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A Fast Lightweight Approach to Origin-Destination IP Traffic
Estimation Using Partial Measurements

Gang Liang, Nina Taft and Bin Yu

Abstract— In this paper, we propose a novel approach to
estimating traffic matrices that incorporates lightweight Origin-
Destination (OD) flow measurements coupled with a computa-
tionally lightweight algorithm for producing the OD estimates.
There are two key ingredients in our method, called PamTram,
for PArtial Measurement of TRAffic Matrices. The first is to
actively select a small number of informative OD flows to measure
in each estimation time interval. To avoid the heavy computation
of an optimal selection, we use a heuristic based on intuition from
game theory. Randomized selection rules are developed based on
the goals of reducing errors and adapting to traffic changes. We
provide an algorithm for selecting a good flow to measure that
is fast because it avoids the computations, such as integrating
over past intervals, that are needed for optimal selection. The
second key aspect of our method is an explanation and proof
that an Iterative Proportional Fitting (IPF) algorithm can be
used to approximate the traffic matrix estimate when the goal
is a minimum mean squared error and the optimization starts
from a maximum entropy initial estimate.

In addition, we provide a one-step average error bound for
PamTram when the randomized selection rule is uniform and
no link counts are used. This bounds the average error for
the worst case selection rule. Finally, we validate our method
using data from Sprint’s European Tier-1 IP backbone network.
Results show that our method generates average errors below
the 10% carrier target error rate. Interestingly, we show that it
suffices to measure a single OD flow in each estimation interval,
which renders our partial measurement method very lightweight
in terms of measurement overhead.

Index Terms— iterative proportional fitting, minimax, origin-
destination traffic matrix, partial measurement, statistical game

I. INTRODUCTION

Origin-destination (OD) traffic matrices are network profiles
that quantify the volume of traffic flow between all pairs of
nodes in a given network. Such matrices serve as important
inputs for a variety of network traffic engineering tasks, includ-
ing capacity planning, load balancing, and traffic provisioning;
hence, the problem of estimating OD traffic matrices for
backbone networks has recently attracted much interest from
both service providers [1], [2], [3] and the network research
community [4], [5], [6], [7], [8].

A general traffic matrix can be defined at any level of
granularity: the traffic sources and destinations could be hosts,
groups of hosts, routers or even PoPs (a large collection of co-
located routers). The specification of a particular traffic matrix
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requires the selection of the level of aggregation. In a router-
to-router traffic matrix, the traffic considered to be “sourced”
at a given router includes all of the clients and peers attached
to that router. Most research has focused on either router-to-
router or PoP-to-PoP matrices, and we continue in the same
vein, as these are the ones ISPs are primarily interested in.
For a network with ne edge (or access) nodes, the number of
possible OD traffic flow pairs is n2

e. The OD matrix also has
a timescale associated with it - each entry gives an average
volume level over some time interval (1 min, 1 hour, 1 day,
etc.). Traffic matrices should be thought of as 3-dimensional
matrices in which the third dimension is time. Each OD traffic
flow is actually a time series, and thus the entire matrix evolves
over time. It has been shown ([2], [9]) that traffic matrices are
quite dynamic and exhibit strong diurnal patterns thus varying
a great deal within a 24 hour period.

Current approaches for obtaining traffic matrices can be
classified into two categories: direct and indirect. A direct
approach is a pure measurement one in which the entire
traffic matrix is repeatedly measured over time via monitoring
technologies such as Netflow on Cisco routers. In [2], the au-
thors explicitly calculated the overheads of direct measurement
using state-of-the-art flow monitors. They showed that today’s
solutions, which essentially mandate a centralized solution, are
prohibitive in terms of communication and computation costs.
They also illustrated that by moving towards a more distributed
approach, the computation costs fall but the communications
cost of full measurement (albeit smaller) still remains high.

The indirect approach relies on alternative data that is more
readily available in networks, yet is incomplete. In particular,
the Simple Network Management Protocol (SNMP), supplies
statistics on links (e.g., total bytes seen in a 5 minute window)
and is widely deployed in today’s ISP networks. This is only
partial information because typically the number of internal
link constraints is much smaller than the number of OD
pairs, thus creating an ill-posed inverse problem. Vardi [5]
was the first to investigate the problem of estimating OD
matrix through link traffic counts, and coined the term “net-
work tomography” to illustrate its similarities with medical
tomography. The challenge of the indirect approach lies in its
ill-posed nature. For a general network, the number of links is
usually proportional to the number of edge nodes ne, which
grows much more slowly than the number of OD pairs n2

e.
The problem becomes severely under-constrained even for a
modest ne. For instance, in a backbone network, ne is in the
range of 20-40 at the PoP level, and is on the order of hundreds
at the backbone router level.

Many approaches to tackle these problems try to find a
simple model for OD flows, introduce constraints to ensure
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the identifiability of the model, and then employ some form of
maximum likelihood estimation. Vardi [5] proposed a Poisson
model assuming iid (independent identically distributed) Pois-
son distributions for the OD traffic byte counts. Based on LAN
network data, Cao et. al. [4] revise the Poisson assumption to
propose a Gaussian model coupled with an assumption of a
power-law relationship between the mean and variance of an
OD flow. Vaton and Gravey [6] propose an empirical Bayesian
method and an iterative algorithm is used to learn the prior
distribution. In [10] the authors proposed the use of gravity
models for determining initial conditions for optimization
methods (such as maximum likelihood estimation) to avoid
local minima problems. In Zhang et. al. [1], a tomogravity
model is proposed to regularize the gravity parameter estimate
such that the final estimate is also faithful to the SNMP link
counts. The computation of these methods is usually very
high. Liang and Yu [11] propose a pseudo likelihood method
to speed up the parameter estimation for general network
tomography problems.

A key question regarding the indirect approaches is to what
level of accuracy can the hidden OD traffic be recovered
simply from aggregated link traffic counts? Most of the
indirect methods achieve average relative errors in the range
20-30%. However carriers are hoping for error rates to fall
below the 10% barrier. In order to achieve lower error rates,
recent research seeks to obtain yet more data (referred to as
side information in statistics) to bring into the problem. Nucci
et. al. [9] propose to use routing changes to obtained more
information about the underlying OD traffic. Zhang et. al. [10]
use SNMP data not only from inter-router links (as in the
traditional problem), but also from access and peering links in
order to populate the gravity model.

In this paper we propose the approach of using partial OD
flow measurements as a good type of side information to bring
into the problem. The idea is to measure a small number of
OD flows (e.g., one) directly using a flow monitor, in each
measurement interval, and then to vary the flow(s) measured
over the course of time. This idea was originally proposed
in [12]; however in that short paper neither the theoretical
foundation for this approach nor any validation using data
was carried out. We do both of those herein. Three partial
flow measurement approaches were proposed and evaluated
in the comparative study done in [8]. The notion of partial
flow measurement in those approaches is different because
they all propose to turn flow monitors on at all routers, for a
period of 24 hours to measure the traffic matrix throughout its
diurnal cycles. This data is used to calibrate a smart model.
All flow monitors are then turned off until sufficient change
has been detected so as to require them to be activated again,
for another period of 24 hours, in order to re-calibrate the
underlying models. While these approaches proved useful, the
one we include in this study is far more lightweight. In [8],
the measurement overhead (the percentage of traffic being
measured) varied from 5-30% depending upon the particular
scheme; using their same overhead metric, our approach yields
a measurement overhead of either 1% or 5% (depending upon
the implementation).

Our contributions in this paper are multiple. First we

introduce a simple non-stationary model to capture the 1-
step temporal transitions of a traffic matrix. The intention of
the model is to utilize the temporal relationship of network
traffic within a local time window. Although it does not match
the full (or global) OD flow behavior, we illustrate that it is
sufficient for the purposes of accurate traffic matrix estimation
and enables the use of less intensive computations.

