As a finalexample, we now
consider sampling from population covariance matrices that are actually rank degenerate, but for
which our theory still provides guarantees.
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Example 3 (Highly degenerate covariance matrices)LetΣ be any matrix with bounded diagonal
that satisfies the RE property of some order k. Suppose that we sample ntimes from a N(0,Σ)
distribution, and then form the empirical covariance matrixΣ̂ = XTX/n. If n< p, thenΣ̂ must be
rank degenerate, but Corollary 1 guarantees thatΣ̂ will satisfy the RE property of order k with high
probability as long as n= Ω(k logp). Moreover, byχ2-tail bounds, the maximal diagonal element
ρ2(Σ̂) will be bounded with high probability under this same scaling.

Now if we condition on the original design matrix X in the high probability set, we may viewΣ̂
as a fixed but highly rank-degenerate matrix. Suppose that we draw a new set of n i.i.d. vectors̃Xi ∼
N(0, Σ̂) using this degenerate covariance matrix. Such a resampling procedurecould be relevant
for a bootstrap-type calculation for assessing errors of the Lasso. We may then form a second
empirical covariance matrix̃Σ = 1

nX̃TX̃ . Conditionally on̂Σ having the RE property of order k and

a bounded diagonal, Corollary 1 shows that the resampled empirical covarianceΣ̃ will also have
the RE property of order k with high probability, again for n= Ω(k logp).

This simple example shows that in the high-dimensional setting p≫ n, it is possible for the
RE condition to hold with high probability even when the original population covariance matrix
(Σ̂ in this example) has a p−n-dimensional nullspace. Note moreover that this is not an isolated
phenomenon—rather, it will hold for almost every sample covariance matrix Σ̂ constructed in the
way that we have described.

4. Proof of Theorem 1

We now turn to the proof of Theorem 1. The main ingredients are the Gordon-Slepian comparison
inequalities (Gordon, 1985) for Gaussian processes, concentration of measure for Lipschitz func-
tions (Ledoux, 2001), and a peeling argument. The first two ingredients underlie classical proofs on
the ordinary eigenvalues of Gaussian random matrices (Davidson and Szarek, 2001), whereas the
latter tool is used in empirical process theory (van de Geer, 2000).

4.1 Proof Outline

Recall that Theorem 1 states that the condition

‖Xv‖2√
n

≥ 1
4
‖Σ1/2v‖2−9ρ(Σ)

√
logp

n
‖v‖1 for all v∈ R

p, (5)

holds with probability at least 1−c′exp(−cn), wherec,c′ are universal positive constants. Hence,
we are bounding the random quantity‖Xv‖2 in terms of‖Σ1/2v‖2 and ‖v‖1 for all v with high
probability. It suffices to prove Theorem 1 for‖Σ1/2v‖2 = 1. Indeed, for any vectorv ∈ R

p such
that Σ1/2v = 0, the claim holds holds trivially. Otherwise, we may consider the re-scaled vector
v̆= v/‖Σ1/2v‖2, and note that‖Σ1/2v̆‖2 = 1 by construction. By scale invariance of the condition (5),
if it holds for the re-scaled vector ˘v, it also holds forv.

Therefore, in the remainder of the proof, our goal is to lower bound the quantity‖Xv‖2 over the
set ofv such that‖Σ1/2v‖2 = 1 in terms of‖v‖1. At a high level, there are three main steps to the
proof:

(1) We begin by considering the setV(r) := {v∈R
p | ‖Σ1/2v‖2 = 1,‖v‖1 ≤ r}, for a fixed radius

r. Although this set may be empty for certain choices ofr > 0, our analysis only concerns
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those choices for which it is non-empty. Define the random variable

M(r,X) := 1− inf
v∈V(r)

‖Xv‖2√
n

= sup
v∈V(r)

{
1− ‖Xv‖2√

n

}
.

Our first step is to upper bound the expectationE[M(r,X)], where the expectation is taken
over the random Gaussian matrixX.

(2) Second, we establish thatM(r,X) is a Lipschitz function of its Gaussian arguments, and then
use concentration inequalities to assert that for each fixedr > 0, the random variableM(r,X)
is sharply concentrated around its expectation with high probability.

(3) Third, we use a peeling argument to show that our analysis holds with high probability and
uniformly over all possible choice of theℓ1-radiusr, which then implies that the condition (5)
holds with high probability as claimed.

