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ABSTRACT This note explores the connections and differences between
three commonly used methods for constructing minimax lower bounds in
nonparametric estirnation problems: Le Cam’s, Assouad’s and Fano’s. Two
connections are established between Le Cam’s and Assouad’s and between
Assouad’s and Fano’s. The three methods are then compared in the context
of two estimation problems for a smooth class of densities on [0,1]. The two
estimation problems are for the integrated squared first derivatives and for
the density function itself,

29.1 Introduction

In nonparametric estimation problems, minimax is a commenly used risk
criterion. An optimal minimax rate is often obtained by first deriving a min-
imax lower bound, often nonasymptotic, on the risk and then constructing
an explicit estimator which achieves the rate in the lower bound. See for ex-
ample, Has'minskii & Ibragimov (1978), Bretagnolle & Huber (1979), Stone
(1984), Birgé (1986), Bickel & Ritov (1988), Donoho & Nussbaum (1990),
Fan (1991}, Donoho & Liu {1991), Birgé & Massart (1992), and Pollard
(1993). Depending on the class considered and the function or functional
estimated, techniques used to derive lower bounds differ, Three general
methods have been widely employed: one formalizes some arguments of
Le Cam (1973), and the other two are based on inequalities of Assouad
(1983) and Fano (compare with Cover & Thomas 1991, p. 39). The first
methed will be referred to in this note as Le Cam’s method., (Note that
Le Cam ({1986, Chapter 16) has developed a much more general theory.)
It deals with two sets of hypotheses, while the Assouad and Fano methods
deal with multiple hypotheses, indexed by the vertices of a hypercube and
those of a simplex, respectively.

In this note, we explore the connections and differences between these
three lemmas with the hope of shedding light on other more general prob-
lems. Section 2 contains two results {Lemma 2 and Lemma 5), which relate '
the three methods. It is known that Assouad’s lemma (Lemma 2) gives
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very effective lower bounds for many global estimation problems. One way
to understand that lemma is through Le Cam’s method: the global estima-
tion problem can be decomposed into several sub-estimation problems, and
Assouad’s Lemma is obtained by applying Le Cam’s method to the sub-
problems. In Lemma 5 we use a simple packing nurnber result to extract a
subset of the vertices of a hypercube to which the Fano method is applied,
thereby obtaining a lower bound similar to that of Assouad. Hence in this
gense, Fano’s method is stronger, as observed by Birgé (1986).

From the examples worked out in the literature, it appears that Le Cam's
method often gives the optimal rate when a real functional is estimated, but
it can be non-straightforward to find the appropriate two sets of hypotheses
in some problems. On the other hand, the other two lemmas seem to he
effective when the whole unknown function is being estimated, although
Assouad’s Lemma seems easier to use and therefore more popular than
Fano’s. In Section 3, we demonstrate this point in the context of a particular
smooth class of densities on [0,1] and with two estimation problems, one

“for a real functional and one for the whole density. For the functional, Le
Cam’s method gives the optimal rate of convergence, while Assouad’s and
Fano’s provide the optimal rate for the whole density.

After the completion of this note, closely related work by C. Huber was
brought to my attention, In her article, which appears in this volume, she
explores the connection between Assouad’s and Fano’s methods.

29.2 The three methods

Assume that P is a family of probability measures and #(P) is the param-
eter of interest with values in a pseudo-metric space (D, d). (It would be
inconvenient to require that d(@,6") = 0 implies that 6 = ¢".) Let § = §(X)
be an estimator of #(P) based on an X with distribution P, and denote by
co(P) the convex hull of P. _

Le Cam (1973) relates the testing problem of two sets of hypotheses
to the L! distance of the convex hulls of the two hypothesis sets. Roughly
speaking, if one wants to test between these two sets well, then their convex
hulls have to be well separated. Since estimators also define tests between
subsets of D, Le Cam’s testing bound also provides a lower bound for the
accuracy of an estimator.

Lemma 1 (Le Cam’s method) Let & be an estimator of 6(P) on P tak-
ing values in a metric space (D, d). Suppose that there are subsets Dy and
Dy of D that are 28-separated, in the sense that, d(s1,82) = 26 for all 81 €
Dy and sz € Da,. Suppose also that- Py and Py are subsets of P for which
O(P) € Dy for PPy and 8(P) € Dy for P € Po. Then

sup Epd(6,0(P))>6- sup [P, AR,

PeP )

Pieco(P,
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where the offinity | Py A Py|| is defined through
171 = Pafls = 2(1 — || P, A Pof).
Proof: For F; € P;,

M

i

2 sup Epd(d,8(P))

PeP
EP1 d(é: B(Pl)) + EPzd(és e(PZ))
Ep,d(6,D1) + Ep,d(8, D,),

v v

which implies
Ep,d(8,D:) + Ep,d(8,D2) < M for all P, € co(P).
Since d(0, D1) + d(f, Da) > d(Dy, Da) > 26, then for any P; € co(P;),

M > 2§ inf (Ep1f1 +Ep2f2) =26 ”Pl /\Pg”.

fiz0fi+fa=1
Hence R
M :=2 sup Epd(0,8(P)) > 25- sup [P APR.
PeP Pigeo(Ps)
O
Remark

(i) If d is not a pscudo-metric, but a non-negative symmetric function
wsatisfying the following “weak” triangle inequality, that is, for some con-
stant A &€ (0,1},

d(z,2) + d(z,y) = Ad(z,y),

then the lower bound holds with an extra factor A. This observation is very
useful in Example 2 in Section 1.3 _

(ii) In many cases, better lower bounds are obtained by considering the
convex hulls of the P;, because the supremum of || P, A Pz}| over the convex
hulls can be much larger than the supremum over the P; themselves.