Second, we propose a lightweight algorithm called Pam-
Tram, for PArtial Measurement of TRAffic Matrices. The
proposed algorithm is a two-step procedure. In the first step,
we propose a mechanism to select informative OD flows that
will be measured in each interval, and in the second step we
compute an approximation to the minimum mean square error
(MSE) estimate to populate the traffic matrix. To select which
flow(s) to measure we employ a game theoretic randomization
scheme to choose informative OD pairs: several randomization
schemes are proposed, and we also compute a bound on the
1-step error (the error of each successive estimate) under a
simplified scenario. In our approach, different OD flows will
be measured in different time intervals and the choice of which
flows to measure is based on the probability that an OD flow
will generate large errors. The benefit of this approach is that
it permits adaptation to dynamic changes in the traffic matrix.
When changes in particular OD flows occur, those flows are
likely to generate larger errors; as our method progresses in
time, it eventually catches these changes. We contend that the
original ill-posed problem can be substantially improved even
if only a tiny fraction of OD pairs are measured in each time
interval.

Third, we prove that the iterative proportional fitting (IPF)
algorithm can be used for our two critical computational steps:
(i) it approximates the minimum Kullback-Leibler divergence
estimate (as used in [1]), and (ii) can also be used to implement
our game for selecting which OD flow to measure. Because
IPF can be used inside these two steps of our methodology,
our overall procedure yields an efficient and fast algorithm
that is thus practical to implement. Finally, our methods are
evaluated on real data from a Tier-1 operational backbone
network. We compare our scheme to an oracle-based scheme
to assess how far we are from optimality. We also compare
our scheme to the Kalman filtering based method in [8]
because it most closely resembles parts of our approach. We
show that while the Kalman method performs reasonably
well, PamTram consistently outperforms it across a variety
of performance metrics, and achieves that with far lower
measurement overhead.

This paper is organized as follows. In Section II, we review
the OD traffic estimation problem, and an iterative proportional
fitting (IPF) algorithm. In Section III, we propose a dynamic
state-space network traffic model. In Section IV, we explain
our approach to partial measurement and introduce a few
minimax randomization selection schemes for selecting those
traffic matrix elements to measure. We explain our data,
evaluation setup and the schemes we compare ours to, in
Section V. The evaluation is carried out in Section VI. We
conclude our paper in Section VII and provide proofs of the
theorems in the Appendix.
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II. BACKGROUND

A. Problem Statement

We denote the SNMP link counts as Y = (Y1, ..., YJ )
for a network with J links. Let X = (X1, · · · , XI) be the
vectorized version of the traffic matrix where Xi denotes the
i-th OD flow (for a total of I OD pairs). The OD traffic
matrix X has been aligned into a vector for the convenience of
mathematical manipulation. As in [5] and [4] there is a linear
relationship between the unobserved X and observed Y :

Y = AX, (1)

where A is an J×I routing matrix, determined by the network
topology and the routing protocol. Mostly, elements of A take
on the value of 0 or 1: Aj,i = 1 if OD pair i traverses link
j, and Aj,i = 0 otherwise. The elements of A could take
on fractional numbers when traffic splitting is allowed. Our
proposed PamTram approach can deal with both cases. In this
paper, we assume that the routing matrix A is known. One
advantage of our approach is that the routing matrix is actually
allowed to vary during the monitoring period as long as such
information is obtained by the monitoring algorithm.

The goal of the traffic matrix estimation problem is to
recover X from the observable Y and known A. In ISP and
enterprise networks, we typically have J � I , and so A is not
full rank. Thus the estimation of the distribution of X is an ill-
posed inverse problem in the sense that the system equations
Y = AX have an infinite number of solutions, and hence
constraints have to be introduced to ensure the identifiability
of the model. There is a rich literature in statistics ([13], [14])
devoted to this topic from the point of view of regularization.
In a broad sense, statistical modeling can be also viewed as
introducing constraints by taking characteristics of network
traffic dynamics into account.

B. I-projection and the IPF algorithm

Now we will review an important problem in information
theory along with an iterative proportional fitting (IPF) al-
gorithm for solving it. We do this because we will make
use of the IPF solution as the work horse of our PamTram
approach for solving the traffic matrix estimation problem.
Further below we explain the connection between the two
problems.

The minimum Kullback-Leibler (KL) divergence problem is
one of the most fundamental questions in information theory.
It can be stated as: given a probability function q, we would
like to find a p inside a convex probability set L such that it
minimizes the KL divergence between p and q, i.e.,

p̂ = argmin
p∈L

D(p||q). (2)

Here q can be thought as the initial guess of the distribution to
be estimated, and the convex set L represents the constraints
we impose on the final feasible solutions. Such a formulation
has been widely used in communication [15], econometrics
[16], and many other areas.

I -projection, first studied by Csisźar [17], gives a geometric
view to the above minimum KL divergence inference prob-
lems. The problem is viewed as projecting the initial guess

q into the feasible convex set L where the KL divergence
plays the role of squared Euclidean distance. Algorithmically,
this geometric view suggests an alternating minimizing type of
algorithm [17], which is useful for solving (2) if the constraint
set L can be decomposed as the intersection of a series of
convex constraint sets {Ll : l = 1, · · · , L}. In practice, many
real problems have only linear constraints as special cases of
the convex set. Several iterative algorithms ([18], [19], [20],
[17], [21]) have been proposed to solve the KL divergence
problems with only linear constraints, and among them, the
iterative proportional fitting (IPF) ([18], [17]) is a simple
algorithm for solving the problem.

The connection between the OD traffic matrix estimation
problem and the I -projection (or the IPF algorithm) is that
the OD flow X is a component-wise non-negative vector, so
it can be converted into a probability function after scaling
assuming the total traffic volume is known, and the observation
equation (1) defines the constrained convex set naturally. Given
a starting point (usually just the previous OD estimate), below
is the pseudo code of the IPF algorithm to populate the current
traffic matrix estimate:

Algorithm 1 IPF Algorithm in Traffic Matrix Estimation
Given (1) a starting value µ,

(2) the current routing matrix A at time t,
(3) the observation Y which is Y = AX ;

for k = 1, · · · , K or till converge do
for j = 1, · · · , J do

α =
∑

i Aj,iµi/Yj

µi = µi/α for all i with Aj,i > 0
end for

end for
return µ.

The above algorithm works for both routing matrices with
fractional and whole numbers. When applying the algorithm
later, we will replace A and observation vector Y with their
augmented versions to accommodate the active measurements.

III. NETWORK TRAFFIC MODELLING

A. A Dynamic Network Traffic Model

To model the OD flows, some previous efforts have chosen
to assume that an OD flow is either Poisson or Gaussian.
In this work we focus on the conditional random variable
X(t+1)|X(t), which is assumed to be a Gaussian distribution
(We define η shortly.)

X(t+1)|X(t) ∼ N(X(t), η(t)diag(|X(t)|)), (3)

where the absolute value in the covariance matrix is introduced
to ensure mathematical accuracies. In reality, the OD flow X (t)

is always non-negative; as will be seen below in our approach
the estimate of X(t) based on the model is always guaranteed
to be non-negative.

In the model, the unknown parameter η(t), characterizes the
variability of the network traffic at time t. At a particular time
t, the same η(t) applies to all OD flows; however η(t) varies
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vary over time and thus accounts for volatility of network
traffic. We assume that these parameters are bounded by a
constant η > 0, that is, η(t) < η. In short, our model
is spatially homogeneous but temporarily inhomogeneous.
Empirical studies based on our dataset in Section V suggest
that η(t) usually takes on small values (Fig. 2 (c)).

We assume a linear mean-variance relationship on the condi-
tional distribution of X(t+1) given X(t). In previous work, [4]
and [11], a power-law mean-variance relationship (with linear
as a special case) was used to model the marginal distribution
of X(t). We make our assumption for two reasons. First, this
linear mean-variance relationship intuitively accounts for the
phenomenon that large flows have large variations; we validate
this assumption later in Section V. Second, the network traffic
is non-stationary. It is our intention to use the conditional rela-
tionship, which essentially results in a non-stationary network
traffic model, to capture certain aspects of non-stationarity of
network traffic and to track network dynamics.