In the remainder of this section, we provide the details of each of these steps.

4.2 Bounding the ExpectationE[M(r,X)]

This subsection is devoted to a proof of the following lemma:

Lemma 1 For any radius r> 0 such that V(r) is non-empty, we have

E[M(r,X)]≤ 1
4
+3ρ(Σ)

√
logp

n
r.

Proof : LetSn−1= {u∈R
n | ‖u‖2= 1} be the Euclidean sphere of radius 1, and recall the previously

defined setV(r) := {v∈ R
p | ‖Σ1/2v‖2 = 1,‖v‖1 ≤ r}. For each pair(u,v) ∈ Sn−1×V(r), we may

define an associated zero-mean Gaussian random variableYu,v := uTX v. This representation is
useful, because it allows us to write the quantity of interest as a min-max problem in terms of this
Gaussian process. In particular, we have

− inf
v∈V(r)

‖Xv‖2 =− inf
v∈V(r)

sup
u∈Sn−1

uTXv = sup
v∈V(r)

inf
u∈Sn−1

uTXv.

We may now upper bound the expected value of the above quantity via a Gaussian comparison
inequality; here we state a form of Gordon’s inequality used in past work on Gaussian random
matrices (Davidson and Szarek, 2001). Suppose that{Yu,v,(u,v)∈U×V} and{Zu,v,(u,v)∈U×V}
are two zero-mean Gaussian processes onU ×V. Usingσ(·) to denote the standard deviation of its
argument, suppose that these two processes satisfy the inequality

σ(Yu,v−Yu′,v′)≤ σ(Zu,v−Zu′,v′) for all pairs(u,v) and(u′,v′) in U ×V,

and this inequality holds with equality whenv= v′. Then we are guaranteed that

E[sup
v∈V

inf
u∈U

Yu,v] ≤ E[sup
v∈V

inf
u∈U

Zu,v].

We use Gordon’s inequality to show that

E[M(r,X)] = 1+E[ sup
v∈V(r)

inf
u∈Sn−1

Yu,v]≤ 1+E[ sup
v∈V(r)

inf
u∈Sn−1

Zu,v],
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where we recall thatYu,v = uTXvandZu,v is a different Gaussian process to be defined shortly.
We begin by computingσ2(Yu,v−Yu′,v′). To simplify notation, we note that theX ∈R

n×p can be
written asWΣ1/2, whereW ∈R

n×p is a matrix with i.i.d.N (0,1) entries, andΣ1/2 is the symmetric
matrix square root. In terms ofW, we can write

Yu,v = uTWΣ1/2v = uTWṽ,

whereṽ= Σ1/2v. It follows that

σ2(Yu,v−Yu′,v′) := E
( n

∑
i=1

p

∑
j=1

Wi, j(ui ṽ j −u′i ṽ
′
j)
)2

= |||uṽT − (u′)(ṽ′)T |||2F ,

where||| · |||F is the Frobenius norm (ℓ2-norm applied elementwise to the matrix). This equality
follows immediately since theWi j variables are i.i.dN (0,1).

Now consider a second zero-mean Gaussian processZu,v indexed bySn−1×V(r), and given by

Zu,v = ~gTu+~hTΣ1/2v,

where~g∼ N(0, In×n) and~h∼ N(0, Ip×p) are standard Gaussian random vectors. With ˜v= Σ1/2v, we
see immediately that

σ2(Zu,v−Zu′,v′) = ‖u−u′‖2
2+‖ṽ− ṽ′‖2

2.

Consequently, in order to apply the Gaussian comparison principle to{Yu,v} and{Zu,v}, we need
to show that

|||uṽT − (u′)(ṽ′)T |||2F ≤ ‖u−u′‖2
2+‖ṽ− ṽ′‖2

2 (6)

for all pairs(u, ṽ) and(u′, ṽ′) in the set of interest. Since the Frobenius norm||| · |||F is simply the
ℓ2-norm on the vectorized form of a matrix, we can compute

|||uṽT −u′(ṽ′)T |||2F = |||(u−u′)ṽT +u′(ṽ− ṽ′)T |||2F

=
n

∑
i=1

p

∑
j=1

[(ui −u′i)ṽ j +u′i(ṽ j − ṽ′j)]
2

= ‖ṽ‖2
2‖u−u′‖2

2+‖u′‖2
2‖ṽ− ṽ′‖2

2+2(uTu′−‖u′‖2
2)(‖ṽ‖2

2− ṽT ṽ′)

