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Abstract

Many statistical machine learning algorithms (in regression or classification) minimize
either an empirical loss function as in AdaBoost, or a penalized empirical loss as in SVM.
A single regularization tuning parameter controls the trade-off between fidelity to the data
and generalibility, or equivalently between bias and variance. When this tuning parameter
changes, a regularization “path” of solutions to the minimization problem is generated,
and the whole path is needed to select a tuning parameter to optimize the prediction
or interpretation performance. Algorithms such as Lasso and Forward Stagewise Fitting
(FSF) (aka e-Boosting) are of great interest because of their resulted sparse models for
interpretation in addition to prediction.

In this paper, we propose the BLasso algorithm that ties the FSF (e-Boosting) algo-
rithm with the Lasso method that minimizes the L1 penalized L2 loss. BLasso is derived
as a coordinate descent method with a fixed stepsize applied to the general Lasso loss
function (L1 penalized L2 loss). It consists of both a forward step and a backward step.
The forward step is similar to e-Boosting or FSF, but the backward step is new and re-
vises the FSF (or e-Boosting) path to approximate the Lasso path. In the cases of a finite
number of base learners and a bounded Hessian of the loss function, the BLasso path is
shown to converge to the Lasso path when the stepsize goes to zero. For cases with a
larger number of base learners than the sample size and when the true mdoel is sparse,
our simulations indicate that the BLasso model estimates are sparser than those from FSF
with comparable or slightly better prediction performance, and that the the discrete step-
size of BLasso and FSF has an additional regularization effect in terms of prediction and
sparsity. Moreover, we introduce the Generalized BLasso algorithm to minimizing a gen-
eral convex loss penalized by a general convex function. Since the (Generalized) BLasso
relies only on differences not derivatives, we conclude that it provides a class of simple and
easy-to-implement algorithms for tracing the regularization or solution paths of penalized
minimization problems.
Keywords: Backward step, Boosting, Convexity, Lasso, Regularization Path

1. Introduction

Many statistical machine learning algorithms minimize either an empirical loss function
or a penalized empirical loss, in a regression or a classification setting where covariate or

1



Zhao and Yu

predictor variables are used to predict a response variable and i.i.d. samples of training
data are available. For example, in classification, both AdaBoost (Schapire, 1990; Freund,
1995; Freund and Schapire, 1996) and SVM (Vapnik, 1995; Cristianini and Shawe-Taylor,
2002; Schölkopf and Smola, 2002) build linear classification functions of basis functions of
the covariates (predictors). Adaboost minimizes an exponential loss function of the margin,
while SVM a penalized hinge loss function of the margin. A single regularization tuning
parameter, the number of iterations in AdaBoost and the smoothing parameter in SVM,
controls the bias-and-variance trade-off or whether the algorithm overfits or underfits the
data. When this tuning parameter changes, a regularization “path” of solutions to the
minimization problem is generated. These algorithms have been shown to achieve start-of-
the-art prediction performance. A tuning parameter, or equivalently a point on the path
of solutions, is chosen to minimize the estimated prediction error over a proper test set or
through cross-validation. Hence it is necessary to have algorithms that can generate the
path of solutions in an efficient manner. Path following algorithms have also been devised
in other statistical penalized minimization problems such as the problems of information
bottleneck Tishby et al. (1999) and information distortion Gedeon et al. (2002) where
the loss and penalty functions are different from these discussed in this paper. In fact,
following the solution paths of numerical problems is the focus of homotopy, a sub-area
in numerical analysis. Interested readers are referred to the book Allgower and Georg
(1980) (http://www.math.colostate.edu/emeriti/georg/AllgGeorgHNA.pdf) and references
at http://www.math.colostate.edu/emeriti/georg/georg.publications.html.

Among all the machine learning methods, those that produce sparse models are of great
interest because sparse models lend themselves more easily to interpretation and therefore
preferred in sciences and social sciences. Lasso (Tibshirani, 1996) is such a method. It
minimizes the L2 loss function with an L1 penalty on the parameters in a linear regression
model. In signal processing it is called Basis Pursuit (Chen and Donoho, 1994). The L1

penalty leads to sparse solutions, that is, there are few predictors or basis functions with
nonzero weights (among all possible choices). This statement is proved asymptotically
under various conditions by different authors (see e.g. Knight and Fu, 2000; Osborne et al.,
2000a,b; Donoho et al., 2006; Donoho, 2006; Tropp, 2004; Rosset et al., 2004; Zhao and Yu,
2006; Zou, 2006; Meinshausen and Yu, 2006; Zhang and Huang, 2006).

Sparsity has also been observed in the models generated by Forward Stagewise Fitting
or e-Boosting that is a gradient descent procedure with much more cautious steps than
L2Boosting (Rosset et al., 2004; Hastie et al., 2001; Efron et al., 2004). Moreover, these
papers also study the similarities between FSF (e-Boosting) with Lasso. This link be-
tween Lasso and e-Boosting or FSF is more formally described for the linear regression case
through the LARS algorithm (Least Angle Regression Efron et al., 2004). It is also shown
in Efron et al. (2004) that for special cases (such as orthogonal designs) e-Boosting or FSF
can approximate Lasso path infinitely close, but in general, it is unclear what regularization
criterion e-Boosting or FSF optimizes. As can be seen in our experiments (Figure 1 in Sec-
tion 6.1), e-Boosting or FSF solutions can be significantly different from the Lasso solutions
in the case of strongly correlated predictors which are common in high-dimensional data
problems. However, FSF is still used as an approximation to Lasso because it is often com-
putationally prohibitive to solve Lasso with general loss functions for many regularization
parameters through Quadratic Programming.
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In this paper, we propose a new algorithm BLasso that connects Lasso with FSF or e-
Boosting (and the B in the name stands for this connection to boosting). BLasso generates
approximately the Lasso path in general situations for both regression and classification for
L1 penalized convex loss function. The motivation for BLasso is a critical observation that
FSF or e-Boosting only works in a forward fashion. It takes steps that reduce empirical
loss the most regardless of the impact on model complexity (or the L1 penalty). Hence it is
not able to adjust earlier steps. Taking a coordinate (difference) descent view point of the
Lasso minimization with a fixed stepsize, we introduce an innovative “backward” step. This
step utilizes the same minimization rule as the forward step to define each fitting stage but
with an extra rule to force the model complexity or L1 penalty to decrease. By combining
backward and forward steps, BLasso is able to go back and forth to approximate the Lasso
path correctly.

BLasso can be seen as a marriage between two families of successful methods. Compu-
tationally, BLasso works similarly to e-Boosting and FSF. It isolates the sub-optimization
problem at each step from the whole process, i.e. in the language of the Boosting litera-
ture, each base learner is learned separately. This way BLasso can deal with different loss
functions and large classes of base learners like trees, wavelets and splines by fitting a base
learner at each step and aggregating the base learners as the algorithm progresses. More-
over, BLasso can be proven to converge to the Lasso solutions which have explicit global L1

regularization for cases with finite number of base learners. In contrast, e-Boosting or FSF
can be seen as local regularization in the sense that at any iteration, FSF with a fixed small
stepsize only searches over those models which are one small step away from the current
one in all possible directions corresponding to the base learners or predictors (cf. Hastie
et al. 2006 for a recent interpretation of the ε → 0 case).

In particular, we make three contributions in this paper via BLasso. First, by in-
troducing the backward step we modify e-Boosting or FSF to follow the Lasso path and
consequently generate models that are sparser with equivalent or slightly better prediction
performance in our simulations (with true sparse models and more predictors than the sam-
ple size). Secondly, by showing convergence of BLasso to the Lasso path, we further tighten
the conceptual ties between e-Boosting or FSF and Lasso that have been considered in pre-
vious works. Finally, since BLasso can be generalized to deal with other convex penalties
and does not use any derivatives of the Loss function or penalty, we provide the Generalized
BLasso algorithm as a simple and easy-to-implement off-the-shelf method for approximating
the regularization path for a general loss function and a general convex penalty.