Another important assumption of the model is that the
covariance matrix of this conditional distribution is diagonal,
implying that all OD flows are independent. Intuitively, there
are few reasons for OD flows to be correlated as traffic
sources and sinks are independent (such as independent end
users or web servers). Correlations can arise when some web
servers are very popular, and thus many users send and receive
packets from the popular nodes. Similarly, OD flows that share
a source can be correlated. Incorporating such correlations
would lead to a block diagonal autocovariance matrix. But
any attempt to model such dependencies explicitly requires
adding a large number of parameters in the traffic model. Two
problems can arise when attempting parameter estimation for
such a model: a) we can end up fitting the noise instead of
the true signals; and b) a large amount of data is needed to do
parameter estimation. An in-depth exposition of this topic can
be found in [22]. We prefer to opt for a simple formulation, as
specified in (3), since simple models are always preferable as
long as they yield accurate estimates. The goal in modeling is
to capture essential features of the traffic that lead to accurate
estimates. A model need not incorporate all properties of the
traffic, if they are not essential to the estimate being sought.
Our results show that the model we have chosen leads to
estimates that are well below the 10% target.

One motivation for this conditional model is to introduce
a time series structure between consecutive time slots of an
OD flow. This conditional model enables us to combine past
traffic matrix estimates and the current link counts together
to produce an estimate of a current traffic matrix. There are
many ways to incorporate previous estimates, such as using
it as an initial condition for an optimization procedure. To
populate our traffic matrix we will use an estimate based on
the expectation of the current random variable conditioned
upon the link constraints and the additional measurements we
obtain, given the immediate previous estimate.

In this approach, the transitions of the traffic matrix from
one time interval to the next are controlled by the parameter
η and small η’s imply that these transitions are not excessive.
Clearly the validity of non-excessive transitions depends upon
the time scale the matrix intends to be used for. In our case,

we make estimates of a traffic matrix every 10 minutes. Our
model is intended to capture local behavior, that is, ”local” in
a temporal sense (over a short window of time). We realize
that our model would not be an accurate description of traffic
over long timescales such as many hours or days. However,
our intent is to capture the transitional behavior of a traffic
matrix from one (short) interval to the next.

This modeling assumption has an alternate interpretation
as a state-space model, which is used to describe internal
unobservable states that evolve over time. The relationship
between the observable and unobservable variables is usually
specified as linear functionals typically with noise terms.
In terms of state-space system notations, our model can be
rewritten as follows:

X(t+1) = X(t) +
√

|X(t)|ε(t) (4a)

Y (t+1) = AX(t+1), (4b)

where the observable link traffic Y (t) ∈ RJ is a linear
function of the unobservable OD traffic X (t) ∈ RI at time
t. The routing matrix A, relating the unobservable states and
observations together, is a known sparse matrix (i.e., with
many zero entries). The errors ε(t) are identical independent
distributed normal random variables:

ε(t) ∼ N(0, η(t)), (5)

where, as discussed earlier, η(t) (< η) is an unknown parame-
ter quantifying the dynamics of the underlying OD traffic. We
would like to comment that there is no need to estimate η(t)’s
in the OD estimation and flow selection. They are needed to
capture variability, however when computing a traffic matrix
estimate using E(X |Y ), the actual Y ’s become fixed and
the η(t)’s cancel out. This will become clear in the proof of
Theorem 1 (see Appendix).

B. Error Metric

Before proceeding to our methods, we first introduce our
error metric. It will be used as the objective in the optimization
problem for estimating OD traffic, and will also assist in the
selection of traffic flows to measure. We propose to use a
variant of the mean square error (MSE) as the error metric to
assess the performance of an estimator. Let X̂ be an estimate
of the unknown OD traffic X , then the MSE of X̂ is defined
as

MSE(X̂, X) = ||X̂ − X ||2.

One drawback of the MSE metric is that it is not invariant to
the traffic volume changes. As our network traffic model is
non-stationary: the mean total traffic volume may increase or
decrease over time; hence, it is not reasonable to compare
estimation performance at different time locations. Model
(4) postulates that the variance is proportional to the mean
(conditioned on the traffic in the previous time slot). This
relationship is used to devise the following scaled mean square
error (sMSE) metric to mitigate the problem of MSE:

sMSE(X̂, X) =
||X̂ − X ||2

||X ||1
=

∑

i(X̂i − Xi)
2

∑

i |Xi|
.
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Since we will use this sMSE metric for assessing perfor-
mance, it is also used as our objective function in searching
for the OD flow estimate. It is important to note that the
scaling factor is a quantity that does not involve X̂ ; hence,
in effect, minimizing the sMSE is identical to minimizing the
MSE metric.

Another justification of the sMSE metric is based on the
model we are using. Suppose at time t the true OD flow X (t)

were known and no link measurements were available, then
the most sensible estimate for X (t+1) would be just X(t) itself.
We can then calculate that the expected sMSE error under such
a scenario as

E
(

sMSE(X(t), X(t+1))
)

≈ η(t).

This indicates that if we start from the previous true OD flow
X(t), the expected sMSE error will approximately be η(t),
which quantifies the variability of the traffic according to our
model. So sMSE is meaningful to our model. In practice, of
course the previous true traffic is unknown to us, so two factors
are at play regarding the sMSE of the estimation. On one hand,
we do not know X(t) but only its estimate X̂(t). On the other
hand, we can include (link or other extra active) measurements
to better the OD traffic estimation. The final expected error
metric will be influenced by both factors.

Other error metrics have been used in the past (e.g., [10]);
a common one is the relative error defined as:

Rel-Error(X̂i, Xi) =
|X̂i − Xi|

|Xi|
.

It has been shown that in real networks, roughly 95% of the
total load in the traffic matrix is carried by less than 1/2 or
1/3 of the flows [9]. Moreover, the volume of flow in these
OD pairs can span several orders of magnitude. Hence, there
are typically very small traffic flows that generate extremely
large relative errors and others are essentially irrelevant. Our
scaled MSE metric avoids this drawback, and works well as a
performance metric for both large and small flows. We point
out that in practice, the relative error is a useful measure to
network operators as it is intuitively appealing; thus we also
report on this metric in the results section.

IV. PARTIAL MEASUREMENT APPROACH

A. Incorporating Measurements

One of the central ideas in our method is that of coupling
the inference activity with the direct measurement of a small
number (possibly just one) of OD flow. To do this, it would
be necessary for flow monitors to be universally deployed
throughout a network. One might ask, if flow monitors are
deployed everywhere, why not just measure the traffic matrix
entirely? In [2] the authors outline the overheads involved for
both centralized and distributed versions of full direct mea-
surement. In both cases, the communications cost (information
being shipped to a central Network Operations location) re-
mains very high. For these reasons, it is interesting to consider
more lightweight uses of direct OD flow measurement.

A recent discovery illustrated that seemingly high dimen-
sional network OD traffic actually resides in a space of much

lower dimensional [23]. This provides compelling intuition for
a partial measurement approach, since it implies that there
is potential to learn a great deal about all the flows by only
measuring a few of them. In practice, it is challenging to get a
low rank representation because the network traffic is volatile;
hence, the representation changes over time. Our proposed
partial measurement approach is to use only a few active
measurements to obtain some vital information to explore
this low dimensional space dynamically. We contend that the
original ill-posed problem becomes more well-posed even if
only a tiny fraction of OD flows are measured directly at each
time point, because the OD flows measured in recent time slots
remain informative due to temporal correlations in OD traffic.

The partial measurements can be incorporated into our
model as follows. Let M (t) be a k× I measurement matrix at
time t. Each row of this matrix is a unit vector: it contains e′i
if X

(t)
i measured. We append M (t) to obtain the augmented

routing matrix A(t):

A(t) =

(

A

M (t)

)

.

