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ABSTRACT

Today’s Internet is a massive, distributed network which continues to explode in size as e-
commerce and related activities grow. The heterogeneous and largely unregulated structure
of the Internet renders tasks such as dynamic routing, optimized service provision, service
level verification, and detection of anomalous/malicious behavior extremely challenging. The
problem is compounded by the fact that one cannot rely on the cooperation of individual
servers and routers to aid in the collection of network traffic measurements vital for these tasks.
In many ways, network monitoring and inference problems bear a strong resemblance to other
“inverse problems” in which key aspects of a system are not directly observable. Familiar signal
processing or statistical problems such as tomographic image reconstruction and phylogenetic
tree identification have interesting connections to those arising in networking. This article
introduces network tomography, a new field which we believe will benefit greatly from the
wealth of statistical theory and algorithms. It focuses especially on recent developments in the
field including the application of pseudolikelihood methods and tree estimation formulations.

Keywords: Network tomography, pseudo-likelihood, topology identification, tree estima-
tion.

1 Introduction

No network is an island, entire of itself; every network is a piece of an internetwork, a part of

the main1. Although administrators of small-scale networks can monitor local traffic conditions

and identify congestion points and performance bottlenecks, very few networks are completely
∗Rui Castro and Robert Nowak are with the Department of Electrical and Computer Engineering, Rice
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1With apologies to John Donne - Meditation XVII.
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isolated. The user-perceived performance of a network thus depends heavily on the performance

of an internetwork, and monitoring this internetwork is extremely challenging. Diverse subnet-

work ownership and the decentralized, heterogeneous and unregulated nature of the extended

internetwork combine to render a coordinated measurement framework infeasible. There is no

real incentive for individual servers and routers to collect and freely distribute vital network

statistics such as traffic rates, link delays, and dropped packet rates. Collecting all pertinent

network statistics imposes an impracticable overhead expense in terms of added computational,

communication, hardware and maintenance requirements. Even when data collection is possi-

ble, network owners generally regard the statistics as highly confidential. Finally, the task of

relaying measurements to the locations where decisions are made consumes exorbitant band-

width and presents scheduling and coordination nightmares.

Despite this state of affairs, accurate, timely and localized estimates of network performance

characteristics are vital ingredients in efficient network operation. With performance estimates

in hand, more sophisticated and ambitious traffic control protocols and dynamic routing algo-

rithms can be designed. Quality-of-service guarantees can be provided if available bandwidth

can be gauged; the resulting service-level agreements can be verified. Detecting anomalous or

malicious behaviour becomes a more achievable task.

Usually we cannot directly measure the aspects of the system that we need in order to make

informed decisions. However, we can frequently make useful measurements that do not require

special cooperation from internal network devices and do not inordinately impact network load.

Sophisticated methods of active network probing or passive traffic monitoring can generate

network statistics that indirectly relate to the performance measures we require. Subsequently,

we can apply inference techniques, derived in the context of other statistical inverse problems,

to extract the hidden information of interest.

This article surveys the field of inferential network monitoring or network tomography, high-

lighting challenges and open problems, and identifying key issues that must be addressed. It

builds upon the signal processing survey paper [1] and focuses on recent developments in the
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field. The task of inferential network monitoring demands the estimation of a potentially very

large number of spatially distributed parameters. To successfully address such large-scale es-

timation tasks, researchers adopt models that are as simple as possible but do not introduce

significant estimation error. Such models are not suitable for intricate analysis of network queu-

ing dynamics and fine time-scale traffic behaviour, but they are often sufficient for inference

of performance characteristics. The approach shifts the focus from detailed queuing analysis

and traffic modeling [2, 3] to careful design of measurement techniques and large-scale inference

strategies.

Mesurement may be passive (monitoring traffic flows and sampling extant traffic) or active

(generating probe traffic). In either case, statistical models should be developed for the mea-

surement process. One must assess the temporal and spatial independence of measurements.

If existing traffic is being used to sample the state of the network, care must be taken that

the temporal and spatial structure of the traffic process does not bias the sample. If probes

are used, then the act of measurement must not significantly distort the network state. Design

of the measurement methodology must take into account the limitations of the network. As

an example, the clock synchronization required for measurement of one-way packet delay is

extremely difficult.

Once measurement has been accomplished, statistical inference techniques can be applied to

determine performance attributes that cannot be directly observed. When attempting to infer

a network performance measure, measurement methodology and statistical inference strategy

must be considered jointly. In work thus far in this area, a broad array of statistical techniques

have been employed: complexity reducing hierarchical statistical models; moment and likeli-

hood based estimation; expectation-maximization and Markov Chain Monte Carlo algorithms.

However, the field is still in the embryonic phase, and we believe that it can benefit greatly

from the wealth of extant statistical theory and algorithms.

In this article, we focus exclusively on inferential network monitoring techniques that require

minimal cooperation from network elements that cannot be directly controlled. Numerous tools
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exist for active and passive measurement of networks (see [4] for a survey). The tools measure

and report internetwork attributes such as bandwidth, connectivity and delay, but they do not

attempt to use the recorded information to infer any performance attributes that have not

been directly measured. The majority of the tools depend on accurate reporting by all network

elements traversed during measurement.

The article commences by reviewing the area of internetwork inference and tomography, and

provide a simple, generalized formulation of the network tomography problem. We then describe

a pseudo-likelihood approach to network tomography that addresses some of the scalability

limitations of existing techniques. We consider the problem of determining the connectivity

structure or topology of a network, relate this task to the problem of hierarchical clustering.

We introduce new likelihood-based hierarchical clustering methods and results for identifying

network topology. Finally, we identify open problems and provide our vision of future challenges.

2 Network Tomography

2.1 Network Tomography Basics

Large scale network inference problems can be classified according to the type of data acquisi-

tion and the performance parameters of interest. To discuss these distinctions, we require some

basic definitions. Consider the network depicted in Figure 1. Each node represents a computer

terminal, router or subnetwork (consisting of multiple computers/routers). A connection be-

tween two nodes is called a path. Each path consists of one or more links — direct connections

with no intermediate nodes. The links may be unidirectional or bidirectional, depending on the

level of abstraction and the problem context. Each link can represent a chain of physical links

connected by intermediate routers. Messages are transmitted by sending packets of bits from

a source node to a destination node along a path which generally passes through several other

nodes.
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Broadly speaking, large scale network inference involves estimating network performance

parameters based on traffic measurements at a limited subset of the nodes. Y. Vardi was one of

the first to rigorously study this sort of problem and coined the term network tomography [5] due

to the similarity between network inference and medical tomography. Two forms of network

tomography have been addressed in the recent literature: i) link-level parameter estimation

based on end-to-end, path-level traffic measurements [6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and ii)

sender-receiver path-level traffic intensity estimation based on link-level traffic measurements [5,

16, 17, 18, 19, 20].

In link-level parameter estimation, the traffic measurements typically consist of counts of

packets transmitted and/or received between nodes or time delays between packet transmissions

and receptions. The time delays are due to both propagation delays and router processing delays

along the path. The measured path delay is the sum of the delays on the links comprising the

path; the link delay comprises both the propagation delay on that link and the queuing delay at

the routers lying along that link. A packet is dropped if it does not successfully reach the input

buffer of the destination node. Link delays and occurrences of dropped packets are inherently

random. Random link delays can be caused by router output buffer delays, router packet

servicing delays, and propagation delay variability. Dropped packets on a link are usually due

to overload of the finite output buffer of one of the routers encountered when traversing the

link, but may also be caused by equipment down-time due to maintenance or power failures.

Random link delays and packet losses become particularly substantial when there is a large

amount of cross-traffic competing for service by routers along a path.