We would like to note that, for the original Lasso problem, i.e. the least squares prob-
lem (L2 loss) with an L1 penalty, algorithms that give the entire Lasso path have been
established, namely, the homotopy method by Osborne et al. (2000b) and the LARS algo-
rithm by Efron et al. (2004). For parametric least squares problems where the number of
predictors is not large, these methods are very efficient as their computational complexity
is on the same order as a single Ordinary Least Squares regression. For other problems
such as classification and for nonparametric setups like model fitting with trees, FSF or
e-Boosting has been used as a tool for approximating the Lasso path (Rosset et al., 2004).
For such problems, BLasso operates in a similar fashion as FSF or e-Boosting but, unlike
FSF, BLasso can be shown to converge to the Lasso path quite generally when the stepsize
goes to zero.
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The rest of the paper is organized as follows. In Section 2.1, the gradient view of
Boosting is provided and FSF (e-Boosting) is reviewed as a coordinatewise descent method
with a fixed stepsize on the L2 loss. In Section 2.2, the Lasso empirical minimization
problem is reviewed. Section 3 introduces BLasso that is a coordinate descent algorithm
with a fixed stepsize applied to the Lasso minimization problem. Section 4 discusses the
backward step and gives the intuition behind BLasso and explains why FSF is unable to
give the Lasso path. Section 5 introduces a Generalized BLasso algorithm which deals with
general convex penalties. In Section 6, results of experiments with both simulated and
real data are reported to demonstrate the attractiveness of BLasso. BLasso is shown as
a learning algorithm that give sparse models and good prediction and as a simple plug-in
method for approximating the regularization path for different convex loss functions and
penalties. Moreover, we compare different choices of the stepsize and give evidence for the
regularization effect of using moderate stepsizes. Finally, Section 7 is a discussion and a
summary. In particular, it comments on the computational complexity of BLasso, compares
with the algorithm in Rosset (2004), explores the possibility of BLasso for nonparametric
learning problems, summaries the paper, and points to future directions.

2. Boosting, Forward Stagewise Fitting and the Lasso

Originally boosting was proposed as an iterative fitting procedure that builds up a model se-
quentially using a weak or base learner and then carries out a weighted averaging (Schapire,
1990; Freund, 1995; Freund and Schapire, 1996). More recently, boosting has been inter-
preted as a gradient descent algorithm on an empirical loss function. FSF or e-Boosting can
be viewed as a gradient descent with a fixed small stepsize at each stage and it produces
solutions that are often close to the Lasso solutions (path). We now give a brief gradi-
ent descent view of Boosting and of FSF (e-Boosting), followed by a review of the Lasso
minimization problem.

2.1 Boosting and Forward Stagewise Fitting

Given data Zi = (Yi, Xi)(i = 1, ..., n), where the univariate Y can be continuous (regression
problem) or discrete (classification problem), our task is to estimate the function F : Rd →
R that minimizes an expected loss

E[C(Y, F (X))], C(·, ·) : R×R → R+. (1)

The most prominent examples of the loss function C(·, ·) include exponential loss (Ad-
aBoost), logit loss and L2 loss.

The family of F (·) being considered is the set of ensembles of “base learners”

D = {F : F (x) =
∑

j

βjhj(x), x ∈ Rd, βj ∈ R}, (2)

where the family of base learners can be very large or contain infinite members, e.g. trees,
wavelets and splines.

Let β = (β1, ...βj , ...)T , we can re-parametrize the problem using

L(Z, β) := C(Y, F (X)), (3)
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where the specification of F is hidden by L to make our notation simpler.
To find an estimate for β, we set up an empirical minimization problem:

β̂ = arg min
β

n∑

i=1

L(Zi;β). (4)

Despite the fact that the empirical loss function is often convex in β, exact minimization
is usually a formidable task for a moderately rich function family of base learners and with
such function families the exact minimization leads to overfitted models. Because the family
of base learners is usually large, Boosting can be viewed as finding approximate solutions by
applying functional gradient descent. This gradient descent view has been recognized and
studied by various authors including Breiman (1998), Mason et al. (1999), Friedman et al.
(2000), Friedman (2001) and Buhlmann and Yu (2003). Precisely, boosting is a progressive
procedure that iteratively builds up the solution (and it is often stopped early to avoid
overfitting):

(ĵ, ĝ) = arg min
j,g

n∑

i=1

L(Zi; β̂t + g1j) (5)

β̂t+1 = β̂t + ĝ1ĵ , (6)

where 1j is the jth standard basis vector with all 0’s except for a 1 in the jth coordinate,
and g ∈ R is stepsize. In other words, Boosting favors the direction ĵ that reduces most the
empirical loss and ĝ is found through a line search. The well-known AdaBoost, LogitBoost
and L2Boosting can all be viewed as implementations of this strategy for different loss
functions.

Forward Stagewise Fitting (FSF) (Efron et al. (2004)) is a similar method for approx-
imating the minimization problem described by (5) with some additional regularization.
FSF has also been called e-Boosting for ε-Boosting as in Rosset et al. (2004). Instead of
optimizing the stepsize as in (6), FSF updates β̂t by a fixed stepsize ε as in Friedman (2001).

For general loss functions, FSF can be defined by removing the minimization over g in
(5):

(ĵ, ŝ) = arg min
j,s=±ε

n∑

i=1

L(Zi; β̂t + s1j), (7)

β̂t+1 = β̂t + ŝ1ĵ , (8)

This description looks different from the FSF described in Efron et al. (2004), but
the underlying mechanic of the algorithm remains unchanged (see Section 5). Initially all
coefficients are zero. At each successive step, a basis function or predictor or coordinate
is selected that reduces most the empirical loss. Its corresponding coefficient βĵ is then
incremented or decremented by a fixed amount ε, while all other coefficients βj , j 6= ĵ are
left unchanged.

By taking small steps, FSF imposes some local regularization or shrinkage. A related
approach can be found in Zhang (2003) where a relaxed gradient descent method is used.
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After T < ∞ iterations, many of the estimated coefficients by FSF will be zero, namely those
that have yet to be incremented. The others will tend to have absolute values smaller than
the unregularized solutions. This shrinkage/sparsity property is reflected in the similarity
between the solutions given by FSF and Lasso which is reviewed next.

2.2 Lasso

Let T (β) denote the L1 penalty of β = (β1, ..., βj , ...)T , that is, T (β) = ‖β‖1 =
∑

j |βj |, and
Γ(β;λ) denote the Lasso (least absolute shrinkage and selection operator) loss function

Γ(β;λ) =
n∑

i=1

L(Zi;β) + λT (β). (9)

The Lasso estimate β̂ = (β̂1, ..., β̂j , ...)T is defined by

β̂λ = min
β

Γ(β;λ).

The parameter λ ≥ 0 controls the amount of regularization applied to the estimate.
Setting λ = 0 reverses the Lasso problem to minimizing the unregularized empirical loss.
On the other hand, a very large λ will completely shrink β̂ to 0 thus leading to the empty
or null model. In general, moderate values of λ will cause shrinkage of the solutions towards
0, and some coefficients may end up being exactly 0. This sparsity in Lasso solutions has
been researched extensively in recent years (e.g. Osborne et al., 2000a,b; Efron et al.,
2004; Donoho et al., 2006; Donoho, 2006; Tropp, 2004; Rosset et al., 2004; Meinshausen
and Bühlmann, 2005; Candes and Tao, 2007; Zhao and Yu, 2006; Zou, 2006; Wainwright,
2006; Meinshausen and Yu, 2006; Zhang and Huang, 2006). Sparsity can also result from
other penalties as in, for example, Fan and Li (2001).