= ‖u−u′‖2
2+‖ṽ− ṽ′‖2

2−2(‖u′‖2
2−uTu′)(‖ṽ‖2

2− ṽT ṽ′),

where we have used equalities‖u‖2 = ‖u′‖2 = 1 and‖ṽ‖2 = ‖ṽ′‖2 = 1. By the Cauchy-Schwarz
inequality, we have‖u‖2

2−uTu′ ≥ 0, and‖ṽ‖2
2− ṽT ṽ′ ≥ 0, from which the claimed inequality (6)

follows. Whenv= v′, we also have ˜v=Σ1/2v=Σ1/2v′= ṽ′, so that equality holds in the condition (6)
whenṽ= ṽ′.

Consequently, we may apply Gordon’s inequality to conclude that

E
[

sup
v∈V(r)

inf
u∈Sn−1

uTXv
]

≤ E
[

sup
v∈V(r)

inf
u∈Sn−1

Zu,v
]

= E[ inf
u∈Sn−1

~gTu]+E[ sup
v∈V(r)

~hTΣ1/2v]

= −E[‖~g‖2]+E[ sup
v∈V(r)

~hTΣ1/2v].
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We now observe that by definition ofV(r), we have

sup
v∈V(r)

|~hTΣ1/2v| ≤ sup
v∈V(r)

‖v‖1 ‖Σ1/2~h‖∞ ≤ r‖Σ1/2~h‖∞.

Each element(Σ1/2~h) j is zero-mean Gaussian with varianceΣ j j . Consequently, known results on
Gaussian maxima (cf. Ledoux and Talagrand, 1991, Equation (3.13)) implythatE[‖Σ1/2h‖∞] ≤
3
√

ρ2(Σ) logp, whereρ2(Σ) = maxj Σ j j . Noting2 thatE[‖~g‖2]≥ 3
4

√
n for all n ≥ 10 by standard

χ2 tail bounds and putting together the pieces, we obtain the bound

E[− inf
v∈V(r)

‖Xv‖2] ≤ −3
4

√
n+3

[
ρ2(Σ) logp

]1/2
r.

Dividing by
√

n and adding 1 to both sides yields

E[M(r,X)] = E[1− inf
v∈V(r)

‖Xv‖2/
√

n]≤ 1/4+3ρ(Σ)
√

logp
n

r,

as claimed.

4.3 Concentration Around the Mean for M(r,X)

Having controlled the expectation, the next step is to establish concentration of M(r,X) around its
mean. Note that Lemma 1 shows thatE[M(r,X)]≤ t(r), where

t(r) :=
1
4
+3r ρ(Σ)

√
logp

n
. (7)

Now we prove the following claim:

Lemma 2 For any r such that V(r) is non-empty, we have

P

[
M(r,X)≥ 3t(r)

2

]
≤ 2exp(−nt2(r)/8).

Proof In order to prove this lemma, it suffices to show that

P
[
|M(r,X)−E[M(r,X)]| ≥ t(r)/2

]
≤ 2exp(−nt2(r)/8),

and use the upper bound onE[M(r,X)] derived in Lemma 1.
By concentration of measure for Lipschitz functions of Gaussians (see Appendix B), this tail

bound will follow if we show that the Lipschitz constant ofM(r,X) as a function of the Gaussian
random matrix is less than 1/

√
n. To make this functional dependence explicit, let us writeM(r,X)

as the functionh(W) = supv∈V(r)

(
1−‖WΣ1/2v‖2/

√
n
)
. We find that

√
n
[
h(W)−h(W′)

]
= sup

v∈V(r)
−‖WΣ1/2v‖2− sup

v∈V(r)
−‖W′Σ1/2v‖2.

2. In fact,|E[‖~g‖2]−
√

n|= o(
√

n), but this simple bound is sufficient for our purposes.
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SinceV(r) is closed and bounded and the objective function is continuous, there exists v̂∈V(r) such
that v̂= argmaxv∈V(r)−‖WΣ1/2v‖2. Therefore

sup
v∈V(r)

(
−‖WΣ1/2v‖2

)
− sup

v∈V(r)

(
−‖W′Σ1/2v‖2

)
= −‖WΣ1/2v̂‖2− sup

v∈V(r)

(
−‖W′Σ1/2v‖2

)

≤ ‖W′Σ1/2v̂‖2−‖WΣ1/2v̂‖2

≤ sup
v∈V(r)

(
‖(W′−W)Σ1/2v‖2

)
.