In path-level traffic intensity estimation, the measurements consist of counts of packets that

pass through nodes in the network. In privately owned networks, the collection of such mea-

surements is relatively straightforward. Based on these measurements, the goal is to estimate

how much traffic originated from a specified node and was destined for a specified receiver.

The combination of the traffic intensities of all these origin-destination pairs forms the origin-

destination traffic matrix. In this problem not only are the node-level measurements inherently
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random, but the parameter to be estimated (the origin-destination traffic matrix) must itself

be treated not as a fixed parameter but as a random vector. Randomness arises from the traffic

generation itself, rather than perturbations or measurement noise.

The inherent randomness in both link-level and path-level measurements motivates the

adoption of statistical methodologies for large scale network inference and tomography. Many

network tomography problems can be roughly approximated by the (not necessarily Gaussian)

linear model

Yt = AXt + ε, (1)

where: Yt is a vector of measurements, e.g., packet counts or end-to-end delays, recorded at

a given time t at a number of different measurement sites, A is a routing matrix, ε is a noise

vector, and Xt is a vector of time-dependent packet parameters, e.g. mean delays, logarithms

of packet transmission probabilities over a link, or the random origin-destination traffic vector.

Typically, but not always, A is a binary matrix (the i, j-th element is equal to ‘1’ or ‘0’) that

captures the topology of the network. In this paper, we consider the problems of estimating

Xt or A based on the observations Yt.

What sets the large scale network inference problem (1) apart from other network inference

problems is the potentially very large dimension of A which can range from a half a dozen

rows and columns for a few packet parameters and a few measurement sites in a small local

area network, to thousands or tens of thousands of rows and columns for a moderate number of

parameters and measurements sites in the Internet. The associated high dimensional problems

of estimating Xt are specific examples of inverse problems. Inverse problems have a very

extensive literature [21]. Solution methods for such inverse problems depend on the nature

of the noise ε and the A matrix and typically require iterative algorithms since they cannot

be solved directly. In general, A is not full-rank, so that identifiability concerns arise. Either

one must be content to resolve only linear combinations of the parameters or one must employ

statistical means to introduce regularization and induce identifiability. Both tactics are utilized

in the examples in later sections of the article. In most of the large scale Internet inference and
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tomography problems studied to date, the components of the noise vector ε are assumed to be

approximately independent Gaussian, Poisson, binomial or multinomial distributed. When the

noise is Gaussian distributed with covariance independent of AXt, methods such as recursive

linear least squares can be implemented using conjugate gradient, Gauss-Seidel, and other

iterative equation solvers. When the noise is modeled as Poisson, binomial, or multinomial

distributed more sophisticated statistical methods such as reweighted non-linear least squares,

maximum likelihood via expectation-maximization (EM), and maximum a posteriori (MAP)

via Monte Carlo Markov Chain (MCMC) algorithms are applicable.

3 Pseudo-likelihood Approaches

In developing methods to perform network tomography, there is a trade-off between statisti-

cal efficiency (accuracy) and computational overhead. In the past, researchers have addressed

the extreme computational burden posed by some of the tomographic problems, developing

suboptimal but lightweight algorithms, including a fast recursive algorithm for link delay dis-

tribution inference in a multicast framework [12] and a method-of-moments approach for OD

matrix inference [22]. More accurate but computationally burdensome approaches have also

been explored, including maximum likelihood methods [23, 8, 9], but in general, they are too

intensive computationally for any network of reasonable scale.

More recently, we have proposed a unified pseudo likelihood (PL) approach [19, 24] that

eases the computational burden but maintains good statistical efficiency. The idea of modifying

likelihood is not new, and many modified likelihood models have been proposed. For example,

pseudo-likelihood [25, 26] for Markov Random Field (MRF) by Besag (1974), partial likelihood

[27] for hazards regression by Cox (1973), and quasi-maximum likelihood [28] for finance models

by White (1994). In this section, we decribe the pseudo-likelihood approach. We explore two

concrete examples : i) internal link delay distribution inference through multicast end-to-end

measurements; ii) origin-destination (OD) matrix inference through link traffic counts (the OD
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matrix specifies the volume of traffic between a source and a destination).

The network tomography model we consider in this section is a special case of (1), in which

the error term ε is omitted for further simplification. Hence the model can be rewritten as

Y = AX, (2)

where X = (X1, ..., XJ)′ is a J-dimensional vector of network dynamic parameters, e.g., link

delay, traffic flow counts at a particular time interval, Y = (Y1, ..., YI)′ is an I-dimensional

vector of measurements, and A is an I × J routing matrix.

As mentioned before, A is not full rank in a general network tomography scenario, where

typically I � J ; hence, constraints have to be introduced to ensure the identifiability of the

model. A key assumption is that all components of X are independent of each other. Such an

assumption does not hold strictly in a real network due to the temporal and spatial correlations

between network traffic, but it is a good first-step approximation. Furthermore, we assume that

Xj ∼ fj(θj), j = 1, ..., J, (3)

where fj is a density function with θj being its parameter. Then the parameter of the whole

model is θ = (θ1, ..., θJ).

The main idea of the pseudo-likelihood approach is to decompose the original model into a

series of simpler subproblems by selecting pairs of rows from the routing matrix A and to form

the pseudo-likelihood function by multiplying the marginal likelihoods of such subproblems.

Let S denote the set of subproblems by selecting all possible pairs of rows from the routing

matrix A: S = {s = (i1, i2) : 1 ≤ i1 < i2 ≤ I}. Then for each subproblem s ∈ S, we have

Y s = AsXs, (4)

where Xs is the vector of network dynamic components involved in the given subproblem s,
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As is the corresponding sub-routing matrix, and Y s = (Yi1 , Yi2)
′ is the observed measurement

vector of s. Let θs be the parameter of s, and ps(Y s; θs) be its marginal likelihood function.

Usually subproblems are dependent, but ignoring such dependencies, the pseudo-likelihood

function can be written as the product of marginal likelihood functions of all subproblems, i.e.,

given observation y1, ..., yT , the pseudo log-likelihood function is defined as

Lp(y1, ..., yT ; θ) =
T∑

t=1

∑
s∈S

ls(ys
t ; θ

s), (5)

where ls(Y s; θs) = log ps(Y s; θs) is the log-likelihood function of subproblem s. Maximizing

the pseudo log-likelihood function Lp gives the maximum pseudo likelihood estimate (MPLE)

of parameter θ. Maximizing the pseudo likelihood is not an easy task because Lp(y1, ..., yT ; θ)

is a summation of many functions. Since the maximization of pseudo-likelihood function is a

typical missing value problem, a pseudo-EM algorithm [19, 24] (a variant of the EM algorithm)

is employed to maximize the function Lp(y1, ..., yT ; θ). Let ls(Xs; θs) be the log-likelihood

function of a subproblem s given the complete data Xs and θ(k) be the estimate of θ obtained

in the kth step. The objective function Q(θ, θ(k)) to be maximized in the (k + 1)th step of the

pseudo-EM algorithm is defined as

Q(θ, θ(k)) =
∑
s∈S

T∑
t=1

Eθs(k) (ls(xs
t ; θ

s)|ys
t ) , (6)

which is obtained by assuming the independence of subproblems in the expectation step. The

starting point of the pseudo-EM algorithm can be arbitrary, but just as in the EM algorithm,

care needs to be taken to ensure that the algorithm does not converge to a local maxima.

There are several points worth noting in constructing the pseudo-likelihood function: i)

selecting three or more rows each time may also be reasonable to construct a pseudo-likelihood

function, but there is a trade-off between the computational complexity incurred and the esti-

mation efficiency achieved by taking more dependence structures into account. The experience

with the two examples we will discuss later shows that selecting two rows each time gives sat-
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isfactory estimation results while keeping the computational cost within a reasonable range;

ii) currently all possible pairs are selected to construct the pseudo-likelihood function, but a

subset can be judiciously chosen to reduce the computation.