Computation of the solution to the Lasso problem for a fixed λ has been studied for
special cases. Specifically, for least squares regression, it is a quadratic programming prob-
lem with linear inequality constraints; for 1-norm SVM, it can be transformed into a linear
programming problem. But to get a model that performs well on future data, we need to
select an appropriate value for the tuning parameter λ. Very efficient algorithms have been
proposed to give the entire regularization path for the squared loss function (the homotopy
method by Osborne et al. 2000b and similarly LARS by Efron et al. 2004) and SVM (1-norm
SVM by Zhu et al. 2003).

However, it remains open how to give the entire regularization path of the Lasso problem
for general convex loss function. FSF exists as a compromise since, like Boosting, it is a
nonparametric learning algorithm that works with different loss functions and large numbers
of base learners (predictors) but it is local regularization and does not converge to the Lasso
path in general. As can be seen in Sec. 6.2, FSF has also less sparse solutions comparing
to Lasso in our simulations.

Next we propose the BLasso algorithm which works in a computationally efficient fashion
as FSF. In contrast to FSF, BLasso converges to the Lasso path for general convex loss
functions when the stepsize goes to 0. This relationship between Lasso and BLasso leads
to sparser solutions for BLasso comparing to FSF with similar or slightly better prediction
performance in our simulation set-up with different choices of stepsizes.
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3. The BLasso Algorithm

We first describe the BLasso algorithm (Algorithm 1).This algorithm has two related
input parameters, a stepsize ε and a tolerance level ξ.

Algorithm 1 BLasso
Step 1 (initialization). Given data Zi = (Yi, Xi), i = 1, ..., n and a small stepsize constant
ε > 0 and a small tolerance parameter ξ > 0, take an initial forward step

(ĵ, ŝĵ) = arg min
j,s=±ε

n∑

i=1

L(Zi; s1j),

β̂0 = ŝĵ1ĵ ,

Then calculate the initial regularization parameter

λ0 =
1
ε
(

n∑

i=1

L(Zi; 0)−
n∑

i=1

L(Zi; β̂0)).

Set the active index set I0
A = {ĵ}. Set t = 0.

Step 2 (Backward and Forward steps). Find the “backward” step that leads to the minimal
empirical loss:

ĵ = arg min
j∈It

A

n∑

i=1

L(Zi; β̂t + sj1j) where sj = −sign(β̂t
j)ε. (10)

Take the step if it leads to a decrease of moderate size ξ in the Lasso loss, otherwise force
a forward step (as (7), (8) in FSF) and relax λ if necessary:
If Γ(β̂t + ŝĵ1ĵ ;λ

t)− Γ(β̂t, λt) ≤ −ξ, then

β̂t+1 = β̂t + ŝĵ1ĵ , λt+1 = λt.

Otherwise,

(ĵ, ŝ) = arg min
j,s=±ε

n∑

i=1

L(Zi; β̂t + s1j), (11)

β̂t+1 = β̂t + ŝ1ĵ , (12)

λt+1 = min[λt,
1
ε
(

n∑

i=1

L(Zi; β̂t)−
n∑

i=1

L(Zi; β̂t+1)− ξ)],

It+1
A = It

A ∪ {ĵ}.

Step 3 (iteration). Increase t by one and repeat Step 2 and 3. Stop when λt ≤ 0.

The tolerance level is only needed to avoid numerical instability when assessing changes
of the empirical loss function and should be set as small as possible while accommodating
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the numerical accuracy of the implementation. (ξ is set to 10−6 in the implementation of
the algorithm that used in this paper.)

We will discuss forward and backward steps in depth in the next section. Immediately,
the following properties can be proved for BLasso (see Appendix for the proof).

Lemma 1.

1. For any λ ≥ 0, if there exist j and s with |s| = ε such that Γ(s1j ;λ) ≤ Γ(0;λ), we
have λ0 ≥ λ.

2. For any t, we have Γ(β̂t+1;λt) ≤ Γ(β̂t;λt)− ξ.

3. For ξ ≥ 0 and any t such that λt+1 < λt, we have Γ(β̂t ± ε1j ;λt) > Γ(β̂t;λt) − ξ for
every j and ‖β̂t+1‖1 = ‖β̂t‖1 + ε.

Lemma 1 (1) guarantees that it is safe for BLasso to start with an initial λ0 which is
the largest λ that would allow an ε step away from 0 (i.e., larger λ’s correspond to β̂λ = 0).
Lemma 1 (2) says that for each value of λ, BLasso performs coordinate descent until there
is no descent step. Then, by Lemma 1 (3), the value of λ is reduced and a forward step
is forced. The stepsize ε controls fineness of the grid BLasso runs on. The tolerance ξ
controls how big a descend need to be made for a backward step to be taken. It is needed
to accommodate for numerical error and should be set to be much smaller than ε to have
a good approximation (see Proof of Theorem 1). In fact, we have a convergence result for
BLasso (detailed proof is included in the Appendix):

Theorem 1. For a finite number of base learners and ξ = o(ε), if
∑

L(Zi;β) is strongly
convex with bounded second derivatives in β then as ε → 0, the BLasso path converges to
the Lasso path uniformly.

Note that Conjecture 2 of Rosset et al. (2004) follows from Theorem 1. This is because
if all the optimal coefficient paths are monotone, then BLasso will never take a backward
step, so it will be equivalent to e-Boosting.

Many popular loss functions, e.g. squared loss, logistic loss and negative log-likelihood
functions of exponential families, are convex and twice differentiable. Other functions like
the hinge loss (SVM) is continuous and convex but not differentiable. The differentiability,
however, is only necessary for the proof of Theorem 1. BLasso does not utilize any gradient
or higher order derivatives but only the differences of the loss function therefore remains
applicable to loss functions that are not differentiable or of which differentiation is too
complex or computationally expensive. It is theoretically possible that BLasso’s coordinate
descent strategy gets stuck at nondifferentiable points for functions like the hinge loss.
However, as illustrated in our third experiment, BLasso may still work for cases like 1-norm
SVM empirically.

Theorem 1 does not cover nonparametric learning problems with infinite number of
base learners either. In fact, for problems with large or infinite number of base learners,
the minimization in (11) is usually done approximately by functional gradient descent and
a tolerance ξ > 0 needs to be chosen to avoid oscillation between forward and backward
steps caused by slow descending. We discuss more on this topic in the discussion (Sec. 7).
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4. The Backward Step

We now explain the motivation and working mechanic of BLasso. Observe that FSF only
uses “forward” steps, that is, it only takes steps that lead to a direct reduction of the
empirical loss. Comparing to classical model selection methods like Forward Selection and
Backward Elimination, Growing and Pruning of a classification tree, a “backward” counter-
part is missing. Without the backward step, when FSF picks up more irrelevant variables
as compared to the Lasso path in some cases (cf. Figure 1 in Section 6.2), it does not have
a mechanism to remove them. As seen below, this backward step naturally arises in BLasso
because of our coordinate descent view of the minimization of the Lasso loss. (Since ξ exists
for numerical purpose only, it is assumed to be 0 thus excluded in the following theoretical
discussion.)