For a matrixA, we define its spectral norm|||A|||2 = sup‖u‖2=1‖Au‖2. With this notation, we can
bound the Lipschitz constant ofh as

√
n
[
h(W)−h(W′)

]
≤ sup

v∈V(r)

(
‖(W−W′)Σ1/2v‖2

)

(a)
≤

{
sup

v∈V(r)

(
‖Σ1/2v‖2

)}
|||(W−W′)|||2

(b)
≤

{
sup

v∈V(r)

(
‖Σ1/2v‖2

)}
|||(W−W′)|||F

(c)
= |||W−W′|||F .

In this argument, inequality (a) follows by definition of the matrix spectral norm||| · |||2; inequality
(b) follows from the bound|||(W−W′)|||2 ≤ |||(W−W′)|||F between the spectral and Frobenius ma-
trix norms (Horn and Johnson, 1985); and equality (c) follows since‖Σ1/2v‖2 = 1 for all v∈V(r).
Thus, we have shown thath has Lipschitz constantL ≤ 1/

√
n with respect to the Euclidean norm

onW (viewed as a vector withnpentries). Finally we use a standard result on the concentration for
Lipschitz functions of Gaussian random variables (Ledoux, 2001; Massart, 2003)—see Appendix B
for one statement. Applying the concentration result (9) withm= np, g̃=W, andt = t(r)/2 com-
pletes the proof.

4.4 Extension to All Vectors Via Peeling

Thus far, we have shown that

M(r,X) = 1− inf
v∈V(r)

‖Xv‖2√
n

= sup
v∈V(r)

{
1− ‖Xv‖2√

n

}
≥ 3t(r)/2, (8)

with probability no larger than 2exp(−nt2(r)/8) wheret(r) = 1
4 + 3r ρ(Σ)

√
logp

n . The setV(r)
requires that‖v‖1 ≤ r for somefixedradiusr, whereas the claim of Theorem 1 applies to all vectors
v. Consequently, we need to extend the bound (8) to an arbitraryℓ1 radius.

In order do so, we define the event

T :=
{
∃ v∈ R

p s.t.‖Σ1/2v‖2 = 1 and
(
1−‖Xv‖2/

√
n)≥ 3t(‖v‖1)

}
.

Note that there is nor in the definition ofT , because we are setting‖v‖1 to be the argument of the
functiont. We claim that there are constants positive constantsc, c′ such thatP[T ] ≤ cexp(−c′n),
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from which Theorem 1 will follow. We establish this claim by using a device known as peeling
(Alexander, 1985; van de Geer, 2000); for the version used here,see Lemma 3 proved in the Ap-
pendix. In particular, we apply Lemma 3 with the functions

f (v,X) = 1−‖Xv‖2/
√

n, h(v) = ‖v‖1, and g(r) = 3t(r)/2,

the sequencean = n, and the setA = {v ∈ R
p | ‖Σ1/2v‖2 = 1}. Recall that the quantityt, as

previously defined (7), satisfiest(r) ≥ 1/4 for all r > 0 and is strictly increasing. Therefore, the
function g(r) = 3t(r)/2 is non-negative and strictly increasing as a function ofr, and moreover
satisfiesg(r) ≥ 3/8, so that Lemma 3 is applicable withµ = 3/8. We can thus conclude that
P[T c]≥ 1−cexp(−c′n) for some numerical constantsc andc′.

Finally, conditioned on the eventT c, for all v∈ R
p with ‖Σ1/2v‖2 = 1, we have

1−‖Xv‖2/
√

n ≤ 3t(‖v‖1) =
3
4
+9‖v‖1 ρ(Σ)

√
logp

n
,

which implies that

‖Xv‖2/
√

n≥ 1
4
−9‖v‖1 ρ(Σ)

√
logp

n
.

As noted in the proof outline, this suffices to establish the general claim.