In summary, the pseudo-likelihood approach keeps a good balance between the computa-

tional complexity and the statistical efficiency of the parameter estimation. Even though the

basic idea of divide-and-conquer is not new, it is very powerful when combined with pseudo-

likelihood for large network problems.

3.1 Example: Multicast Delay Distribution Inference

The Multicast-based Inference of Network-internal Characteristics (MINC) Project [6] pioneered

the use of multicast probing for network delay distribution estimation, and a similar approach

through unicast end-to-end measurements can be found in [9]. Consider a general multicast

tree depicted in Figure 1. Each node is labeled with a number, and we adopt the convention

that link i connects node i to its parental node. Each probing packet with a time stamp sent

from root node 0 will be received by all end receiver computers 4–7. For any pair of receivers,

each packet experiences the same amount of delay over their common path. For instance, copies

of the same packet received at receiver 4 and 5 experience the same amount of delay on their

common links 1 and 2. Measurements are made at end receivers, so only the aggregated delays

over the paths from root to end receivers are observed.

4

0

1

32

5 76

Figure 1: An arbitrary virtual multicast tree with four receivers

Due to the aggregation of the measured delays, model (2) can be naturally applied to the
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problem of the multicast internal link delay distribution inference. For each probing packet,

X is the vector of unobserved delays over each link, and Y is the vector of observed path-

level delays at each end receiver. A is an I × J routing matrix determined by the multicast

spanning tree, where I is the number of end receivers and J the number of internal links. For

the multicast tree depicted in Figure 1, (2) can be written as:



Y1

Y2

Y3

Y4


=



1 1 0 1 0 0 0

1 1 0 0 1 0 0

1 0 1 0 0 1 0

1 0 1 0 0 0 1





X1

X2

...

X7


,

where Y1, ..., Y4 are the measured delays at end receivers 4, ..., 7 and X1, ..., X7 are the delays

over internal links ending at nodes 1, ..., 7.

Each link has a certain amount of minimal delay (the propagation delay on the link), which

is assumed to be known beforehand. After compensating for the minimal delay of each link,

a discretization scheme is imposed on link-level delay by Lo Presti et al. (1999) such that Xj

takes finite possible values {0, q, 2q, ...,mq,∞}, where q is the bin width and m is a constant.

Therefore, each Xj is an independent multinomial variable with θj = (θj0, θj1, ..., θjm, θj∞).

When the delay is infinite, it implies the packet is lost during the transmission. The choice

of m enables us to decide how fine we want to approximate the true delay distributions. In

order to ensure identifiability, we only consider canonical multicast trees [12] defined as those

satisfying

θj0 = P (Xj = 0) > 0, j = 1, ..., J,

i.e., each individual packet has a positive probability to have zero delay over any internal link.

For the problem of multicast internal delay inference, the maximum likelihood method is

usually infeasible for networks of realistic size, because the likelihood function involves finding

all possible internal delay vectors X, which can account for each observed delay vector Y.

We can show that the computational complexity grows at a non-polynomial rate. Lo Presti
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et al.’s recursive algorithm [12] is a computationally efficient method for estimating internal

delay distributions by solving a set of convolution equations. Our pseudo-likelihood approach

is motivated by the decomposition of multicast spanning trees depicted in Figure 2. A virtual

two-leaf subtree is formed by only considering two receivers R1, R3 in the original multicast

tree. The marginal likelihood function of the virtual two-leaf subtree is tractable because of its

simple structure. For a multicast tree with I end receivers, there are total I(I − 1)/2 subtrees:

different subtrees contain delay distribution information on different virtual links. Combining

all subproblems by ignoring their dependencies enables us to recover link delay distributions.

Since forming the subtree is equivalent to selecting two rows from the routing matrix A, the

pseudo-likelihood method is applicable to the general network tomography model (2).

Root

m m

Root

RRRR 21 3 1 3R

Figure 2: Pseudo-Likelihood: subtree decomposition

Given the observed end-to-end multicast measurements {y1, ..., yT }, the pseudo log-likelihood

function can be written as

Lp(y1, ..., yT ; θ) =
∑
s∈S

T∑
t=1

log p(Y s = ys
t |θs),

where p(Y s = ys
t |θs) is the probability of the delay measurement Y s of subtree s being ys

t when

its link delay distributions are θs. The pseudo log-likelihood function is maximized in an EM

fashion with small variations.

We evaluate the performance of the pseudo-likelihood methodology by model simulations

carried out on a 4-leave multicast tree depicted in Figure 1. Due to the small size of the

multicast tree, the MLE method is possible to implement, so we can compare the performance
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of MPLE with that of MLE and also with that of the recursive algorithm of [12]. For each link,

the bin size q = 1 and the number of bins m is set to be 14. During each simulation, 2000 i.i.d.

multicast delay measurements are generated, with each internal link having an independent

discrete delay distribution. Figure 3 shows the delay distribution estimates of three arbitrarily

selected links along with their true delay distributions in one such experiment. The plot shows

that both MPLE and MLE capture most of the link delay distributions and their performance

is comparable, whereas the recursive algorithm sometimes gives estimate far from the truth.

true pseduo mle recursive

P
ro

ba
bi

lit
y

0

0.05

0.1

0.15

0.2

0 5 10 15

Link 1 Link 2

0 5 10 15

0 5 10 15

Link 4

Figure 3: Delay distribution estimates of 3 arbitrarily selected internal links: Link 1, Link 2
and Link 4. Solid step function is the true distribution, dash line with circle is MPLE, dotted
line with triangle is MLE, and dash line only is recursive estimate.

A further comparison is illustrated in Figure 4, which shows the L1 error norm of MLE

and MPLE for each link, as averaged over 30 independent simulations. For each link, the L1

error norm is simply the sum of the absolute difference between probability estimates and the

true probabilities. As a common measure of the performance of density estimates, the L1 error

norm enjoys several theoretical advantages as discussed in [29]. The plot shows that MLE and

MPLE have comparable estimation performance for tracking link delay distributions, while the

recursive algorithm has much larger L1 errors on all links. Meanwhile, we can see that MPLE

has smaller SD on L1 error norm than MLE on all links, implying that MPLE is more robust

than MLE. This is because the pseudo likelihood function, which is a product of less complex

likelihood functions on subproblems, has a nicer surface than the full likelihood function [30].
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Figure 4: Link L1 error norm averaged over 30 simulations: solid line is MPLE, dashed line is
MLE, and dotted line is recursive algorithm. For each link, the vertical bar shows the SD of
the L1 error norm for the given link.

3.2 Example: Origin-Destination Traffic Matrix Inference

Vardi [22] was the first to study the origin-destination (OD) traffic matrix inference problem

through link traffic counts at router interfaces: the observed are the link counts at router

interfaces and the OD traffic variables to be estimated are linear aggregations of these link

counts (his work was originated in 1993, but appeared in 1996, see [22]). Assuming i.i.d. Poisson

distributions for the OD traffic byte counts on a general network topology, he specifies the

identifiability of the Poisson model and develops an expectation-maximization (EM) algorithm

to estimate Poisson parameters in both deterministic and Markov routing schemes. In order to

reduce the computational complexity of the EM algorithm, he proposes a moment estimation

method and briefly discusses the normal model as an approximation to the Poisson model.

Follow-up works treat the special case involving a single set of link counts: Vanderbei and

Iannone apply the EM algorithm [31], and Tebaldi and West have a Bayesian perspective and

a Markov Chain Monte Carlo implementation [16].