Then the augmented observation vector Z(t) = A(t)X(t) is
the total observation available at time t. The first J entries in
this vector contain the link counts while any additional entries
contain the measured OD flows. In this paper, k, the rank of
M (t) is preset, i.e., the number of OD pairs to be measured
is determined. It is possible to treat it as a tuning parameter
in different scenarios, however we find excellent performance
when k = 1 and hence there is little motivation to explore
other values (at least for the dataset we study).

Equation 4b is now replaced so that our new system
equations, with the measurements incorporated, are given by

X(t+1) = X(t) +
√

|X(t)|ε(t) (6a)

Z(t+1) = A(t)X(t+1). (6b)

Our proposed PamTram approach is shown in Algorithm 2.
The initial traffic matrix X̂(0) is set to be component-wise
vector 1. This initial choice of traffic matrix is not very
important as the algorithm will quickly adjust itself to the
right region. The first step is to measure a small set of well
selected OD flows using monitoring equipment. Step 2 of the
procedure corresponds to the usual optimization problem for
traffic matrix estimation, and many of the previous methods
could possibly be applied here. We will provide a fast im-
plementation of an existing method. The challenge in Step 3
is to determine which informative OD flows to measure. We
will tackle these two questions separately in the following two
subsections.

Algorithm 2 Summary of the PamTram approach

Initialization: Set X̂0 = 1

for each time interval t do
1. Measure OD pairs selected at step t − 1;
2. Estimate X(t) based on data Z(1), · · · , Z(t)

3. Determine OD pairs to measure at t + 1.
end for
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In the following section, we will show that the IPF algorithm
can be used as an approximation method to solve the two
optimization problems (Step 2 and Step 3), that is both very
accurate and very practical. It is practical because the imple-
mentation of an IPF algorithm is much faster than indirect
solutions since it avoids matrix inversions (typically needed
in Step 2), and integrating over long periods (typical in Step
3).

The PamTram algorithm can be viewed as starting from
a maximum entropy estimation in the following sense: after
normalization by the total OD traffic (which is naturally done
during IPF), the OD traffic problem is equivalent to finding
the I -projection to the linear space of probability distributions
from a uniform distribution. This is intuitively appealing
because a maximum entropy estimate implies that we start
knowing nothing and thus need no prior knowledge. Hence
our choice of initial traffic matrix X̂(0) is not important.

B. IPF and Minimum Mean Square Error Estimation

Now we state our workhorse algorithm, and its properties
for estimating OD traffic when both link traffic counts and
some direct measurement information are gathered (Step 2 in
Algorithm 2). This IPF algorithm was used first by Cao et. al.
[4] as a post-processing step in their OD estimation algorithm
based on a Gaussian OD traffic model.

Since our goal is to be able to estimate the traffic matrix on
the timescale of minutes (e.g., 5 minutes for SNMP reporting,
or 10 minutes as in our measurement) , we seek a fast online
solution. The IPF solution is an appealing option because: 1)
it is easy to implement; 2) it converges in exponential rates
(cf. Liang et. al. [12]), and is thus very fast in practice. The
IPF algorithm can be run satisfactorily in the order of O(IJ)
with a preset finite number of iterations. The starting point at
time t is determined by X̂(t−1), the estimate obtained from
the previous step. It is reasonable to expect the starting value
to be in a small neighborhood of the OD traffic X (t) to be
estimated; this further speeds up the convergence rate.

The following theorem justifies the use of IPF for the
OD flow estimation under the dynamic traffic model from a
statistical viewpoint.

Theorem 1: For the network dynamic model (4), condition-
ing on X(t−1), if the mean vector µ (i.e., X (t−1)) is assumed
known, then the IPF estimate of X̂(t) is approximately the
minimum MSE estimate.

The IPF algorithm was first proposed in [18]. in the
context of fitting contingency tables with fixed margins. It
was conjectured there that IPF approximately minimizes a
(weighted) least square objective function (but there was no
proof). [17] showed later that IPF minimizes actually the KL-
divergence which is only an approximation to the (weighted)
least square function as seen in the above theorem. Our proof
is quite similar to the proof used in [1], but extends their
result to a conditional Gaussian model. This theorem implies
that the iterative proportional fitting (the I -projection estimate)
approximately gives the minimum MSE estimate when µ =
X(t−1) is known. In a real problem, X (t−1) is unknown hence
replaced by the previous estimate X̂(t−1). Another advantage

of the IPF algorithm that the resulting OD flow estimate is
positive, which is not guaranteed by the minimum MSE error
estimate.

Alternatively, the IPF algorithm can be justified as an
approximation to the true minimal MSE estimate given all
past observations. The true minimum MSE estimate of X (t)

is the conditional expectation of X (t) given all observations:

E(t) = E
(

X(t)
∣

∣

∣
Z(1), · · · , Z(t)

)

.

The computation of such a quantity is very high: it involves
an integration over all past data points. To avoid this cost, we
can consider the following one-step approximation instead:

E(t) = E
(

E
(

X(t)|X(t−1), Z(t)
) ∣

∣Z(1), · · ·Z(t)
)

≈ E(X(t)|X̂(t−1), Z(t)).
(7)

This approximation is valid if the last parameter estimation
X̂(t−1) is in the neighborhood of the true traffic X (t−1); then
the IPF algorithm can be used to compute this conditional
expectation approximately by starting from X̂(t−1).

C. Measurement Selection Scheme

1) Motivation: We now address the issue of how to select
the OD flows to measure in each time interval (Step 3 in
Alg. 2). The idea is to choose a scheme that will select the
most informative of the unobservable flows. Clearly, the choice
has to be made based solely on the observable variables. We
focus on selecting a single OD flow because even just measur-
ing one OD flow per interval provides excellent performance.
Our ideas here could be generalized to selecting a few flows,
driving errors yet further down.

First, let us consider what an optimal solution would suggest
and entail. Suppose X is a multivariate random variable (not
necessarily normal) with: E(X) = µ, and V ar(X) = Σ,
where both µ and Σ are known (or can be estimated). Then
the minimum MSE predictor for X is just µ with the MSE
error

E||X − µ||2 = trace(Σ).

Hence ideally, we would like to select an OD pair such that the
resulting conditional covariance matrix given all observations

Σ(t) = Var
(

X(t)
∣

∣

∣
Z(1), · · · , Z(t)

)

(8)

has the smallest trace. In other words, our task is to select the
observation matrix M (t) such that the trace of the conditional
variance is minimized,

M (t) = arg min
M(t)

traceΣ(t).

Intuitively this means we want to select the OD flows such
that our estimation error was minimal. However, this approach
is not attractive because the computation of Σ(t), involving
integration over all past observations, is too costly.

Similarly to the approach for producing an approximation
that we mentioned in (7), we can also imagine using the same
type of approximation here for the conditional covariance in
(8):

Var
(

X(t)
∣

∣

∣
X(t−1) = X̂(t−1), Z(t)

)
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However this remains difficult to compute because in general,
for any random variables C and D, we have Var(C) =
Var(E(C|D)) + E(Var(C|D)), that in our case translates to,

Var

(

E

(

X(t)

∣

∣

∣

∣

Z(t), X(t−1) = X̂(t−1)

)
∣

∣

∣

∣

Z(1), · · · , Z(t)

)

.

which remains computationally difficult to approximate.
2) Randomized Decision Rules: Since using Σ(t) to choose

the optimal OD flow to measure is too computationally in-
tensive, we develop instead heuristic randomization schemes
motivated by game theory. Consider for a moment a uniform
randomization scheme in which, at each time step, each OD
flow is selected for measurement with equal probability 1/I .
The following theorem bounds the one-step error performance
(the error made from one interval to the next) assuming
uniform random sampling of flows.

Theorem 2: Let ω(t−1) be the sMSE error at step t − 1,

ω(t−1) = sMSE
(

X̂(t−1), X(t−1)
)

.

Assume no link measurements Y are made, and only one OD
pair is selected for measurement by uniform random sampling,
then the expected value of ω(t), the error metric of X̂(t), is
approximately bounded by

E(ω(t)) ≤
I − 1

I
ω(t−1) + η(t) ≤

I − 1

I
ω(t−1) + η,

where I is the number of total OD pairs. When t goes to
infinity, Iη is an upper bound of the expected error.