For a given β 6= 0 and λ > 0, consider the impact of a small ε > 0 change of βj to the
Lasso loss Γ(β;λ). For an |s| = ε,

∆jΓ(Z;β) = (
n∑

i=1

L(Zi;β + s1j)−
n∑

i=1

L(Zi;β)) + λ(T (β + s1j)− T (β))

:= ∆j(
n∑

i=1

L(Zi;β)) + λ∆jT (β). (13)

Since T (β) is simply the L1 norm of β, ∆T (β) reduces to a simple form:

∆jT (β) = ‖β + s1j‖1 − ‖β‖1 = |βj + s| − |βj |
= ε · sign+(βj , s) (14)

= ε ·




1 if sβj > 0 or βj = 0
-1 if sβj < 0
0 if s = 0

Equation (14) shows that an ε step changes the penalty by a fixed ε in absolute value for
any j. That is, only the sign of the penalty change may vary. In the beginning of BLasso,
all j directions are leaving zero and hence changing the L1 penalty by the same positive
amount λ · ε. Therefore the first step of BLasso is a forward step because minimizing Lasso
loss is now equivalent to minimizing the L2 loss due to the same positive change of the L1

penalty. As the algorithm proceeds, some of the penalty changes might become negative
and minimizing the empirical loss is no longer equivalent to minimizing the Lasso loss. In
fact, except for special cases like orthogonal covariates (predictors), the FSF steps now
might result in negative changes of the L1 penalty. In some of these situations, a step that
goes ”backward” reduces the penalty with a small sacrifice in the empirical loss. In general,
to minimize the Lasso loss, one needs to go “back and forth” to trade off the penalty with
the empirical loss for different regularization parameters.

To be precise, for a given β̂, a backward step is such that:

∆β̂ = sj1j , subject to β̂j 6= 0, sign(s) = −sign(β̂j) and |s| = ε.
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Making such a step will reduce the penalty by a fixed amount λ · ε, but its impact on
the empirical loss can be different, therefore as in (10) we want:

ĵ = arg min
j

n∑

i=1

L(Zi; β̂ + sj1j) subject to β̂j 6= 0 and sj = −sign(β̂j)ε,

i.e. ĵ is selected such that the empirical loss after making the step is as small as possible.
While forward steps try to reduce the Lasso loss through minimizing the empirical loss,

the backward steps try to reduce the Lasso loss through minimizing the Lasso penalty. In
summary, by allowing the backward steps, we are able to work with the Lasso loss directly
and take backward steps to correct earlier forward steps that might have picked up irrelevant
variables.

Since much of the discussion on the similarity and difference between FSF and Lasso
is focused on Least Squares problems (e.g. Efron et al. 2004; Hastie et al. 2001), we now
examine the BLasso algorithm in this case. It is straightforward to see that in LS problems
both forward and backward steps in BLasso are based only on the correlations between
fitted residuals and the covariates (predictors). It follows that BLasso in this case re-
duces to finding the best direction in both forward and backward directions by examining
the inner-products, and then deciding whether to go forward or backward based on the
regularization parameter. This not only simplifies the minimization procedure but also sig-
nificantly reduces the computation complexity for a large number of observations since the
inner-product between ηt and Xj can be updated by

(ηt+1)′Xj = (ηt − sXĵt)′Xj = (ηt)′Xj − sX ′
ĵtXj . (15)

which takes only one operation if X ′
ĵtXj is precalculated. Therefore, when the number of

base learners is small, based on precalculated X ′X and Y ′X, BLasso without the original
data by using (15) makes its computation complexity independent from the number of obser-
vations. This nice property is not surprising as it is also observed in established algorithms
like LARS and Osborne’s homotopy method which are specialized for LS problems.

In nonparametric situations, the number of base learners is large therefore the aforemen-
tioned strategy becomes inefficient. BLasso has a natural extention to this case as follows:
similar to boosting, the forward step is carried out by a sub-optimization procedure such
as fitting trees, smoothing splines or stumps. For the backward step, only inner-products
between base learners that have entered the model need to be calculated. The inner prod-
ucts between these base learners and residuals can be updated by (15). This makes the
backward steps’ computation complexity proportional to the number of base learners that
are already chosen instead of the number of all possible base learners. Therefore BLasso
works not only for cases with large sample size but also for cases where a class of large or
infinite number of possible base learners is given.

As mentioned earlier, there are already established efficient algorithms for solving the
least square (L2) Lasso problem, e.g. the homotopy method by Osborne et al. (2000b) and
LARS (Efron et al. 2004). These algorithms are very efficient for giving the exact Lasso
paths for parametric settings. For nonparametric learning problems with a large or an
infinite number of base learners, we believe BLasso is a attractive strategy for approximating
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the path, as it shares the same computational strategy as Boosting which has proven itself
successful in applications. Also, in cases where the Ordinary Least Square (OLS) model
performs well, BLasso can be modified to start from the OLS model, go backward and stop
in a few iterations.

5. Generalized BLasso

As stated earlier, BLasso not only works for general convex loss functions, but also extends
to convex penalties other than the L1 penalty. For the Lasso problem, BLasso does a fixed
stepsize coordinate descent to minimize the penalized loss. Since the penalty has the spe-
cial L1 norm and (14) holds, a step’s impact on the penalty has a fixed size ε with either a
positive or a negative sign, and the coordinate descent takes form of “backward” and “for-
ward” steps. This reduces the minimization of the penalized loss function to unregularized
minimizations of the loss function as in (11) and (10). For general convex penalties, since a
step on different coordinates does not necessarily have the same impact on the penalty, one
is forced to work with the penalized function directly. Assume T (β): Rm → R is a convex
penalty function. We now describe the Generalized BLasso algorithm ( Algorithm 2).

In the Generalized BLasso algorithm, explicit “forward” or “backward” steps are no
longer seen. However, the mechanic remains the same – minimize the penalized loss function
for each λ, relax the regularization by reducing λ through a “forward” step when the
minimum of the loss function for the current λ is reached.

6. Experiments

In this section, three experiments are carried out to illustrate the attractiveness of BLasso.
The first experiment runs BLasso under the classical Lasso setting on the diabetes dataset
(cf. Efron et al. 2004) often used in studies of Lasso with an added artificial covariate vari-
able to highlight the difference between BLasso and FSF. This added covariate is strongly
correlated with a couple of the original covariates (predictors). In this case, BLasso is seen
to produce a path almost exactly the same as the Lasso path which shrinks the added
irrelevant variable back to zero, while FSF’s path parts drastically from Lasso’s due to the
added strongly correlated covariate and does not move it back to zero.

In the second experiment, we compare the prediction and variable selection performance
of FSF and BLasso in a least squares regression simulation using a large number (p =
500 >> n = 50) of randomly correlated base learners to emulate the nonparametric learning
scenario and when the true model is sparse. The result shows, overall, comparing with
FSF, BLasso gives sparser solutions with similar or slightly better predictions, for various
stepsizes. Moreover, we find that when the stepsize increases, there is a regularization effect
in terms of both prediction and sparsity, for both BLasso and FSF.

The last experiment is to illustrate BLasso as an off-the-shelf method for computing
the regularization path for general loss convex functions and general convex penalties. Two
cases are presented. The first case is bridge regression (Frank and Friedman, 1993) on
diabetes data using different Lγ (γ ≥ 1) norms as penalties. The other is a simulated
classification problem using 1-norm SVM (Zhu et al., 2003) with the hinge loss.
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Algorithm 2 Generalized BLasso
Step 1 (initialization). Given data Zi = (Yi, Xi), i = 1, ..., n and a fixed small stepsize ε > 0
and a small tolerance parameter ξ ≥ 0, take an initial forward step

(ĵ, ŝĵ) = arg min
j,s=±ε

n∑

i=1

L(Zi; s1j), β̂0 = ŝĵ1ĵ .

Then calculate the corresponding regularization parameter

λ0 =
∑n

i=1 L(Zi; 0)−∑n
i=1 L(Zi; β̂0)

T (β̂0)− T (0)
.

Set t = 0.
Step 2 (steepest descent on Lasso loss). Find the steepest coordinate descent direction on
the penalized loss:

(ĵ, ŝĵ) = arg min
j,s=±ε

Γ(β̂t + s1j ;λt).

Update β̂ if it reduces Lasso loss by at least a ξ amount, otherwise force β̂ to minimize L
and recalculate the regularization parameter:
If Γ(β̂t + ŝĵ1ĵ ;λ

t)− Γ(β̂t, λt) < −ξ, then

β̂t+1 = β̂t + ŝĵ1ĵ , λt+1 = λt.