Cao et al. [23] use real data to revise the Poisson model and to address the non-stationary

aspect of the problem. They represent link count measurements as summations of various OD

counts that are modeled as independent random variables. Even though the Transport Control

Protocol (TCP) feedback creates dependence, direct measurements of OD traffic indicate that

the dependence between traffic in opposite directions is weak. This renders the independence

14



assumption a reasonable approximation. Time-varying traffic matrices estimated from a se-

quence of link counts are validated by comparing the estimates with actual OD counts that

were collected by running Cisco’s NetFlow software on a small network depicted in Figure 5(b).

Such direct point-to-point measurements are often not available because they require addi-

tional router CPU resources, can reduce packet forwarding efficiency, and involve a significant

administrative burden when used on a large scale.
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Figure 5: (a) A router network at Lucent Technologies, (b) Network topology around Router1,
(c) A two-router network around Router4 and Gateway.

The network tomography model specified by (2) is applicable to the OD matrix inference

through link traffic counts since the observed link traffic counts are linear aggregations of

the unobserved OD variables to be estimated. Here, Y = (Y1, Y2, ..., YI)′ is the vector of

observed traffic byte counts measured on each link interface during a given time interval and

X = (X1, X2, ..., XJ)′ is the corresponding vector of unobserved true OD traffic byte counts at

the same time period. X is called OD traffic matrix, even though it is arranged as a column

vector for notational convenience. Under a fixed routing scheme, Y is determined uniquely by

X through the I×J routing matrixA, in which I is the number of measured incoming/outgoing

unidirectional links and J is the number of possible OD pairs.

Each component of X is assumed to be independent normally distributed, satisfying the

following mean-variance relationship: Xj ∼ N(λj , φλ
c
j) independently, where φ is a positive

scalar applicable to all OD pairs and c is a power constant. It implies that

Y = AX ∼ N(Aλ,AΣA′), (7)
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where λ = (λ1, · · · , λJ) and Σ = φdiag(λc
1, · · · , λc

J). So the parameter of the full model is

θ = (φ, λ). The mean-variance relationship is a key assumption to ensure the identifiability of

the normal model. It implies that an OD pair with large traffic byte counts tends to have large

variance with the same scale factor φ. For the power constant c, both c = 1 and 2 work well

with the Lucent network data as shown in [18, 23]. Because c = 1 or c = 2 give similar results,

in this paper, we use c = 1 as in [18]. But note that the pseudo-likelihood method can deal

with c = 2 without any additional technical difficulties. Then given observed link traffic count

vectors {y1, ..., yT }, the pseudo log-likelihood function can be written as

Lp(λ,Σ) ∝ −1
2

∑
s∈S

T∑
t=1

{
− log |AsΣsA

s′|+ (ys
t − Asλs)′(AsΣsA

s′)−1(ys
t − Asλs)

}
,

where for a subproblem s, λs is its mean traffic vector, Σs is its covariance matrix, and As is

the sub routing matrix. The maximization of the pseudo log-likelihood function is realized by

the pseudo-EM algorithm as well.

Cao et al. [23] address the non-stationarity of the data using a local likelihood model; that

is, for any given time interval t, analysis is based on a likelihood function derived from the

observations within a symmetric window of size w around t (e.g., in the experiments described

below, w = 11 corresponds to observations within about an hour in real time). Within this

window, an i.i.d. assumption is imposed (as a simplified and yet practical way to treat the

approximately stationary observations within the window). Maximum-likelihood estimation is

carried out for the parameter estimation via a combination of the EM algorithm and a second-

order global optimization routine. The component-wise conditional expectations of the OD

traffic, given the link traffic, estimated parameters, and the positivity constraints on the OD

traffic, are used as the initial estimates of the OD traffic. The linear equation y = Ax is

enforced via the iterative proportional fitting algorithm [23, 32] to obtain the final estimates

of the OD traffic. The positivity and the linear constraints are very important final steps to

get reliable estimates of the OD traffic, in addition to the implicit regularization introduced by

the i.i.d. statistical model. To smooth the parameter estimates, a random walk model is also
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applied in [23] to the logarithm of the parameters λ’s and φ over the time windows.

Even though the full likelihood method described in [23] uses all available information to

estimate parameter values and the OD traffic vector X, it does not scale to networks with

many nodes. In general, if there are Ne edge nodes, the number of floating point operations

needed to compute the MLE is at least proportional to N5
e after exploiting sparse matrix

calculation in each iteration. Assuming that the average number of links between an OD pair

is O(
√
Ne), it can be shown that the overall computational complexity of each iteration of the

pseudo-EM algorithm is O(N3.5
e ). Compared with the complexity of the full likelihood O(N5

e ),

the pseudo-likelihood approach reduces the computational complexity considerably. Moreover,

the pseudo-likelihood approach fits into the framework of the distributed computing, which is

beneficial to realistic applications.

First, to compare with works in [23] we choose the same raw network OD traffic data

collected on Feb. 22, 1999 for the Router1 network depicted in Figure 5(b). Figures 6 and 7

show the estimated OD traffic from MPLE and MLE based on the link traffic for the subnetwork

along with the validation OD traffic via NetFlow. Figure 6 gives the full scale plot and Figure 7

is the zoomed-in scale (20x). From the plot, we can see that both estimated OD traffic from

MPLE and MLE agrees well with the NetFlow measured OD traffic for large measurements,

but not so well for small measurements where the Gaussian model is a poor approximation.

From the point of view of traffic engineering, it is adequate that the large traffic flows are

inferred accurately. Hence for tasks such as planning and provisioning activities OD traffic

estimates could be used as inexpensive substitutes for direct measurements. The performances

of MPLE and MLE are comparable in this case, but the computation of the MPLE is faster

than MLE. For this example, the computations are carried out using R 1.5.0 [33] on a 1G Hz

laptop: it takes about 12 seconds for computing the MPLE, and about 49 seconds for the MLE

in producing Figure 6.

Second, in order to assess the performance of MPLEmore thoroughly, simulations are carried

out on some larger networks through network simulator (NS) [34]: i) a two-router network
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depicted in Figure 5(c); ii) the Lucent network illustrated in Figure 5(a), which comprises

21 end nodes and 27 links. From the simulation results (plots not shown), we see that both

pseudo- and full-likelihood methods capture the dynamics of the simulated OD traffic under

the zoomed-in scale. Table 1 summaries the execution time for both pseudo- and full-likelihood

approaches under the three different settings. From the table, we can see that the pseudo-

likelihood approach speeds up the computation without losing much estimation performance,

so it is more scalable to larger networks.

Network Number of MPLE MLE
Topology Edge Nodes Time (sec) Time (sec)
Figure 5(b) 4 12 49
Figure 5(c) 8 18 88
Figure 5(a) 21 151 2395

Table 1: Execution times of MPLE and MLE on router networks of different sizes.

4 Topology Identification

In the previous section it was assumed that the network topology was known; this knowledge is

essential for successful application of the techniques described. In most situations the topology

is obtained using tools such as traceroute that rely on close cooperation from the network

internal devices such as routers. When these tools are used, the topology can only be determined

if the network is functioning properly and network elements are prepared to cooperate and

reveal themselves. These conditions are often not met and are becoming more uncommon as

the Internet grows in size and speed. There is little motivation for extremely high-speed or

heavily-loaded switches to spend time processing extraneous signalling packets.