In the theorem, the expected value of the next step error met-
ric is bounded by the sum of two parts: the first is the reduction
in previous error thanks to the additional measurement; and
the second part (η) comes from the intrinsic variability (un-
certainty) of the traffic itself. The theorem implies that when t
grows, the expected error will be bounded regardless of where
we start.

This theorem is a comforting result in the sense that using
a uniform randomization scheme is not going to lead to an
error metric that can grow without bound. Since this case
corresponds to picking a flow arbitrarily, it can be viewed
as a worst case bound. Indeed, as we will see, all of our
alternative randomization schemes produce smaller errors than
the uniform randomization scheme.

In practice, link measurements Y (t) are obtained, so the
residual of the parameter estimate at time t is

R(t) = X(t) − E

(

X(t)

∣

∣

∣

∣

X(t−1) = X̂(t−1), Y (t)

)

. (9)

In order to reduce the sMSE (or equivalently the MSE),
one should measure the OD pairs with the largest absolute
residual(s). Note X̂(t−1) is only an estimate. We can view the
task of picking the OD flow with the largest residual as a two
person game. One player is the traffic generator and the other
is the operator who is trying to guess the traffic volumes. At
each move, the traffic generator changes the traffic volumes,
and the operator’s move is to guess the traffic. We assume
that the traffic generator knows the strategy of the operator
and tries to select traffic volume levels so as to confuse the

operator as much as possible. Suppose the operator has a 0-
1 loss function (the loss is 1 if it guesses correctly and 0
otherwise). The operator’s goal is to maximize the probability
of picking the largest residual, i.e.,

L(X(t−1), i) = 1

(

R
(t)
i = max

j
R

(t)
j

)

.

This corresponds to picking the largest random number
amongst a set, and hence we call our game a pick-largest-
random-number game. The next theorem shows that random
guessing, i.e., the uniform randomization scheme above, is in
fact the minimax rule, and is thus the best option in this game
scenario.

Theorem 3: The uniform random sampling (p(i) = 1/I) is
the minimax decision rule of the pick-largest-random-number
game with a 0-1 payoff (loss) function.

In reality, the ”traffic generator” player is not really an
intelligent adversary. Although there is variability in traffic,
there is also a good deal of temporal correlation, and many
flows vary slowly over short time scales. Hence, choosing
OD pairs uniformly is likely to give poor results since the
information in the previous traffic estimate is not exploited.
In fact, since X̂(t−1) is likely to be close to the true traffic
state X(t−1), we should be able to guess reasonably well the
moves of the traffic generator player, by relying on previous
estimates. If we assume X (t−1) = X̂(t−1), then R(t) is a mean
zero normal random variable with variance (independent of
Y (t))

Λ(t) = Σ(t) − Σ(t)A′(AΣ(t)A′)−1AΣ(t), (10)

where Σ(t) = η(t)diag(X̂(t−1)), and the probability of R
(t)
i

being the largest residual in absolute value is

Q(i) = P

(

|R
(t)
i | = max

j
|R

(t)
j |

)

. (11)

In this alternate game, the operator now knows the strategy
of the traffic generator in the sense that is has a model of the
traffic. A good strategy for the operator would be to pick an
OD flow whose probability of generating the largest residual is
highest. Let Pmaxen(i) denote our strategy, i.e., the probability
of picking flow i. We should choose Pmaxen(i) = Q(i) for
the following reason. If the operator has a negative log loss
function, and the distribution Q is assumed to be known, then
it is well known that the solution that minimizes this loss
function is given by the maximum entropy solution, i.e.,

Pmaxen = argmin
P

−
∑

i

log P (i) log

(

Q(i)

P (i)

)

= Q.

Hence, we call this randomization scheme maxen.
The uniform and maxen randomization schemes approach

the measurement selection from two opposing points of view.
On one hand, the uniform scheme ignores the knowledge about
the network from previous time intervals. On the other hand,
the maxen randomization scheme is based on the rationale
that the system changes slowly over time. Real networks
exhibit both behaviors: sudden changes and sustained smooth
transitions. Hence we combine these two schemes to produce a
scheme that sometimes allows departures from the base model.
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Let α ∈ (0, 1). A weighted minimax randomization is defined
as:

PwMaxen = αPuniform + (1 − α)Pmaxen.

Here we assume that the parameter α is preselected, and that
it could be tuned for particular networks. We usually set it as
a relatively small number, such as 0.2, to favor the existing
estimated models more.

3) Implementation of Decision Rules: For these random-
ization schemes, the uniform is easy to realize, but the
implementation of the maxen randomization rule is difficult
because the probabilities defined in (11) are hard to obtain.
Instead of computing these probabilities explicitly, the maxen
scheme can be implemented by generating multivariate normal
random numbers whose covariance matrix is that specified in
(10). Let µ = X̂(t−1), and X(t) ∼ N(µ, η(t)diag(µ)), then

X(t) − ΣA′(AΣA′)−1(AX(t) − Aµ) − µ (12)

is a mean zero multivariate normal random variable with
covariance matrix Λ(t). Our method is thus to use this distri-
bution to generate I random numbers (recall I is the number
of OD flows), and then find the index of the largest one. But
(12) requires the inversion of the matrix AΣ(t)A′, which is
computationally expensive. Again, the result from Theorem 1
shows that the IPF algorithm can be used to approximate

X(t) − ΣA′(AΣA′)−1(AX(t) − Aµ).

This can be solved approximately by using X (t) as a starting
point and applying IPF to find a solution that fits the link
constraint Y = Aµ. Thus a maxen randomization algorithm
can be devised as follows:

Algorithm 3 Maxen Randomization Algorithm

Let µ = X̂(t) and y = Aµ;
1. Generate X̃ ∼ N(µ, η(t)diag(µ));
2. Project X̃ onto {X |y = AX} to get X̆ using IPF;
3. Pick the jth OD flow if j = arg maxi |X̆i − µi|.

Note that we needn’t be concerned about our choice for the
parameter η(t) in this procedure. As mentioned earlier, during
the computation of E(X |Y ), the η(t)’s cancel out (see proof
of Theorem 1).

In summary, the total computational cost of PamTram is at
most the cost of executing IPF twice. If uniform sampling is
used, we do not need Algorithm 3, and IPF will be executed
once. For the Maxen solution we use IPF twice. Since the
IPF computation is light, we believe our solutions can scale
to larger networks.

D. Practical Issues of Flow Collection

There are some issues related to the practicality of our
proposed partial monitoring scheme. We realize that because
in practice the flow monitor is attached to a link, when we turn
it on, we will in fact capture all the flows traversing that link.
However, in this paper we study the case of measuring only
a single OD flow to understand the impact of this idea. Our
goal is to understand, in general, how much flow measurement

is needed to obtain accurate traffic matrices. Since in practice
we have more than one OD flow, the errors will be lower than
what we calculate using only one OD flow.

The other practical problem is that when the flow monitor
resides on a router, activating and deactivating flow mea-
surements requires updating router configurations (e.g.,, once
every 10 minutes). This could be viewed as high management
overhead by network operators. There are two ways to avoid
this problem. First, it is possible to imagine alternate imple-
mentation scenarios in which, for example, flow monitors are
left on all the time, and the results are either stored at the
monitor or in a collection server residing in a PoP. Then the
network operations center could selectively pull flow records,
a few at a time, as directed by our selection schemes.

A second option is to select the measurement schedule a few
hours in advance thus providing the network ample time to
disseminate and schedule the monitoring activities, that could
be loaded into monitors in batches. We consider a variation of
our randomization schemes is which the OD flows to measure
are selected 24 hours in advance. The idea is that a flow
selected for measurement at 2:10pm on one day, is actually
measured at 2:10pm the next day. The rational for such an
approach comes from both the observation of strong daily
periodicity (as in Fig. 1) which shows that traffic is generally
similar from one day to the next at a particular time of the day,
and from [2] in which the authors illustrate this notion more
precisely using fanouts. We call this a Latent scheme. Note
a latent scheme is merely a scheduling approach that needs
to be combined with a randomization rule. We evaluate both
Latent(maxen) and Latent(wMaxen).