Otherwise,

(ĵ, ŝĵ) = arg min
j,|s|=ε

n∑

i=1

L(Zi; β̂t + s1j),

β̂t+1 = β̂t + ŝĵ1ĵ ,

λt+1 = min[λt,

∑n
i=1 L(Zi; β̂t)−∑n

i=1 L(Zi; β̂t+1)

T (β̂t+1)− T (β̂t)
].

Step 3 (iteration). Increase t by one and repeat Step 2 and 3. Stop when λt ≤ 0.

6.1 L2 Regression with L1 Penalty (Classical Lasso)

The data set used in this experiment is from a Diabetes study where 442 diabetes patients
were measured on 10 baseline variables. A prediction model was desired for the response
variable, a quantitative measure of disease progression one year after baseline. One addi-
tional variable, X11 = −X7 +X8 +5X9 + e where e is i.i.d. Gaussian noise (mean zero and
Var(e) = 1/442), is added to make the difference between FSF and Lasso solutions more
visible. This added covariate is strongly correlated with X9, with correlations as follows (in
the order of X1, X2, ..., X10)

(0.25 , 0.24 , 0.47 , 0.39 , 0.48 , 0.38 , −0.58 , 0.76 , 0.94 , 0.47).
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The classical Lasso – L2 regression with L1 penalty is used for this purpose. Let X1, X2, ..., Xm

be n−vectors representing the covariates (predictors) and Y the vector of responses for the
n cases, m = 11 and n = 442 in this study. Location and scale transformations are made so
that all the covariates or predictors are standardized to have mean 0 and unit length, and
the response has mean zero.

The penalized loss function has the form:

Γ(β;λ) =
n∑

i=1

(Yi −Xiβ)2 + λ‖β‖1 (16)

Lasso BLasso FSF
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Figure 1. Regularization path plots, for the diabetes data set, of Lasso, BLasso and FSF:
the curves or paths to estimates of coefficient β̂j for 10 original and 1 added covariates
(predictors), as the regularization is relaxed or t tends to infinity. The red sold curves
correspond to the 11th added covariate. Left Panel: Lasso solution paths (produced using
simplex search method on the penalized empirical loss function for each λ) as a function
of t = ‖β‖1. Middle Panel: BLasso solution paths, which can be seen indistinguishable to
the Lasso solutions. Right Panel: FSF solution paths, which are different from Lasso and
BLasso.

The middle panel of Figure 1 shows the coefficient path plot for BLasso applied to
the modified diabetes data. Left (Lasso) and Middle (Middle) panels are indistinguishable
from each other. Both FSF and BLasso pick up the added artificial and strongly correlated
X11 (the solid line) in the earlier stages, but due to the greedy nature of FSF, it is not
able to remove X11 in the later stages thus every parameter estimate is affected leading to
significantly different solutions from Lasso.

The BLasso solutions were built up in 8700 steps (making the step size ε = 0.5 small so
that the coefficient paths are smooth), 840 of which were backward steps. In comparison,
FSF took 7300 pure forward steps. BLasso’s backward steps mainly concentrate around the
steps where FSF and BLasso tend to differ.

6.2 Comparison of BLasso and Forward Stagewise Fitting by Simulation

In this experiment, we compare the model estimates generated by FSF and BLasso in a large
p(=500) and small n(=50) setting to mimic a nonparametric learning scenario where FSF
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and BLasso are computationally attractive. In this least squares regression simulation, the
design is randomly generated as described below to guarantee a fair amount of correlation
among the covariates (predictors). Otherwise, if the design is close to orthogonal, the FSF
and BLasso paths will be too similar for this simulation to yield interesting results.

We first draw 5 covariance matrices Ci, i = 1, .., 5 from .95 × Di + .05Ip×p where Di

is sampled from Wishart(20, p) then normalized to have 1’s on diagonal. The Wishart
distribution creates a fair amount of correlation in Ci (average absolute value is about 0.18)
between the covariates and the added identity matrix guarantees Ci to be full rank. For
each of the covariance matrix Ci, the design X is then drawn independently from N(0, Ci)
with n = 50.

The target variable Y is then computed as

Y = Xβ + e

where β1 to βq with q = 7 are drawn independently from N(0, 1) and β8 to β500 are set to
zero to create a sparse model. e is the Gaussian noise vector with mean zero and variance
1. For each of the 5 cases with different Ci, both BLasso and FSF are run using stepsizes
ε = 1

5 , 1
10 , 1

20 , 1
40 and 1

80 . We also run Lasso which is listed as BLasso when ε = 0.
To compare the performances, we examine the solutions on the regularization paths

that give the smallest mean squared error ‖Xβ −Xβ̂‖2. The mean squared error of these
solutions are recorded on the log scale together with the number of nonzero estimates in
each solution. All cases are run 50 times and the average results are reported in Table 1.

Design ε = 1
5

ε = 1
10

ε = 1
20

ε = 1
40

ε = 1
80

Lasoo (ε = 0)

C1 MSE BLasso 18.60 18.27 18.33 18.60 19.42 19.98
FSF 19.77 19.40 19.60 19.82 19.96

q̂ BLasso 15.38 20.08 21.76 21.44 20.50 21.86
FSF 18.32 24.00 27.28 30.48 32.14

C2 MSE BLasso 19.58 19.28 19.65 19.94 20.76 21.12
FSF 20.67 20.29 20.63 20.94 21.11

q̂ BLasso 14.80 18.92 20.18 21.22 20.52 21.82
FSF 18.34 21.90 25.70 28.80 29.38

C3 MSE BLasso 18.83 18.14 18.55 18.90 19.32 20.15
FSF 19.35 19.11 19.52 19.78 19.93

q̂ BLasso 15.22 19.10 19.92 20.02 19.52 21.08
FSF 15.38 19.72 23.30 25.88 27.30

C4 MSE BLasso 20.09 19.88 19.85 20.20 21.84 21.70
FSF 21.53 21.09 21.13 21.35 21.57

q̂ BLasso 15.76 20.82 22.20 22.42 21.12 22.24
FSF 18.90 24.64 30.38 32.02 34.16

C5 MSE BLasso 18.79 18.62 18.70 19.09 19.47 20.12
FSF 19.99 19.92 19.84 20.19 20.36

q̂ BLasso 15.58 19.16 21.26 21.92 22.18 22.76
FSF 17.10 23.24 28.24 30.94 32.84

Table 1. Comparison of FSF and BLasso in a simulated nonparametric regression setting.
The log of MSE and q̂ =# of nonzeros are reported for the oracle solutions on the regular-
ization paths. All results are averaged over 50 runs.
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Design ε = 1
5

ε = 1
10

ε = 1
20

ε = 1
40

ε = 1
80

C1 MSE BLasso−Lasoo -1.38 (0.37) -1.71 (0.23) -1.65 (0.21) -1.38 (0.21) -0.56 (0.35)
BLasso−FSF -1.17 (0.27) -1.13 (0.28) -1.27 (0.26) -1.22 (0.26) -0.54 (0.24)

q̂ BLasso−Lasoo -6.48 (0.64) -1.78 (0.70) -0.10 (0.67) -0.42 (0.63) -1.36 (0.65)
BLasso−FSF -2.94 (0.89) -3.92 (1.22) -5.52 (1.26) -9.04 (1.43) -11.64 (1.64)

C2 MSE BLasso−Lasoo -1.54 (0.37) -1.84 (0.29) -1.47 (0.26) -1.18 (0.25) -0.36 (0.45)
BLasso−FSF -1.09 (0.32) -1.01 (0.27) -0.98 (0.23) -1.00 (0.23) -0.35 (0.38)

q̂ BLasso−Lasoo -7.02 (0.58) -2.90 (0.65) -1.64 (0.52) -0.60 (0.50) -1.30 (0.48)
BLasso−FSF -3.54 (0.99) -2.98 (0.88) -5.52 (1.09) -7.58 (1.31) -8.86 (1.41)