It is therefore desirable to develop a method for estimating topology that uses only mea-

surements taken at the network edge, obtained without cooperation from internal devices. We

consider a single source, communicating with multiple receivers. There is thus a finite set of

traffic flows, each corresponding to a specific source-destination pair. The routing is assumed

to be constant over a measurement period, so the total network traffic traverses a fixed set of
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network devices. The logical network topology can be represented as a graph. Each vertex

represents a physical network device where traffic branching occurs, that is where two or more

source-destination traffic flows diverge. The set of vertices thus corresponds to a subset of the

traversed physical devices. An edge is included between two vertices if traffic travels between

the corresponding network devices and does not pass through any other devices in the included

subset. Each edge corresponds to a connection between two physical devices, but the connec-

tion may include several network devices where no traffic branching occurs. We assume that

the routes from the sender to the receivers are fixed during the measurement period, in which

case the topology is a tree-structured graph, as in Figure 8.

Recall equation (1): in the topology identification problem the quantity of interest is A, the

routing matrix. Note that the entries of this matrix are only 0 or 1. The measurements Yt are

obtained through special measurement techniques described below, and the partial ordering of

Yt can be used to determine A. The matrix estimation formulation above is not well-suited to

the topology identification problem, so below we formulate it as a tree estimation exercise.

One can regard the topology discovery problem as a hierarchical clustering exercise: within

such a framework one wants to identify clusters of receivers that share certain properties. These

clusters can be represented by a dendritic tree. Hierarchical clustering has been used in a variety

of areas and are particularly popular for document clustering [35, 36, 37, 38].

4.1 Problem Statement

We formulate the topology identification problem as a tree estimation exercise. Let T = (V, L)

denote a rooted tree with nodes V and directed links L (we consider a strongly acyclic tree, that

is, if we disregard the direction of the edges the graph is still acyclic). Denote the root node

(corresponding to the sender host) by 0. Denote by R the leaf nodes (corresponding to the re-

ceiver hosts). Each leaf node corresponds to one receiver in the receiver set R, and the root node

corresponds to the sender host. For example, in Figure 8, R = {5, 8, 9, 12, 14, 15, 16, 17, 18, 19}.
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Figure 8: A binary logical tree topology

Every node has at least two descendants, apart from the root node (which has one, denoted

by 1), and the leaf nodes (which have none). If all internal nodes have exactly two descendants

then the tree is called binary. For each internal node let f(i), i ∈ V \ {0}, denote the parent

of i, e.g. f(10) = 6. Denote by Pi the (unique) path from the source node to i, e.g., P12 =

{0, 1, 3, 7, 12}. Let a(i, j), i, j ∈ V , denote the nearest ancestor shared by the pair of nodes

(i, j), e.g., a(15, 17) = 6.

Consider an arbitrary tree T = (V, L). For each node in the tree we can associate a metric

value γk ∈ IR, k ∈ V . This metric value is related to the extent (number of links) of the

(unique) path from the root to node k. Another interpretation is that the metric value reflects

the similarity of the subset of receivers that share node k as an ancestor. For each pair of

input elements i, j ∈ R we can consider the metric value of the nearest ancestor, γa(i,j). Define

γij ≡ γa(i,j). We regard this metric value as a measure of similarity of nodes i and j. The value

of γij can be regarded also as a measure of the extent of the shared portion of the paths to i

and j. Notice that the tree structure imposes restrictions on γij ; for example, if two different

pairs of nodes have the same shared paths then their similarity values must be the same, e.g.

consider the tree in Figure 8; The pairs of nodes (14, 16) and (15, 17) have the same shared

paths, thus γ14 15 = γ15 17.
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Define the matrix γ = (γij : i, j ∈ R). According to the discussion above, in order for γ to

be compatible with the tree structure it must belong to the set

Γ(T ) = {γ : γij = γkl if a(i, j) = a(k, l),∀i, j, k, l ∈ R} . (8)

To ensure identifiability of the tree T we require the metrics γ to satisfy the

Monotonicity Property: Let i, j ∈ V \ {0, R} be any two nodes and let Pi, Pj denote the

paths from the root to i and j respectively . If Pi is a proper subpath of Pj then γi < γj .

Knowledge of the metric values for each pair of elements of R (i.e. knowledge of matrix

γ) and the requirement of the monotonicity property are sufficient for identification of the

underlying topology. For example, referring to Figure 8, the metric γ18 19 will be greater than

γi 19 for all i ∈ R\{18, 19}, revealing that nodes 18 and 19 have a common parent in the logical

tree. This property can be exploited in this manner to devise simple and effective bottom-up

merging algorithm that identifies the complete, logical topology [13, 39, 40, 41]. These same

techniques are used in agglomerative hierarchical clustering methods [42, 43, 44].

For a given tree T , the set of all metrics satisfying the monotonicity property is defined as

G(T ) =
{
γ ∈ Γ(T ) : γf(k) < γk, ∀k ∈W (T )

}
, W (T ) = V \ {0, 1, R} . (9)

The set W (T ) ∈ V is the set of all the internal nodes, that is, all nodes except the root and

the leaf nodes.

4.2 Likelihood Formulation

In general, we do not have access to the exact pairwise metric values, but can only measure a

noisy and distorted version, usually obtained by actively probing the network. In this section,
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we describe a technique for generating a topology estimate based on the noisy observations.

For a given unknown tree T let X ≡ {Xij : i, j ∈ R, i �= j}, where each Xij is a random

variable parameterized by γ ≡ (γij) ∈ Γ(T ). Let p(x|γ) denote the probability density function

of X, parameterized by γ ∈ Γ(T ), with respect to some dominating measure. A sample

x ≡ {xij : i, j ∈ R, i �= j} of X is observed. When p(x|γ) is viewed as a function of T and

γ ∈ Γ(T ) it is called the likelihood of T and γ ∈ Γ(T ). The maximum likelihood tree estimate

is given by

T ∗ = argmax
T ∈F

log sup
γ∈G(T )

p(x|γ) , (10)

where F denotes the forest of all possible trees with leafs R. If the maximizer of the above

expression is not unique define T ∗ as one of the possible maximizers. In many situations we

are not interested in γ̂(x), an estimate of γ from the measurements. Hence we can regard γ

as nuisance parameters. In that case (10) can be interpreted as a maximization of the profile

likelihood [45]

L(x|T ) ≡ sup
γ∈G(T )

p(x|γ) (11)

The solution of (10) is referred to as the Maximum Likelihood Tree (MLT).

Consider now some more structure in the log-likelihood log p(x|γ): Assume the random

variables Xij are independent and have densities p(xij |γij), i, j ∈ R, i �= j, with respect to

a common dominating measure. Assume that log p(xij |γij) is a strictly concave functional of

γij having a maximizer in IR (note that the maximizer is unique since the function is strictly

concave). The log-likelihood is hence

log p(x|γ) =
∑
i∈R

∑
j∈R\{i}

log p(xij |γij) . (12)

4.3 Probing Techniques and Modeling

To illustrate our approach we will focus on one type of metric. In earlier work we proposed a

topology identification method based on delay differences [46]. The method relies on a measure-
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Figure 9: An example of sandwich probe measurement. The large packet is destined for node 2, the
small packets for node 3. The black circles on the links represent physical queues where no branching
occurs. In the absence of cross-traffic, the initial spacing between the small probes d is increased along
the shared path from nodes 0 to 1 because the second small probe p2 queues behind the large packet.
The measurement x2,3 for this receiver pair is equal to d + ∆d. A larger initial spacing d reduces the
chance of p2 catching p1 because of a bottleneck or cross-traffic on the path from node 1 to 3.

ment scheme called sandwich probing. Here we briefly describe the measurement technique,

details of which can be found in [46]. Each sandwich probe consists of three packets, and gives

information about the shared path among two receivers. Figure 9 shows the details of the

probing scheme.