V. EXPERIMENTAL ENVIRONMENT

A. The Data

Our data comes from Sprint’s European backbone that is
made up of 12 Points of Presence (PoPs) and 18 inter-PoP
links. The network OD traffic information was collected by
turning on Netflow (version 8) on all the Cisco routers. This
version of Netflow uses a sampling scheme of monitoring 1
out of every 250 packets. The data was aggregated into PoP
level flows at a time granularity of 10 minutes (i.e., average
number of bytes sent between PoP pairs during each 10 minute
window). The data collection interval of 10 minutes was
chosen to mitigate possible measurement errors. This is the
same dataset used in [8] hence some of our error statistics can
be directly compared to those in [8]. To avoid inconsistencies
between the link traffic and OD traffic, the link measurement
data are derived from the flow level measurements X ; this
guarantees that the traffic matrix X , the routing matrix A and
the link traffic counts Y are all in agreement with each other.
This approach is well justified in [10].

We now show some behaviors of this OD traffic data that,
although they have been pointed out before, are included
here for completeness. Fig. 1 shows two time series plots
of OD traffic flows selected because they represent common
behaviors. 1 The first one shows strong periodicity (very

1The traffic volume has been multiplied by a randomly selected number
for reasons of confidentiality.
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Fig. 1. Two sample PoP level OD traffic flows.

common in OD pairs [23]). The strong periodicity of OD
traffic also induces strong periodicity in observed link traffic.
The period of the traffic is exactly one day, while a weekly
period can also be seen over a longer time frame. Both samples
illustrate that sharp changes, different from the diurnal cycles
and from the local noise, can occur. These can occur for
reasons such as router failures, the addition of new customers,
or the removal of previous customers.

We now use this data to validate some of the assumptions
used in our model. The conditional linear mean-variance
relationship implies that we have

Ut,i =
(

X
(t)
i − X

(t−1)
i

)

/
√

X
(t−1)
i ∼ N(0, η(t)).

Even though η(t) varies over time, it is reasonable to assume
that it is continuous. Then we can estimate its value within
each small moving window. Fig. 2 shows two QQ-plots at two
different time points, and a time plot of the η(t) estimation. We
use only the upper 90% of the traffic load to generate all three
figures, since we care less about faithfully representing the
very small flows than the larger ones constituting the majority
of the traffic. The Q-Q plots are produced based on all Ut,i

within a 50-minute window, i.e., 5 intervals. These two Q-Q
plots are chosen because of their representativeness; data in
other time windows show similar features. Fig. 2(a) is drawn
based on data points in the time window 1-5, and Fig. 2(b)
is in time window 2000-2005, which is the region with the
highest spike (Fig. 2(c)). From both plots, we can see that the
Ut,i is very close to a normal distribution but with a longer
tail. Fig. 2 shows the estimated η(t) over time. Because Ut,i’s
have a longer tail than normal, a robust estimate of η(t) based
on absolute moment ([24]) is used:

η̂(t) =

( ∑

i |Ut,i|

0.799× I

)2

,

where E(|V |) = 0.799 for V ∼ N(0, 1). From the plot,
we can see that the values of η(t)’s mostly oscillate around
1, which is very small given that a medium traffic flow
may take a value of several hundreds or thousands. There
are occasional spikes in the figure – the most obvious one
corresponds to the sudden traffic changes occurring around
time slot 2000. Overall, the η(t) is well bounded except for

a few spike points. The plot shows that the conditional linear
mean-variance relationship is a good approximation to the raw
data.

B. Partial Measurement Schemes

We tested PamTram using a number of partial measurement
schemes to the Sprint PoP network data, including the uni-
form, maxen, wMaxen, Latent(maxen), and Latent(wmaxen)
schemes. For the wMaxen and Latent(wMaxen) versions,
the weight parameter α is set as 0.2 to favor the maxen
randomization scheme. Our experiments show that the scheme
is not very sensitive to the choice of α. In order to better
evaluate the performance of these randomization schemes,
we also implemented an oracle scheme. The oracle has full
knowledge of the true OD traffic and thus the largest residual
can be precisely selected. In other words, we select the flow
that results in the smallest scaled MSE error in the next
parameter estimate. We can do this since we have the measured
traffic matrix at our disposal. Although this cannot be done in
practice, it provides a means of assessing how far our schemes
are from a sort of optimal (full knowledge) behavior. We have
not included the results for Latent(maxen) because they are
very similar to those of Latent(wMaxen) and due to lack of
space. In almost all of our evaluations, we measure only one
OD flow in each 10 minute measurement interval.

C. Comparison to Kalman Filter method

We compare PamTram to the Kalman filter based method
that was proposed in [25] and fully evaluated in [8]. We
briefly summarize the essential ideas here for completeness.
We choose to compare our solution to the Kalman method
because that method resembles our solution in that it also uses
a state space model coupled with partial flow measurements.

The state space model in the Kalman method is
{

Xt+1 = CXt + Wt

Yt = AXt + Vt

(13)

where C is the state transition matrix, Wt is the dynamic
traffic noise process and Vt is the measurement noise process.
The diagonal elements of C capture temporal correlations for
individual OD flows, while the off diagonal elements of C
capture spatial correlations across different OD flows. The
Kalman filter is a two-step method that iterates each time
interval. It first computes both a prediction for X at time
t + 1 given all the data seen up to time t, namely X̂t+1|t,
and then computes a modified update when the new set of
link counts arrive at time t + 1, denoted X̂t+1|t+1. This latter
step provides some of the adaptability of the Kalman method
because it estimates the TM using a model capturing temporal
and spatial correlations, but modifies it to be in line with the
link counts.

To make these computations, the Kalman method needs to
calibrate the matrices C, ΣW and ΣV . To do this all the flow
monitors throughout a network are turned on for a period of
24 hours. The 3 matrices are computed using this data via
an Expectation Maximization algorithm. Once the model is
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Fig. 2. Model Validation. (a) and (b): Q-Q plots of Ut,i within two chosen 5-point time windows: the first one is based on the time window 1-5 and the
second time window 2000-2005; (c) Estimated η(t) over time.

calibrated, the filter alone is used for producing estimates.
In addition, the method uses a background procedure to
check when sufficient change has occurred so as to require
recalibration of these 3 model parameters. When this happen
the flow monitors are turned back on for another 24 hours.

We now point out a critical difference between the Kalman
method and PamTram. In the Kalman solution, their rich
model is well calibrated at the time of measurement collection.
If the model drifts, the out-of-date parameters are not updated
until the drift is large enough to be detected. In the PamTram
approach, because we measure 1 (or a few) flows at each time
interval, the model is essentially continuously being updated.
At no single moment is the entire TM collected; however since
the OD flows exhibit strong temporal correlations one could
hypothesize that this isn’t necessary. As we will see below, it
appears that continuous update of a small portion of the TM
itself, is more powerful than discrete model updates that are
complete but spaced far apart in time.

VI. RESULTS

We now evaluate all of our partial measurement methods
along with the Kalman based method, with respect to a
number of performance metrics including temporal errors,
spatial errors, relative errors, overhead and adaptability.

Time plots. We start by viewing some sample time plots of
OD flow estimates as shown in Fig. 3. Because the network
traffic is very volatile and hard to visualize, the smoothing
spline method is used to remove unnecessary spikes of the
true traffic while keeping the trend faithful. The same method
is applied to estimated OD flows as well. In Fig. 3, we show
a sample OD flow along with its estimate (Sample flow 2 in
Fig. 1): the first panel shows the starting region, and the second
is a region where a large traffic changes occurs. We see that all
the methods track the OD flow well. The Kalman has the most
difficulty with the changes around time slot 500 (Fig. 3(a)),
and around time slot 2900 (Fig. 3(b)). The uniform scheme has
the most difficulty in the initial phases of estimation (starting
from time 0). All PamTram approaches adapt to the true OD
traffic quickly during these two change episodes.