C3 MSE BLasso−Lasoo -1.32 (0.35) -2.01 (0.36) -1.60 (0.33) -1.25 (0.32) -0.83 (0.32)
BLasso−FSF -0.53 (0.28) -0.97 (0.22) -0.97 (0.23) -0.88 (0.23) -0.62 (0.24)

q̂ BLasso−Lasoo -5.86 (0.81) -1.98 (0.72) -1.16 (0.54) -1.06 (0.55) -1.56 (0.56)
BLasso−FSF -0.16 (0.78) -0.62 (0.87) -3.38 (1.05) -5.86 (0.97) -7.78 (1.08)

C4 MSE BLasso−Lasoo -1.61 (0.45) -1.82 (0.33) -1.85 (0.33) -1.50 (0.33) 0.14 (0.66)
BLasso−FSF -1.44 (0.30) -1.20 (0.28) -1.28 (0.24) -1.15 (0.29) 0.27 (0.67)

q̂ BLasso−Lasoo -6.48 (0.71) -1.42 (0.85) -0.04 (0.73) 0.18 (0.52) -1.12 (0.67)
BLasso−FSF -3.14 (0.92) -3.82 (1.16) -8.18 (1.12) -9.60 (1.35) -13.04 (1.68)

C5 MSE BLasso−Lasoo -1.33 (0.38) -1.50 (0.26) -1.41 (0.26) -1.03 (0.22) -0.65 (0.22)
BLasso−FSF -1.20 (0.25) -1.30 (0.23) -1.14 (0.28) -1.10 (0.29) -0.89 (0.28)

q̂ BLasso−Lasoo -7.18 (0.84) -3.60 (0.64) -1.50 (0.58) -0.84 (0.52) -0.58 (0.55)
BLasso−FSF -1.52 (0.88) -4.08 (1.10) -6.98 (1.08) -9.02 (1.21) -10.66 (1.50)

Table 2. Means and Standard Errors of the differences of MSE and q̂ between BLasso and
Lasso, and between Blasso and FSF in Table 1.

As can be seen from Table 1, since our true model is sparse, in almost all cases the
BLasso solutions are sparser and have similar prediction performances comparing to the
FSF solutions with the same stepsize. It is also interesting to note that, smaller stepsizes
require more computation but often give worse predictions and much less sparsity. We
conjecture that this is also a regularization effect caused by the discretization of the solution
paths (more discussion in Section 8) and this effect has also been observed by Gao et al.
(2006) in a language ranking problem.

Table 2 gives a further analysis of the results in Table 1. It contains means and standard
errors of the differences of MSE and q̂, between BLasso and Lasso and between BLasso and
FSF for the stepsizes given in Table 1. First of all, all the mean differences are negative
and when compared with their SE’s, the differences are also significant except for few cells
for small stepsizes 1/40 and 1/80 (in the last two columns). This overwhelming pattern
of significant negative difference suggests that BLasso is better than Lasso and FSF from
this simulation in terms of both prediction and sparsity unless the stepsize is very small
as in the last two columns. Moreover, for MSE the stepsize ε = 1/10 seems to bring the
best improvement of BLasso over Lasso, while the improvement is pretty robust against the
choice of stepsize. On the other hand, the improvements of BLasso over FSF on MSE are less
then those of BLasso over Lasso because FSF has the same discrete stepsizes. Hence these
improvements reflect the gains only by the backward steps since FSF takes also forward
steps. In terms of q̂, the number of covariates selected, as expected, the larger the stepsize,
the sparser the BLasso model is relative to the Lasso model or the FSF model. The sparsity
improvements over Lasso are significant for all cells except for the last column with ε = 1/80.
When compared with FSF, the sparsity improvements are less and smaller (still significant)
. In terms of gains on both MSE and sparsity and relative to both Lasso and FSF, stepsizes
1/10 and 1/20, i.e. 0.1 or 0.05, seem good overall choices for this simulation study.
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As suggesetd by one referee, we now compare the Lasso empirical loss functions induced
by BLasso, FSF and Lasso (through LARS). Figure 2 shows plots of in-sample Mean Squared
Error versus L1 norms of the coefficients taken from one typical run of the simulation
conducted in this section. As shown by the plots, BLasso approximates the Lasso path
better than FSF under both big and small step sizes. In particular, when the step size is
small, the BLasso path is almost indiscernible from the Lasso path.
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Figure 2. Plots of Mean Squared Error (y-axis) versus ‖β‖1 (x-axis) for a typical realization
of the experiment (on run under C2 from Table 1). The step size is set to ε = 1

80 in the left
plot and ε = 1

5 in the right.

6.3 Generalized BLasso for Other Penalties and Nondifferentiable Loss
Functions

First, to demonstrate Generalized BLasso for different penalties, we use the Bridge Regres-
sion setting with the diabetes dataset (without the added covariate in the first experiment).
The Bridge Regression (first proposed by Frank and Friedman (1993) and later more care-
fully discussed and implemented by Fu (1998)) is a generalization of the ridge regression
(L2 penalty) and Lasso (L1 penalty). It considers a linear (L2) regression problem with Lγ

penalty for γ ≥ 1 (to maintain the convexity of the penalty function). The penalized loss
function has the form:

Γ(β;λ) =
n∑

i=1

(Yi −Xiβ)2 + λ‖β‖γ (17)

where γ is the bridge parameter. The data used in this experiment are centered and rescaled
as in the first experiment.
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Figure 3. Upper Panel: Solution paths produced by BLasso for different bridge parameters,
on the diabetes data set. From left to right: Lasso (γ = 1), near-Lasso (γ = 1.1), Ridge
(γ = 2), over-Ridge (γ = 4), max (γ = ∞). The Y -axis is the parameter estimate and has
the range [−800, 800]. The X-axis for each of the left 4 plots is

∑
i |βi|, the one for the 5th

plot is max(|βi|) because
∑

i |βi| is unsuitable. Lower Panel: The corresponding penalty
equal contours for |β1|γ + |β2|γ = 1.

Generalized BLasso successfully produced the paths for all 5 cases which are verified by
pointwise minimization using simplex method (γ = 1, γ = 1.1, γ = 4 and γ = max) or
close form solutions (γ = 2). It is interesting to notice the phase transition from the near-
Lasso to the Lasso as the solution paths are similar but only Lasso has sparsity. Also, as γ
grows larger, estimates for different βj tend to have more similar sizes and in the extreme
γ = ∞ there is a “branching” phenomenon – the estimates stay together in the beginning
and branch out into different directions as the path progresses.

Now, to demonstrate the Generalized BLasso algorithm for classification using an non-
differentiable loss function with a L1 penalty function, we now look at binary classification
with the hinge loss. As in Zhu et al. (2003), we generate n=50 training data points in each
of two classes. The first class has two standard normal independent inputs X1 and X2 and
class label Y = −1. The second class also has two standard normal independent inputs,
but conditioned on 4.5 ≤ (X1)2 + (X2)2 ≤ 8 and has class label Y = 1. We wish to find a
classification rule from the training data. so that when given a new input, we can assign a
class Y from {1,−1} to it.

1-norm SVM (Zhu et al. 2003) is used to estimate β:

(β̂0, β) = arg min
β0,β

n∑

i=1

(1− Yi(β0 +
m∑

j=1

βjhj(Xi)))+ + λ
5∑

j=1

|βj | (18)
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where hi ∈ D are basis functions and λ is the regularization parameter. The dictionary
of basis functions is D = {√2X1,

√
2X2,

√
2X1X2, (X1)2, (X2)2}. Notice that β0 is left

unregularized so the penalty function is not the L1 penalty.
The fitted model is

f̂(x) = β̂0 +
m∑

j=1

β̂jhj(x),

and the classification rule is given by sign(f̂(x)).