The metrics used are the mean delay differences. Since we only need to measure local delay

differences (at the sender and the receiver), there is no need for clock synchronization between

the source host and the receivers. In the case where there is no cross traffic the measurement

∆d is directly related to the bandwidth of the shared queues. We assume the cross-traffic is

stationary, and that the initial spacing of the two small packets d is large enough so that neither

the large packet nor the second small packet queue behind the first small packet at any time.

We send each probe far apart in time, so that we can assume that the outcomes of different

measurements are independent.

The delay differences provide (noisy) measurements of a metric related to the number of

shared queues in the paths to two receivers. Let xij be the sample mean of repeated delay

difference measurements for pair i, j ∈ R. Under reasonable assumptions the measurements

are statistically independent and have finite variance, hence, according to the Central Limit

Theorem, the distribution of each empirical mean tends to a Gaussian. This motivates the
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following (approximate) model:

xij ∼ N (γij , σ
2
ij), (13)

where σ2
ij is the sample variance of the measurements divided by the number of measurements,

(σ2 ≡ {σ2
ij}), xij is the sample mean of the measurements, and N (γ, σ2) denotes the Gaussian

density with mean γ and variance σ2. Notice that we are not assuming that the delay differences

are normally distributed, but only their empirical means. Under the above assumptions, as the

number of measurements increases, the model accuracy increases. Henceforth we will refer to

x and σ2 as estimated metrics and estimated variances, respectively. We also assume that the

measurements for the different receiver pairs are statistically independent.

Note that, although we have considered the particular case of sandwich probing here, this

modeling technique can be used with a variety of other probing schemes, provided that for

each pair of receivers we have a number of independent measurements with finite variance;

the application of the central limit theorem provides the above approximate model. Using the

models describe above, we are in the scenario described in Section 4.2:

log p(xij , σij |γij) = −(xij − γij)2

2σ2
ij

+ Cij , (14)

where Cij is a normalizing constant, and the densities are taken with respect to the Lebesgue

measure.

4.4 Characterization of the Maximum Likelihood Structure

The optimization problem in (10) is quite formidable. We are not aware of any method for

computation of the global maximum except by a brute force examination of each tree in the

forest. Consider a tree with N leafs. A very loose lower bound on the size of the forest F is

N !/2. For example, if N = 10 then there are more than 1.8 × 106 trees in the forest. This

explosion of the search space precludes the brute force approach in all but very small forests.

Moreover, the computation of the profile likelihood (11) is non-trivial because it involves a
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constrained optimization over G(T ). Using the model (12) we have that p(x|γ) is a continuous

function of γ and hence we can rewrite the profile likelihood as

L(x|T ) ≡ max
γ∈G(T )

p(x|γ) , (15)

where G(T ) denotes the closure of the set G(T ). Hence the profile likelihood can be computed

by solving this constrained optimization problem.

The following results establish some important properties of this problem. Theorem 1

identifies required characteristics of the maximum-likelihood tree and allows us to use Lemma 1

to compute the profile likelihood. For a proof of the theorem, see [47].

Lemma 1 Let T be an arbitrary tree. The solution of

γ̂ = arg max
γ∈Γ(T )

log p(x|γ)

is unique and given by

γ̂ij = argmax
γ∈IR

∑
k,l∈R:a(k,l)=a(i,j)

fkl(xkl|γ) . (16)

This lemma, whose proof is elementary, characterizes a modified version of the profile likelihood

(15) (this version of the profile likelihood is “unconstrained”, that is, the optimization is over

Γ(T ) instead of G(T )). The evaluation of this version of the profile likelihood for a given tree

is very simple.

Theorem 1 Let log p(x|γ) be given by (12) and T̃ be a tree such that

max
γ ′∈Γ(T̃ )

log p(x|γ ′) > max
γ ′∈G(T̃ )

log p(x|γ ′) . (17)
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Then there exists another tree (T ,γ), γ ∈ G(T ), satisfying the monotonicity property, such that

log p(x|γ) > max
γ ′∈G(T̃ )

log p(x|γ ′) (18)

In particular, if T ∗ is the solution to (10), i.e., the MLT, we have

arg max
γ ′∈Γ(T ∗)

log p(x|γ ′) = arg max
γ ′∈G(T ∗)

log p(x|γ ′) . (19)

Remark 1: Consider a arbitrary tree T̃ . Suppose that the maximum of p(x|γ) is attained

for γ ∈ Γ(T̃ ) \ G(T̃ ), that is, expression (17) holds. The theorem says that in that case we

can construct another tree (T ,γ) from T̃ such that it yields a higher likelihood than any tree

(T̃ ,γ), γ ∈ G(T̃ ). Consequently T̃ cannot be the maximum likelihood tree.

Remark 2: The second part of the theorem, expressed by (19), means that it is unnecessary

to perform the strongly constrained optimization over G(T ). For each tree, we can compute the

much simpler optimization over Γ(T ), using Lemma 1, and subsequently check if the resulting

maximizer lies in the set G(T ).

Define the set of trees

F ′ =

{
T ∈ F : arg max

γ∈Γ(T )
log p (x|γ) ∈ G(T )

}
.

The maximum likelihood tree must belong to this set, i.e., T ∗ ∈ F ′.

Remark 3: From the proof technique (see [47]) we note that we need only to consider binary

trees in F ′, because for any non-binary tree we can construct a corresponding binary tree

yielding the same likelihood value.
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4.5 Bottom-up Agglomerative Approach

In Remark 2 above we observed that we can greatly simplify the task of evaluating the profile

likelihood for trees belonging to F ′, and we know that the MLT, ultimately what we want to

determine, belongs to that set. Nevertheless a brute force examination of each tree in F ′ is still

infeasible. In a scenario where one can determine the true pairwise similarities γ, it is possible

to reconstruct the dendritic tree using a simple agglomerative bottom-up procedure, following

the same conceptual framework as in many hierarchical clustering methods [43, 44, 42]. The

following result ensures that, if a pairwise metrics matrix γ satisfies the monotonicity property,

then it completely determines the tree.

Proposition 1 Let T be a tree topology with receiver set R. Let {γij} be the set of pairwise

similarities, corresponding to a monotonic metric on T . Then T is the only tree with pairwise

similarities {γij} satisfying the monotonicity property. That is

γ ∈ G(T ), and γ �⊆ G(T ′), ∀ T ′ �= T .

Recall that, in most practical scenarios, we only have access to the measurements x, conveying

information about γ (and hence about T ). In this case we can still develop a bottom-up

agglomerative clustering algorithm to estimate the true topology.

We restrict ourselves to binary trees. Note that for any non-binary topology tree there exists

an equivalent binary tree (in the sense that there are extra, unnecessary branches in the binary

tree). The binary restriction leads to a particularly simple algorithm as follows. Consider the

estimates of the pairwise similarities for each pair of leaf nodes, given by

γ̂ij = argmax
γ∈IR

(log p(xij |γ) + log p(xji|γ)) , i, j ∈ R, i �= j .
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One expects that the above estimated pairwise similarities are reasonably close to the true

similarities γ, with the differences being due to measurement noise and limitations of the

measurement procedure. Consider the pair of leaf nodes such that γ̂ij is greatest, that is

γ̂ij ≥ γ̂kl, ∀k, l ∈ R′ ,

where R′ = R \ {i, j}. We infer that i and j are the most similar leaf nodes, and so they must

have a common parent in the dendrogram. Denote their parent node by k. In other words, we

infer that the receivers descending from k are {i, j}.

Assuming that our decision is correct then the tree structure imposes that a(i, l) = a(j, l) for

all l �∈ {i, j}. Hence we can update our pairwise similarity estimates for pairs involving i and j,

using Lemma 1. Furthermore, since γ̂il = γ̂jl for any l �∈ {i, j}, we can just add node k as a new

leaf node, and remove i and j from the leafs set. Define the new leaf set R′ = R
⋃
{k} \ {i, j}.