Scaled MSE errors. First we consider temporal errors.
By temporal errors we mean that at each moment in time,
we compute our error metric over all the flows giving a
representative error for that time-point. We see how this
scaled MSE evolves over time by viewing it at consecutive
time-points, as in Fig. 4. All variants of PamTram drive the
estimation error very low, even when only one OD flow is
measured per time interval. We see that the majority of the
errors are below 5%. This breaks new ground in terms of
low error rates. By examining the initial time period of this
figure, we can see that the PamTram method converges. That
is, regardless of our arbitrary starting point, the errors of
PamTram reduce over time and stabilize roughly around 5%.
Of course there is variation, but the errors hover around 5%,
the noise is small and larger deviations are short-lived. In
this sense, we can say the errors “converge” or “stabilize”.
The Kalman estimates appear noisier, occasionally producing
larger error spikes. The increase in error just before time slot
500 reflects the delay the method incurred until it detected
the large change requiring model re-calibration. The Kalman
method does reasonably well overall, however the PamTram
variants yield lower errors more consistently over time (i.e.,
the errors are less variable). We found similar behavior for
many other flows we examined.

Adaptability. To measure adaptability over a number of
episodes of change we use the following metric. We check in
each flow, if it has more than a 30% jump from one time slot
to the next. If it does, we flag this as the start of a jump, and
compute the relative errors during the next 5 time slots. We
do this for all methods and for most flows (those constituting
the top 90% of the load). We can them compute the average
relative error during these jump regions for each method. We
found that the uniform scheme had a 13% error, the wMaxen
scheme a 10% error, the oracle experienced 6% error and the
Kalman method incurred a 16% average relative error rate.

Spatial Errors. The spatial errors give a different view
of the errors in OD flow estimation. By spatial errors we
mean that one error is computed per flow since the summing
operation is done over time. This gives a summary error per
flow over its lifetime. The ensemble of these errors illustrates
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Fig. 3. A zoomed-in sample OD flow: true data (solid line) and estimates (dotted line). (a) the initial stage; (b) a region where large traffic changes occur.
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the different errors experienced by different flows. We use the
weighted L2 norm proposed in [8] to measure the spatial error:

dspatial(i) =

√

√

√

√

T
∑

t=1

(

X̂
(t)
i − X

(t)
i

)2
/ T
∑

t=1

(

X
(t)
i

)2

.

Fig. 5 shows the ensemble of spatial errors across large OD
flows. The OD flows in the plot are sorted in decreasing order
according to their total traffic volume. The OD flows included
in the plot constitute 90% of the total load. The vertical bar
represents the 80% cut-off point (i.e., all the flows to the left
of the bar constitute 80% of the load). We see in this plot
that OD flows with smaller average size tend to have larger
errors. This is a well known phenomenon and is consistent
with results in almost all previous traffic matrix estimation
papers. More importantly, we observe very small spatial errors
for the majority of the traffic. All of these partial measurement

Sorted OD Flow

W
ei

gh
te

d 
L2

 s
pa

tia
l e

rr
or

0.2

0.4

0.6

0.8

0 10 20 30 40

Maxen wMaxen

0 10 20 30 40

Uniform

Kalman

0 10 20 30 40

Latent(wMaxen)

0.2

0.4

0.6

0.8

Oracle

Fig. 5. Spatial error metric versus average flow size (decreasing order). The
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schemes perform reasonably closely to the oracle one. For
comparison, we compute the average spatial errors for 90%
of the total load. The Kalman method had the highest average
spatial error: 20.9%, uniform was 18.5%, Latent(wMaxen)
16.4%, maxen 16.8%, and wMaxen around 16.5%. Since we
include 90% of the traffic in the plot, there are numerous small
flows still included in the set of flows presented here. These
are often disregarded in traffic matrix estimation because they
are less important and hard to estimate. This thus shows that
our methods can handle some of the small flows as well. It
appears that the PamTram variants handle the smaller flows
better than the Kalman method.

Relative Errors. We now look at the instantaneous relative
errors, summing neither over time nor over space, but instead
just assembling the errors achieved at each interval for each
flow. Fig. 6 shows the cumulative distribution function (CDF)
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TABLE I

AVERAGE RELATIVE ERROR, SMSE AND RUNNING TIME

Avg(relError) Avg(sMSE) Time (sec)
Oracle 5.0% 1.13 -
Maxen 9.5% 4.43 0.08
wMaxen 9.0% 3.78 0.06
Latent(wMaxen) 9.1% 3.82 0.06
Uniform 10.5% 4.88 0.04
Kalman 16.9% 6.11 -

of the absolute values of relative errors. In each panel, the
dashed line is the oracle and the solid line is the method
indicated. The x-axis is the relative error rate, and y-axis the
percentage of traffic volume. Note that the y-axis on these
plots begins at 50%. We see that none of the schemes are too
far off from the oracle, although the Kalman is farthest. For all
the PamTram methods, about 75% of OD flows experience an
error less than 10%. Since roughly 30% of the flows constitute
95% of the total traffic load, it is likely that the remaining 25%
of the flows with errors over 10% are the small ones. We can
make this assessment with the help of plots like those in Fig.
5 showing increased errors for smaller flow sizes.

Error Summary. Table I reports the average relative errors,
and average scaled MSE for all partial approaches. Again, we
report the average relative errors for the largest OD traffic
flows that constitute the top 90% of the total traffic load. The
average scaled MSE is the simple average of all the scaled
MSEs at each time interval. We see that most of the PamTram
variants keep their average errors below the 10% target. The
main PamTram methods experience an instantaneous average
relative error of 9% or 9.5% while the Kalman method sees a
16.9% average error.

Overheads. Table I also reports the run-time or compu-
tation time for our proposed randomization methods. The
computation of PamTram is very light; it is a very appealing
property of the proposed approach, especially important for
the implementation of such online algorithms. The Sprint

dataset was processed on a 3.2GHZ computer using the R
package [26]. It takes maxen approximately 0.08 seconds to
generate one traffic matrix estimate per 10 minute window.
This includes two iterations of the IPF algorithm. The uniform
scheme further cuts the running time by roughly half because
only one round of the IPF procedure is needed in each time
interval (as discussed in Sec. IV-C.3). PamTram is fast because
the complexity of an IPF algorithm is O(IJ), and it avoids
matrix inversion as is needed by many maximum likelihood
estimation or regularization approaches.

PamTram is lightweight not only computation-wise, but also
in terms of measurement overhead. To assess the tradeoff
between performance gain and measurement overhead, we use
the measurement overhead metric proposed in [8]. Their metric
is defined as

∑I

i=1 D(i)/(NumDays∗NumLinks), where D(i)
is the number of days that link i was turned on for flow
measurement. This metric, with units of link-days, made sense
in their context because each time a flow monitor is turned
on it remains on for 24 hours. The idea was to count the
amount of time a flow monitor is on over many links and days,
and to create a ratio so as to compare it to the case of full
measurement when all flow monitors are on all the time. The
measurement overheads in [8] ranged from 5-30% depending
upon the scheme. The Kalman scheme incurred an overhead
of 20%. Our scheme is equivalent to the case when one flow
monitor is on all the time because at any moment we have
one flow being monitored. Hence in terms of this metric, the
overhead of PamTram is 1/J or roughly 5% since we have a
network with J = 18 links. This is the overhead when a flow
monitor is turned on and collects everything on the link to
which it is attached. If the flow monitor could be configured to
monitor only a single OD flow, then the measurement overhead
would drop to 1/132 (one over the number of OD pairs) which
is less than 1%. This is so lightweight that the tradeoff of
measurement versus performance gain is immaterial.
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Fig. 7. Frequency of flows selected for measurement for maxen scheme.
Flow IDs sorted by decreasing mean on x-axis, and number of time flow
selected on y-axis.