Regularization Path Data
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Figure 4. Estimates of 1-norm SVM coefficients β̂j , j=1,2,...,5, for the simulated two-class
classification data. Left Panel BLasso solutions as a function of t =

∑5
j=1 |β̂j |. Right Panel

Scatter plot of the data points with labels: ’+’ for y = −1; ’o’ for y = 1.

Since the loss function is not differentiable, we do not have a theoretical guarantee that
BLasso works. Nonetheless the solution path produced by Generalized BLasso has the same
sparsity and piecewise linearity as the 1-norm SVM solutions shown in Zhu et al. (2003).
It takes Generalized BLasso 490 iterations to generate the solutions. The covariates enter
the regression equation sequentially as t increase, in the following order: the two quadratic
terms first, followed by the interaction term then the two linear terms. As 1-norm SVM in
Zhu et al. (2003), BLasso correctly picked up the quadratic terms early. The interaction
term and linear terms that are not in the true model come up much later. In other words,
BLasso results are in good agreement with Zhu et al.’s 1-norm SVM results and we regard
this as a confirmation for BLasso’s effectiveness in this nondifferentiable example.

7. Discussion and Concluding Remarks

As seen from our simulations under sparse true models, BLasso generates sparser solutions
with similar or slightly better predictions relative to Lasso and FSF. The behavior relative
to Lasso is due to the discrete stepsize of BLasso, while the behavior relative to FSF is
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partially explained by its convergence to the Lasso path as the stepsize goes to 0. We
believe that the generalized version is also effective as an off-the-shelf algorithm for the
general convex penalized loss minimization problems.

Computationally, BLasso takes roughly O(1/ε) steps to produce the whole path. De-
pending on the actual loss function, base learners and minimization method used in each
step, the actual computation complexity varies. As shown in the simulations, choosing a
smaller stepsize gives smoother solution path but it does not guarantee better predictions.
Actually, for the particular simulation set-up in Sec. 6.2, moderate stepsizes gave better
results both in terms of MSE and sparisty. Now we observe that BLasso’s actual coefficient
estimates are pretty close to the Lasso solutions even for relatively large stepsizes.

0500100015002000
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λ

Figure 5. Estimates of regression coefficients β̂3 for the diabetes data set. Solutions are
plotted as functions of λ. Dotted Line: Estimates using stepsize ε = 0.05. Solid Line:
Estimates using stepsize ε = 10. Dash-dot Line: Estimates using stepsize ε = 50.

For the diabetes data, using a moderate stepsize ε = 0.05, the solution path can not
be distinguished from the exact regularization path. However, even when the stepsize is as
large as ε = 10 and ε = 50, the solutions are still good approximations.

BLasso has only one stepsize parameter (with the exception of the numerical tolerance
ξ which is implementation specific but not necessarily a user parameter). This parameter
controls both how close BLasso approximates the minimization coefficients for each λ and
how close two adjacent λ on the regularization path are placed. As can be seen from Figure
5, a smaller stepsize leads to a closer approximation to the solutions and also finer grids
for λ. We argue that, if λ is sampled on a coarse grid we should not spend computational
power on finding a much more accurate approximation of the coefficients for each λ. Instead,
the available computational power spent on these two coupled tasks should be balanced.
BLasso’s 1-parameter setup automatically balances these two aspects of the approximation
which is graphically expressed by the staircase shape of the solution paths.

Another algorithm similar to Generalized BLasso is developed independently by Rosset
(2004). There, starting from λ = 0, a solution is generated by taking a small Newton-
Raphson step for each λ, then λ is increased by a fixed amount. The algorithm assumes
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twice-differentiability of both loss function and penalty function and involves calculation
of the Hessian matrix which could be heavy-duty computationally when the number p of
covariates is not small. In comparison, BLasso uses only the differences of the loss function
and involves only basic operations and does not require advanced mathematical knowledge
of the loss function or penalty. It can also be used a simple plug-in method for dealing with
other convex penalties. Hence BLasso is easy to program and allows testing of different loss
and peanlty functions. Admittedly, this ease of implementation can cost computation time
in large p situations.

BLasso’s stepsize is defined in the original parameter space which makes the solutions
evenly spread in β’s space rather than in λ. In general, since λ is approximately the
reciprocal of size of the penalty, as fitted model grows larger and λ becomes smaller, changing
λ by a fixed amount makes the algorithm in Rosset (2004) move too fast in the β space. On
the other hand, when the model is close to empty and the penalty function is very small,
λ is very large, but the algorithm still uses same small steps thus computation is spent to
generate solutions that are too close to each other.

As we discussed for the least squares problem, BLasso may be also computationally
attractive for dealing with nonparametric learning problems with large or infinite number
of base learners. This is mainly due to two facts. First, the forward step, as in Boosting,
is a sub-optimization problem by itself and Boosting’s functional gradient descend strategy
applies. For example, in the case of classification with trees, one can use the classification
margin or the logistic loss function as the loss function and use a reweighting procedure to
find the appropriate tree at each step (for details see e.g. Breimann 1998 and Friedman
et al. 2000). In case of regression with the L2 loss function, the minimization as in (11)
is equivalent to refitting the residuals as we described in the last section. The second
fact is that, when using an iterative procedure like BLasso, we usually stop early to avoid
overfitting and to get a sparse model. And even if the algorithm is kept running, it usually
reaches a close-to-perfect fit without too many iterations. Therefore, the backward step’s
computation complexity is limited because it only involves base learners that are already
included from previous steps.

There is, however, a difference in the BLasso algorithm between the case with a small
number of base learners and the one with a large or infinite number of base learners. For
the finite case, since BLasso avoids oscillation by requiring a backward step to be strictly
descending and relax λ whenever no descending step is available, therefore BLasso never
reach the same solution more than once and the tolerance constant ξ can be set to 0 or a
very small number to accommodate the program’s numerical accuracy. In the nonparametric
learning case, a different kind of oscillation can occur when BLasso keeps going back and
force in different directions but only improving the penalized loss function by a diminishing
amount, therefore a positive tolerance ξ is mandatory. As suggested by the proof of Theorem
1, we suggest choosing ξ = o(ε) to warrant a good approximation to the Lasso path.

One direction for future research is to apply BLasso in an online or time series setting.
Since BLasso has both forward and backward steps, we believe that an adaptive online
learning algorithm can be devised based BLasso so that it goes back and forth to track the
best regularization parameter and the corresponding model.

We end with a summary of our main contributions:
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1. By combining both forward and backward steps, the BLasso algorithm is constructed
to minimize an L1 penalized convex loss function. While it maintains the simplicity
and flexibility of e-Boosting (or Forward Stagewise Fitting), BLasso efficiently approx-
imate the Lasso solutions for general loss functions and large classes of base learners.
This can be proven rigorously for finite number of base learners under the assumption
that the loss function is strongly convex with a bounded Hessian.

2. The backward steps introduced in this paper are critical for producing the Lasso
path. Without them, the FSF algorithm in general does not produce Lasso solutions,
especially when the base learners are strongly correlated as in cases where the number
of base learners is larger than the number of observations. As a result, FSF loses some
of the sparsity provided by Lasso and might also suffer in prediction performance as
suggested by our simulations.

3. We generalized BLasso as a simple, easy-to-implement, plug-in method for approxi-
mating the regularization path for other convex penalties.

4. Discussions based on intuition and simulation results are made on the regularization
effect of using stepsizes that are not very small.