5. Conclusion

Methods based onℓ1-relaxations are very popular, and the weakest possible conditions on the de-
sign matrixX required to provide performance guarantees—namely, the restricted nullspace and
eigenvalue conditions—are well-understood. In this paper, we have proved that these conditions
hold with high probability for a broad class of Gaussian design matrices allowing for quite general
dependency among the columns, as captured by a covariance matrixΣ representing the dependence
among the different covariates. As a corollary, our result guaranteesthat known performance guar-
antees forℓ1-relaxations such as basis pursuit and Lasso hold with high probability forsuch prob-
lems, provided the population matrixΣ satisfies the RE condition. Interestingly, our theory shows
that ℓ1-methods can perform well when the covariates are sampled from a Gaussian distribution
with a degenerate covariance matrix. Some follow-up work (Zhou, 2009) has extended these results
to random matrices with sub-Gaussian rows. In addition, there are a numberof other ways in which
this work could be extended. One is to incorporate additional dependenceacross the rows of the de-
sign matrix, as would arise in modeling time series data for example. It would also be interesting to
relate the allowable degeneracy structures ofΣ to applications involving real data. Finally, although
this paper provides various conditions under which the RE condition holds withhigh probability, it
does not address the issue of how to determine whether a given sample covariance matrix matrix
Σ̂ = XTX/n satisfies the RE condition. It would be interesting to study if there are computationally
efficient methods for verifying the RE condition.
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Appendix A. Peeling Argument

In this appendix, we state a result on large deviations of the constrained optimum of random ob-
jective functions of the formf (v;X), wherev ∈ R

p is the vector to be optimized over, andX is
some random vector. Of interest is the problem suph(v)≤r, v∈A f (v;X), whereh : Rp → R+ is some
non-negative and increasing constraint function, andA is a non-empty set. With this set-up, our goal
is to bound the probability of the event defined by

E :=
{
∃ v∈ A such thatf (v;X)≥ 2g(h(v)))

}
,

whereg : R→ R is non-negative and strictly increasing.

Lemma 3 Suppose that g(r) ≥ µ for all r ≥ 0, and that there exists some constant c> 0 such that
for all r > 0, we have the tail bound

P
[

sup
v∈A, h(v)≤r

f (v;X)≥ g(r)] ≤ 2exp(−can g2(r)),

for some an > 0. Then we have

P[E ] ≤ 2exp(−4canµ2)

1−exp(−4canµ2)
.

Proof : Our proof is based on a standard peeling technique (e.g., see van de Geer, 2000, p. 82). By
assumption, asv varies overA, we haveg(r) ∈ [µ,∞). Accordingly, form= 1,2, . . ., defining the
sets

Am :=
{

v∈ A | 2m−1µ≤ g(h(v))≤ 2mµ
}
,

we may conclude that if there existsv ∈ A such thatf (v,X) ≥ 2g(h(v)), then this must occur for
somemandv∈ Am. By union bound, we have

P[E ] ≤
∞

∑
m=1

P
[
∃ v∈ Am such thatf (v,X)≥ 2g(h(v))

]
.

If v ∈ Am and f (v,X) ≥ 2g(h(v)), then by definition ofAm, we havef (v,X)≥ 2(2m−1)µ= 2mµ.
Since for anyv∈ Am, we haveg(h(v))≤ 2mµ, we combine these inequalities to obtain

P[E ] ≤
∞

∑
m=1

P
[

sup
h(v)≤g−1(2mµ)

f (v,X)≥ 2mµ
]

≤
∞

∑
m=1

2exp
(
−can [g(g

−1(2mµ))]2
)

= 2
∞

∑
m=1

exp
(
−can 22mµ2),

from which the stated claim follows by upper bounding this geometric sum.
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Appendix B. Concentration for Gaussian Lipschitz Functions

We say that a functionF : Rm → R is Lipschitz with constantL if |F(x)−F(y)| ≤ L‖x−y‖2 for all
x,y∈R

m. It is a classical fact that Lipschitz functions of standard Gaussian vectors exhibit Gaussian
concentration. We summarize one version of this fact in the following:

Theorem 2 (Theorem 3.8 from Massart 2003)Let w∼ N (0, Im×m) be an m-dimensional Gaus-
sian random variable. Then for any L-Lipschitz function F, we have

P

[
|F(w)−E[F(w)]| ≥ t

]
≤ 2exp

(
− t2

2L2

)
, for all t ≥ 0. (9)

This result can be interpreted as saying that in terms of tail behavior, the random variableF(w)−
E[F(w)] behaves like a zero-mean Gaussian with varianceL2.
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