Flows Selected for Measurement. It is interesting to ask:
which flows are being selected for measurement? We counted
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the number of times each flow was selected over the three
week period of our dataset. We plot this data in Fig. 7 for the
maxen scheme. The flows, whose IDs are on the x-axis, are
sorted in order of decreasing mean value. This was done to
check if any correlation between frequency of flow selection
and mean size exists. Clearly, it is not true that only the
largest flows are being selected. We tried this on PamTram
variants, and found the same result. We also examined plots of
frequency of flow selection versus the standard deviation of a
flow to test whether the most variable flows are being selected.
Again, there was no clear correlation. It is possible that there
are a number of factors influencing flow selection and thus
plotting the frequency against a single factor is not revealing.
The plot indicates that small flows can also be informative to
measure. This is because the information content of each flow
is not determined only by the flow volume, but is also impacted
by the linear constraints Y = AX . The A matrix influences
many factors, such as how many links an OD flow traverses,
and how many flows share a link. The residual quantity defined
in (9) is a function of A and thus indirectly takes these
effects into account, when determining which flows are more
informative to measure. We leave further investigation of this
problem as future work.

VII. DISCUSSIONS AND FUTURE WORK

In this paper, we proposed a partial measurement approach
for OD traffic matrix estimation based on two key ideas.
The first is to use partial flow measurement in a lightweight
fashion by only measuring one flow per estimation time
interval. We couple this with a dynamic traffic model that
allows us to incorporate past information into the current
estimate. Such an approach is successful in achieving excellent
performance with minimal measurement cost. Measuring one
OD flow per time interval brings only a small amount of extra
information; however the measurements accumulate over time
via the dynamic network model, thus facilitating estimation.
Because our model updates continuously over time, no special
steps are required when traffic changes occur. Our second
key contribution is a scheme for selecting which flow to
measure plus the illustration that an IPF algorithm can be used
both for approximately this flow selection algorithm and for
approximating an MSE error. Because the IPF algorithm is fast
and we only measure one OD flow per time interval, PamTram
is lightweight both in computation time and in measurement
overhead. We thus believe that PamTram has potential to be
considered for deployment in operational networks.

We found that, while the Kalman method (one of the best
methods proposed to date) performs well, all of our PamTram
variants consistently outperformed the Kalman method with
respect to numerous errors metrics (spatial errors, temporal
errors, relative errors and adaptability). In addition, this im-
proved performance comes with a much lower measurement
and computational cost. Because PamTram uses a nonstation-
ary traffic model, it has the potential to adapt to nonstationarity
in the traffic more rapidly that previous approaches like [25]
or [4] since they rely on local stationarity on timescales of
days or hours.

Our interesting and encouraging finding is that for this
particular network, low errors could be achieved simply by
measuring only one flow each measurement interval. This
gives us confidence that for general ISP-like networks, it may
be sufficient to measure only a very small portion of the TM in
order to accurately estimate the entire TM. For large networks
with many OD flows, we contend that k > 1 may be useful;
however we suspect that a good k would still be a very small
fraction of the total number of flows. We will explore the
scalability of this result in future work.

Other interesting directions for future research include using
our dynamic traffic profiles for security purposes. One can
detect anomalies by looking for outliers based on models of
normal traffic. Such traffic profiles may also be useful for
providing enhanced performance for subsets of the total traffic
belonging to specific applications (such as VoIP) that may have
its own performance and robustness requirements.

ACKNOWLEDGMENTS

We would like to thank Sprint Advanced Laboratory for
allowing us the access to the PoP network dataset. We would
also like to thank Antonio Nucci, Dina Papagianaki, and
Anukool Lakhina for preparing the dataset and many helpful
discussions. Partial support to Bin Yu and Gang Liang is
gratefully acknowledged from the National Science Founda-
tion (CCR-0106656 and FD01-12731) and the Army Rearch
Office grant (DAAD19-01-1-0643). Bin Yu was also supported
by a Miller Research Professorship from the Miller Institute
at UC Berkeley in Spring, 2004.

VIII. APPENDIX

A. Proof of Theorem 1

It is easy to show that the conditional expectation

E(X |Y ) = µ − ΣA′(AΣA′)−1(Aµ − Y ).

In the above equation, η, the coefficient of A, cancels out
and does not appear in the final solution. This conditional
expectation is also the solution to the weighted least-square
estimate with square root weights in Zhang et. al.. [1]

min
∑

i
(Xi − µi)

2/µi subject to AX = Y.

Then similarly, we may borrow the argument pointed out by
Zhang et. al.[1] that

D(X/N ||µ/N) ≈
∑

i
(Xi/N) (Xi/µi − 1)

≈ 1/N
∑

i
(Xi − µi)

2/µi,

where N is the total traffic. The first approximation is a
linear expansion of the logarithmic function, and the second
approximation is due to our assumption that

∑

i µi ≈ N .
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B. Proof of Theorem 2

Let K denote the index of the OD pair to be measured;
hence, we have P (K = k) = 1/I . Under the assumption that
no any link measurement is obtained, we have

X̂
(t)
k =

{

X
(t)
k if K = k

X̂
(t−1)
k otherwise.

Similarly, we define X̃(t+1) as

X̃
(t)
k =

{

X
(t)
k if K = k

X
(t−1)
k otherwise,

which is the parameter estimate if we start from the true value.
Fix X(t−1) and X̂(t−1) at first, then the expected value of

the scaled MSE is

E

(

||X̂(t) − X̃(t)||2
∑

i X̃
(t)
i

)

≈
E||X̂(t) − X(t)||2
∑

i X
(t−1)
i

=
E||X̂(t) − X̃(t)||2 + E||X̃(t) − X(t)||2

∑

i X
(t−1)
i

(14)

The first approximation is obtained by the delta method [24],
and the second equality holds because

E
(

||(X̂(t) − X̃(t)) + (X̃(t) − X(t))||2
)

= E

(

E

(

||(X̂(t) − X̃(t)) + (X̃(t) − X(t))||2
∣

∣

∣

∣

K =k, X
(t)
k

))

.

Note given K =k and X
(t)
k , X̂(t) − X̃(t) are determined, and

X̃(t) −X(t) is a mean 0 multivariate normal random variable.
The cross terms disappear after expanding the square term.

For each term in (14), we have

E||X̂(t) − X̃(t)||2
∑

i X
(t−1)
i

=
||X̂(t) − X̃(t)||2 −

∑

k P (k)(X̂
(t−1)
k − X

(t−1)
k )2

∑

i X
(t−1)
i

≤
I − 1

I
ω(t−1),

and
E||X̃(t) − X(t)||2
∑

i X
(t−1)
i

≤ η.

So in summary, we have

E(ω(t)) ≤
I − 1

I
ω(t−1) + η(t) ≤

I − 1

I
ω(t−1) + η.

Note that the above bound actually does not depend on the
value of X(t), implying the inequality holds generally.

Let γ(t) = E
(

ω(t)
)

. Taking an expectation over both sides
of the above inequality, we have

γ(t) ≤
I − 1

I
γ(t−1) + η. (15)

Based on the above inequality, we can easily get the inequality:

γ(t) ≤ at−1γ(0) +
1 − at−1

1 − a
η ≤ at−1γ(0) + Iη,

where a = 1 − 1/I and γ(0) is the initial error. As t tends to
infinity, at−1 tends to zero so asymptotically the influence of
γ(0) diminishes exponentially. It implies that Iη is the upper
bound of the expected error metric in the long run.

C. Proof of Theorem 3

If only we can show that the uniform selection rule P (i) =
1/I is an equalizer decision rule. First note that

EP

(

L(R(t), i)
)

= 1/I,

independent of the distribution of R(t) as long as the i is
chosen independent of R(t). It implies that the such a decision
rule is actually an equalizer for the game:

Ep

(

max
X(t−1)

L(R(t), i)

)

= 1/I.

So the uniform rule is minimax.
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