Last but not least, matlab codes for BLasso in the case of L2 loss and L1 penalty can be
downloaded at http://www.stat.berkeley.edu/twiki/Research/YuGroup/Software. (Thanks
to Guilherme V. Rocha)

Appendix A. Appendix: Proofs

First, we offer a proof for Lemma 1.
Proof (Lemma 1)

1. Suppose ∃λ, j, |s| = ε s.t. Γ(ε1j ;λ) ≤ Γ(0;λ). We have

n∑

i=1

L(Zi; 0)−
n∑

i=1

L(Zi; s1j) ≥ λT (s1j)− λT (0),

therefore

λ ≤ 1
ε
{

n∑

i=1

L(Zi; 0)−
n∑

i=1

L(Zi; s1j)}

≤ 1
ε
{

n∑

i=1

L(Zi; 0)− min
j′,|s|=ε

n∑

i=1

L(Zi; s1j′)}

=
1
ε
{

n∑

i=1

L(Zi; 0)−
n∑

i=1

L(Zi; β̂0)}

= λ0.
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2. Since a backward step is only taken when Γ(β̂t+1;λt) < Γ(β̂t;λt) − ξ and λt+1 =
λt, so we only need to consider forward steps. When a forward step is forced, if
Γ(β̂t+1;λt+1) > Γ(β̂t;λt+1)− ξ, then

n∑

i=1

L(Zi; β̂t)−
n∑

i=1

L(Zi; β̂t+1)− ξ < λt+1T (β̂t+1)− λt+1T (β̂t),

therefore
1
ε
{

n∑

i=1

L(Zi; β̂t)−
n∑

i=1

L(Zi; β̂t+1)− ξ} < λt+1

which contradicts the algorithm.

3. Since λt+1 < λt and λ can not be relaxed by a backward step, we immediately have
‖β̂t+1‖1 = ‖β̂t‖1 + ε. Then from

λt+1 =
1
ε
{

n∑

i=1

L(Zi; β̂t)−
n∑

i=1

L(Zi; β̂t+1)− ξ}

we get
Γ(β̂t;λt+1)− ξ = Γ(β̂t+1;λt+1).

Plus both sides by (λt − λt+1)‖β̂t‖1, and recall T (β̂t+1) = ‖β̂t+1‖1 > |β̂t‖1 = T (β̂t),
we get

Γ(β̂t;λt)− ξ < Γ(β̂t+1;λt)
= min

j′,|s|=ε
Γ(β̂t + s1j′ ;λt)

≤ Γ(β̂t ± ε1j ;λt)

for ∀j. This completes the proof.

Proof of Theorem 1
Theorem 3.1 claims “the BLasso path converges to the Lasso path uniformly” for∑
L(Z;β) that is strongly convex with bounded second derivatives in β. The strong con-

vexity and bounded second derivatives imply the Hessian w.r.t. β satisfies

mI ¹ ∇2
∑

L ¹ MI (19)

for positive constants M ≥ m > 0. Using these notations, we will show that for any t s.t.
λt+1 > λt, we have

‖β̂t − β∗(λt)‖2 ≤ (
M

m
ε +

ξ

ε

2
m

)
√

p. (20)

where β∗(λt) ∈ Rp is the Lasso estimates with regularization parameter λt.
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The proof of (20) relies on the following inequalities for strongly convex functions, some
of which can be found in Boyd and Vandenberghe (2004). First, because of the strong
convexity, we have

∑
L(Z;β∗(λt)) ≥

∑
L(Z; β̂t) +∇

∑
L(Z; β̂t)T (β∗(λt)− β̂t) +

m

2
‖β∗(λt)− β̂t‖2

2 (21)

The L1 penalty function is also convex although not strictly convex nor is it differentiable
at 0, but we have

‖β∗(λt)‖1 ≥ ‖β̂t‖1 + δT (β∗(λt)− β̂t) (22)

hold for any p-dimensional vector δ with δi the i’th entry of sign(β̂t)T for the nonzero entries
and |δi| ≤ 1 otherwise.

Putting both inequalities together, we have

Γ(β∗(λt);λt) ≥ Γ(β̂t;λt) + (∇
∑

L(Z; β̂t) + λtδ)T (β∗(λt)− β̂t) +
m

2
‖β∗(λt)− β̂t‖2

2 (23)

Using equation (23), we can bound the L2 distance between β∗(λt) and β̂t by applying
Cauchy-Schwartz to get

Γ(β∗(λt);λt) ≥ Γ(β̂t;λt)− ‖∇
∑

L(Z; β̂t) + λtδ‖2‖β∗(λt)− β̂t‖2 +
m

2
‖β∗(λt)− β̂t‖2

2 (24)

then since Γ(β∗(λt);λt) ≤ Γ(β̂t;λt), we have

‖β∗(λt)− β̂t‖2 ≤ 2
m
‖∇

∑
L(Z; β̂t) + λtδ‖2. (25)

By statement (3) of Lemma 1, for β̂t
j 6= 0 we have

∑
L(Z; β̂t ± εsign(β̂t

j)1j)± λtε ≥
∑

L(Z; β̂t)− ξ (26)

at the same time, by the bounded Hessian assumption we have

∑
L(Z; β̂t ± εsign(β̂t

j)1j) ≤
∑

L(Z; β̂t)± ε∇
∑

L(Z; β̂t)T sign(β̂t
j)1j +

M

2
ε2. (27)

Connect these two inequalities, we have

∓ε× (∇
∑

L(Z; β̂t)T 1jsign(β̂t
j) + λt) ≤ M

2
ε2 + ξ (28)

therefore
|(∇

∑
L(Z; β̂t)T 1jsign(β̂t

j) + λt)| ≤ M

2
ε +

ξ

ε
(29)

Similarly, for β̂t
j = 0, instead of (26), we have
∑

L(Z; β̂t ± εsign(β̂t
j)1j) + λtε ≥

∑
L(Z; β̂t)− ξ. (30)

Combine with (27), we have

|∇
∑

L(Z; β̂t)T 1j | − λt ≤ M

2
ε +

ξ

ε
(31)
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Therefore for j such that β̂t
j = 0 choose δj appropriately, then combine with (29), we know

that the right hand side of (25) is controlled by
√

p × 2
m × (M

2 ε + ξ
ε ). This way we obtain

(20). This completes the proof.
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N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the
lasso. Annals of Statistics, 34:1436–1462, 2005.

N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for high-
dimensional data. Technical Report 720, Statistics Department, UC Berkeley, 2006.

M.R. Osborne, B. Presnell, and B.A. Turlach. A new approach to variable selection in least
squares problems. Journal of Numerical Analysis, 20(3):389–403, 2000a.

M.R. Osborne, B. Presnell, and B.A. Turlach. On the lasso and its dual. Journal of
Computational and Graphical Statistics, 9(2):319–337, 2000b.

S. Rosset. Tracking curved regularized optimization solution paths. NIPS, 2004.

S. Rosset, J. Zhu, and T. Hastie. Boosting as a regularized path to a maximum margin
classifier. Journal of Machine Learning Research, 5:941–973, 2004.

R.E. Schapire. The strength of weak learnability. Journal of machine Learning, 5(2):1997–
2027, 1990.

B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines, regulariza-
tion, optimization and beyond. MIT Press, 2002.

25



Zhao and Yu

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58(1):267–288, 1996.

N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method. 1999.

J.A. Tropp. Just relax: Convex programming methods for subset selection and sparse
approximation. ICES Report 04-04, UT-Austin, February., 2004.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.

M. J. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of sparsity us-
ing `1-constrained quadratic programming. Technical Report 709, Statistics Department,
UC Berkeley, 2006.

C.-H. Zhang and J. Huang. Model-selection consistency of the lasso in high dimensional
linear regression. Technical Report 003, Statistics Department, Rutgers University, 2006.

T. Zhang. Sequentiall greedy approximation for certain convex optimization problems.
IEEE Trans. on Information Theory, 49(3):682–691, 2003.

P. Zhao and B. Yu. On model selection consistency of lasso. Technical report, 2006.

J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector machines. Advances
in Neural Information Processing Systems, 16, 2003.

H. Zou. The adaptive lasso and its oracle properties. Journal of American Statistical
Association, 101:1418–1429, 2006.

26