We just need to define pairwise similarity estimates for pairs involving the new node k:

γ̂kl = γ̂lk ≡ argmax
γ∈IR

∑
r∈Sk

log p(xrl|γ) + log p(xlr|γ) , where l ∈ R′ \ {k} . (20)

This procedure is iterated until there is only one element left in R′. This is called the Likelihood

based Binary Tree (LBT) algorithm. Notice that the number of elements of R′ is decreased by

one at each step of the algorithm, guaranteeing the algorithm to stop. The algorithm structure

ensures that the obtained tree and similarity estimates γ̂ satisfy the monotonicity property.

As pointed out before, one expects the estimated pairwise similarity values γ̂ to be close to

the true similarities γ. We now explore this intuitive notion in more detail. Define

γij(X) = argmax
γ∈IR

log p(xij |γ) + log p(xji|γ) .

Given the measurements x, γij(X) is the maximum likelihood estimate of the pairwise simi-

larities γij . In the most common scenarios, the measurements x for a particular pair of input
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nodes correspond to several individual measurements for that pair (or a composition of such

measurements). It is desirable that, the accuracy of the estimates increases as the number of

pairwise measurements increases.

Let n ∈ IN represent the number of measurements for each input pair and assume that

γij(X) P−→ γij as n→ ∞ , (21)

where P−→ denotes convergence in probability. It can be shown that, for a binary tree T , the

LBT algorithm is consistent, that is, if T̂ (X) is the tree obtained by the LBT algorithm then

lim
n→∞

Pr(T = T̂ (X)) = 1 .

Hence, the LBT algorithm perfectly reconstructs the original binary tree, provided that one

can estimate the similarity values with enough accuracy. We can also show that, as n grows,

this is the only tree in F ′, that is

lim
n→∞

Pr(F ′ = {T }) = 1 .

(see [47]) Based on these observations, we conclude the following, important result:

Proposition 2 The MLT is a consistent estimator of the true topology tree, for binary trees.

That is, if T ∗ denotes the MLT then

lim
n→∞

Pr(T = T ∗) = 1 .

4.5.1 Normally Distributed Measurements:

In the case of the particular measurement model in Section 4.3 the above algorithm is greatly

simplified. Note that the model (14) has some desirable properties, namely, it is closed under
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summation:

f(xij , σ
2
ij |γ) + fkl(xkl, σ

2
kl|γ) = −

((
xij

σ2
ij
+ xkl

σ2
kl

)
/

(
1

σ2
ij
+ 1

σ2
kl

)
− γ

)2

2
(

1
σ2

ij
+ 1

σ2
kl

) + C

This makes the computations arising from Lemma 1 very simple, namely the aggregation step

(equation 20) in the LBT algorithm, since throughout the algorithm we only need to propagate

the matrix of empirical means and variances of the aggregated receiver set R′.

4.6 Markov Chain Monte Carlo Method

Although the LBT algorithm is a consistent estimator of the true dendrogram, it is essentially

greedy, based on local decisions over the estimated pairwise similarities. Unlike the LBT, the

MLT estimator takes a global approach, seeking for the best (in a maximum likelihood sense)

tree. The price to pay is that we now must search over the entire forest F (or at least over F ′).

In this section we propose a random search technique to efficiently search the forest of trees.

Consider the profile likelihood L(x|T ), as defined in (15). Note that the maximum likelihood

tree is the tree that maximizes L(x|T ). For a fixed measurement x we can regard the profile

likelihood L(x|T ) as a discrete distribution over F (up to a normalizing factor). Then one way

of searching the set F is to sample it according to this distribution. The more likely trees are

going to be sampled more often than the less likely trees, making the search more efficient.

The evaluation of the profile likelihood (15) is still complicated, since it involves a con-

strained optimization over G(T ). As we observed in Section 4.4 the MLT belongs to the set

of feasible trees F ′. For trees in F ′ one can compute the profile likelihood very easily using

Lemma 1. Also, given a tree, one can easily verify if that tree belongs to F ′ or not: For a given

tree compute the less constrained optimization (over Γ(T )), using Lemma 1, and check if the
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Figure 10: The birth-step and death-step moves illustrated: The birth-step selects a node with
more than two children, chooses two of these children, and inserts an extra node as the new
parent of these children. The death step chooses a node with two children, and deletes that
node

resulting maximizer lies in the set G(T ). If so the tree lies in F ′. Define

L′(x|T ) =

 L(x|T ) if T ∈ F ′

0 otherwise
. (22)

The above expression can be evaluated much faster than (15). Again, for a fixed measure-

ment x we can regard L′(x|T ) as a discrete distribution over F ′ (up to a normalizing factor).

We can search the set F ′ by sampling it according to this distribution. One way of performing

this task is to use the Metropolis-Hastings algorithm. For this we need to construct a irreducible

Markov chain with state space F (note that in this case the state space is finite), so each state

corresponds to a tree. We allow only certain transitions (equivalently, certain transitions have

probability 0). For a given state (a tree) si ∈ F we can move to another state (tree) using

“birth moves” and “death moves” as illustrated in Figure 10.

For a given state si ∈ F there are nsi allowed transitions (both deaths and births). This

number, denoted nsi , can be easily determined by simple enumeration of the possibilities. We

build the chain such that we choose the next state with probability 1/nsi if it is within one

move from si. All the other states have probability zero. Denote by {si : i ∈ IN} the Markov

chain constructed. It can be easily shown that the chain {si} is irreducible.

33



Using a generalization of the Metropolis algorithm due to Hastings [48] we construct another

Markov Chain in order to obtain a chain whose unique limit distribution (and also unique

stationary distribution) is precisely L′(x|T ). Thus if we sample from this chain for a sufficiently

large period of time, the observed states will be samples of the distribution L′(x|T ), regardless

of the initial state.

The new chain can be constructed in a two-stage fashion: For a given state T ∈ F ′ we

randomly choose the possible next state T ′ according to the previously constructed chain. We

accept this transition with probability

min
{
L′(x|T ′)
L′(x|T )

, 1
}
if L′(x|T ) > 0 ,

and zero otherwise. It can be easily shown that the resulting chain (over F ′) is still irreducible,

and thus it has unique limit distribution (22). To get our (approximate) solution of (10) we

simulate the above chain and recall the state with largest likelihood visited, the longer the chain

is simulated the higher is the chance of visiting the MLT at least one time.

Although theoretically the starting point (initial state) of the chain is not important, pro-

vided that the chain is simulated for long enough, starting at a reasonable point can help the

chain to visit the MLT more rapidly. Starting the chain simulation from the tree obtained using

the LBT algorithm is a reasonable approach, since this is a consistent estimator, and so one

expects the resulting tree to be “close” (in terms of the number of moves) to the actual MLT

tree.

One drawback to the likelihood criterion is that it places no penalty on the number of links

in the tree. As a consequence, trees with more links can have higher likelihood values (since the

extra degrees of freedom they possess can allow them to fit the data more closely). In general,

the true tree T will have a smaller likelihood value than another tree T ′ that is identical to

T except that one or more of the nodes in T are replaced with extra branching nodes that

allow T ′ to fit the data more closely. This is an instance of the classic “overfitting” problem
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associated with model estimation; the more degrees of freedom in a model, the more closely the

model can fit the data. Of course, we are not interested in simply fitting the data, but rather

in determining a reasonable estimate of the underlying topology.

The overfitting problem can be remedied by applying regularization, replacing the simple

likelihood criterion with a penalized likelihood criterion.

T̂λ = argmax
T ∈F

L(x|T )− λn(T ) , (23)

where n(T ) is the number of links in the tree T and λ ≥ 0 is a parameter, chosen by the user, to

balance the trade-off between fitting to the data and controlling the number of links in the tree.

Under this approach there are still some simplifications we can consider. A modified version of

Theorem 1 still applies

Proposition 3 Let log p(x|γ) be given by (12). If T̂ is the solution to (23), i.e., the MPLT,

we have

arg max
γ ′∈Γ(T̂ )

log p(x|γ ′)− λn(T̂ ) = arg max
γ ′∈G(T̂ )

log p(x|γ ′)− λn(T̂ ) .

Remark: As before, this result shows that it is unnecessary to perform the strongly constrained

optimization over G(T ). For each tree, we can compute the less constrained optimization (over

Γ(T )), using Lemma 1, and check if the resulting maximizer lies in the set G(T ).

We can construct, in a similar fashion as before, a Markov Chain, that samples the forest

F , according to a distribution proportional to

L′(x|T ) exp(− λn(T )).

This method finds a reasonably simple tree that accurately fits the measured data. Setting λ = 0

will produce the MLT. The larger the value of λ the more the penalized likelihood criterion
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Figure 11: (a) The topology of the network used for Internet experiments, obtained using traceroute. (b)
Estimated topology using the LBT algorithm. The signaled links have link-parameter values γk − γf(k)

one order of magnitude smaller than all the other links. Those links can be collapsed, that is, the three
devices inside the circle can be identified as one unique device.

favors simpler trees with fewer links. The choice of the penalty λ must also be addressed.

Minimum description length principles [49] motivate a penalty that is dependent on the size of

the network (in terms of the number of receivers). However, other model selection techniques

lead to the selection of different penalties [50].

5 Experimental Results

We have implemented a software tool called nettomo that performs sandwich probing mea-

surements and estimates the topology of a tree-structured network. We conducted Internet

experiments using several hosts in the United States and abroad. The topology inferred from

traceroute is depicted in Figure 11(a). The source for the experiments was located at Rice

University. There are ten receiver clients, two located on different networks at Rice, two at

separate hosts in Portugal, and six located at four other US universities.

The experiment was conducted for a period of eight minutes, during which a sandwich probe

was sent to a randomly chosen receiver-pair once every 50 ms. Without any loss, the maximum

number of probes available is 8600. This corresponds to less than 200 probes per pair, hence

the traffic overhead on any link is very low.

We applied the LBT algorithm to the measurements collected and the result is depicted in

Figure 11(b). Since the procedure is suited only for binary trees, it adds some extra links with
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small link-level metric value (i.e. γk − γf(k) ≈ 0), indicating possibly high bandwidth links).

Typically those links have link-level parameters one order of magnitude smaller than all remain-

ing ones, hence, if we collapse those links, identifying their end-nodes with each other, we get a

non-binary tree that provides a more truthful estimate of the network (avoiding overfitting the

data) . Using this pruning procedure we get a very good estimate of the true network topology,

although it fails to detect the backbone connection between Texas and Indianapolis. We expect

that the latter connection is very high speed and the queuing effects on the constituent links

are too minor to influence measurements. The estimated topology also places an extra element

shared between the Rice computers. Although that element is not a router, hence it is not

shown in the topology estimate using traceroute, it corresponds to a real physical device. To

the best of our knowledge the detected element is a bandwidth limitation device.

6 Conclusion and Future Directions

This article has provided an overview of the area of large scale inference and tomography in

communications networks. As is evident from the limited scale of the simulations and experi-

ments discussed in this article, the field is only just emerging. Deploying measurement/probing

schemes and inference algorithms in larger networks is the next key step. Statistics will con-

tinue to play an important role in this area and here we attempt to stimulate the reader with

an outline of some of the many open issues. These issues can be divided into extensions of the

theory and potential networking applications areas.

The spatio-temporally stationary and independent traffic and network transport models

have limitations, especially in tomographic applications involving heavily loaded networks.

Since one of the principal applications of network tomography is to detect heavily loaded links

and subnets, relaxation of these assumptions continues to be of great interest. Some recent

work on relaxing spatial dependence and temporal independence has appeared in unicast [14]

and multicast [7] settings. However, we are far from the point of being able to implement
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flexible yet tractable models which simultaneously account for long time traffic dependence, la-

tency, dynamic random routing, and spatial dependence. As wireless links and ad hoc networks

become more prevalent spatial dependence and routing dynamics will become dominant.

Recently, there have been some preliminary attempts to deal with the time-varying, non-

stationary nature of network behavior. In addition to the estimation of time-varying OD traffic

matrices discussed in Section 3.2, others have adopted a dynamical systems approach to handle

nonstationary link-level tomography problems [51]. Sequential Monte Carlo inference techniques

are employed in [51] to track time-varying link delay distributions in nonstationary networks.

One common source of temporal variability in link-level performance is the nonstationary char-

acteristics of cross-traffic.

There is also an accelerating trend toward network security that will create a highly unco-

operative environment for active probing — firewalls designed to protect information may not

honor requests for routing information, special packet handling (multicast, TTL, etc.), and other

network transport protocols required by many current probing techniques. This has prompted

investigations into more passive traffic monitoring techniques, for example based on sampling

TCP traffic streams [52]. Furthermore, the ultimate goal of carrying out network tomography

on a massive scale poses a significant computational challenge. Decentralized processing and

data fusion will probably play an important role in reducing both the computational burden

and the high communications overhead of centralized data collection from edge-nodes.

The majority of work reported to date has focused on reconstruction of network parameters

which may only be indirectly related to the decision-making objectives of the end-user regarding

the existence of anomalous network conditions. An example of this is bottleneck detection which

has been considered in [53, 15] as an application of reconstructed delay or loss estimation. Other

important decision-oriented applications may be detection of coordinated attacks on network

resources, network fault detection, and verification of services.

Finally the impact of network monitoring, which is the subject of this article, on network

control and provisioning could become the application area of most practical importance. Ad-
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mission control, flow control, service level verification, service discovery, and efficient routing

could all benefit from up-to-date and reliable information about link and router level perfor-

mances. The big question is: can statistical methods be developed which ensure accurate,

robust and tractable monitoring for the development and administration of the Internet and

future networks?

Acknowledgments

This work was supported by the National Science Foundation, grant nos. MIP–9701692, ANI-

0099148, FD01-12731, and ANI-9734025, the Office of Naval Research, grant no. N00014-00-

1-0390, the Army Research Office, grant nos. DAAD19-99-1-0290, DAAD19-01-1-0643, and

DAAH04-96-1-0337, and the Department of Energy, grant no. DE-FC02-01ER25462. The au-

thors would also like to acknowledge the invaluable contributions of J. Cao, D. Davis, M.

Gadhiok, R. King, E. Rombokas, Y. Tsang, and S. Vander Wiel to the work described in this

article.

References

[1] M.J. Coates, A.O. Hero, R. Nowak, and B. Yu. Internet tomography. IEEE Signal Pro-

cessing Magazine, 19(3):47–65, May 2002.

[2] F. P. Kelly, S. Zachary, and I. Ziedins. Stochastic networks: theory and applications. Royal

Statistical Society Lecture Note Series. Oxford Science Publications, Oxford, 1996.

[3] X. Chao, M. Miyazawa, and M. Pinedo. Queueing networks: customers, signals and product

form solutions. Systems and Optimization. Wiley, New York, NY, 1999.

[4] CAIDA: Cooperative Association for Internet Data Analysis.

http://www.caida.org/Tools/.

39



[5] Y. Vardi. Network tomography: estimating source-destination traffic intensities from link

data. J. Amer. Stat. Assoc., pages 365–377, 1996.

[6] Multicast-based inference of network-internal characteristics (MINC).

http://gaia.cs.umass.edu/minc.
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