Assouad’s lemma gives a minimax lower bound over a class of 2™ hy-
potheses (probability measures) indexed by vertices of a m-dimensional hy-
percube. The following form of Assouad’s lemma is reworded from Devroye
(1987, p. 60) (compare with Le Cam 1986, p. 524) to emphasize the decom-
posability of the (pseudo) distance d into a sum of m (pseudo) distances,
which correspond to m estimation subproblems. The proof is rewritten to
make the point that each subproblem is like testing the hypotheses indexed
by neighboring vertices on the hypercube along the direction determined
by the particular subproblem and the argument used in Le Cam’s method
(Lemma 1) can be applied to each of the subproblems.
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Lemma 2 (Assouad’s Lemma) Letm 2> 1 be an integer and let Fry =
{P.: 7€ {-1,1}"} contain 2™ probabilily measures. Write v ~ 7' if 7
and 7' differ in only one coordinate, and write T ~; 7' when that coordinaete
is the jth. Suppose that there are m pseudo-distances on D such that for
any r,y €D

d{z,y} =Zdj($’y)s (L

5=1

and further that, if 7 ~; 7',

d; (8(Pr), 8(Pr)) = am. (2)
Then
A 2573 .
Jnax E.d(8,0(P))=m- = min{| Py A Prlj: T~ 7'}
Proof:  For any given 7 = (T1,.-.,Tm), let 77 denote the m-tuple that

differs from it in only the jth position. Then d(8(F;),0(Frs)) = am.

max E,d(6(Pr), 6)

= mngErd,-(H(PT), &)
j=1

2™ > Eed;i(8(Fr), 9)

T =1

= Sy Edi (8P, 8)

3=1 T

= \Zj 2=+ S (Brd; (9(P), 0) + Ersd(0(Prs), 8)
i=1 T

N\

For each fixed 7 and j, we have a pair of hypotheses Pr and P,; sitting on
the neighboring vertices of the hypercube along direction j. Therefore, as
in Le Cam’s method {Lemma 1), the average estimation ertor over these
two hypotheses can be bounded from below by 3ctm||Pr A Prs||. Thus,

max E,d(O(P,),0) = .27 amlPr APl

Fu=l T

v

m%’“ min{}| Py A Pp|| : 7~ 7'}
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The relation 7 ~ 7/ can also be written W{r,7') = 1, where W denotes
the Hamming distance,

1 m
Winr') =53l =7
=1

the number of places where 7 and 7' differ.

From Remark (i) after Lemma 1, Assouad’s lower bound holds with an
extra factor A if d; are non-negative symmetric functions satisfying the
weak triangle inequality with the same constant A.

Devroye (1987, p. 77) (compare with Le Cam 1986, p. 524) contains a
generalized Fano’s lemma in the case that 6(P) is the density of Pand d
is the L! norm. We present here a slightly stronger version whose proof is
based on ideas from Han and Verdd (1994). We find their proof less invelved
than those in the statistics literature. It is based on information theory
concepts and Fano’s original inequality (compare with Cover & Thomas
1991, p. 39). '

Lemma 3 (Generalized Fano method) Letr > 2 be an integer and let
M, C P contain v probability measures indezed by j =1,2,...,7 such that
for all 7 # 5

d(6(F;), 0(Fy)) Z o,

and 7
K(P;, Py} = fIOg(Pj/Pj')de < B
Then 5 +1_ )
il p ' OF
; > —(] — —————
m?,xE,d(G,H(ﬂ))_ 5 (1 Togr ).

Proof: Write 8; for 6(P;). Let Y be a random variable uniformly dis-

‘tributed on the hypothesis set {1,2,...,7}, and X be a random variable

with the conditional distribution P; given Y = j. Define Z as the value
of j for which d(6(X),8;) is a minimum. (It does not matter how we han-
dle ties.) Because d(6;,8;) > o for j # j', we certainly have Z = j when
d(6(X),0;) < o /2. It follows that

mex E;d(6,0(Fy)) > 5 maxPA(X),0,)) 2 S 1Y =j)

O o ) )
> LY PZ#j1Y=3)
rj=1

= ZPEZ#Y).
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Let £ be the entropy function with the natural log,
h(p) = —plogp — (1 —p)log(1 —p) for p € (0, 1).

Then 0 < A{-) < log2. Dencte by I(Y;Z) = K(Py,z), Pr x Pg) the
mutual information between ¥ and Z, and by H(Y|Z) the equivocation or
the average posterior entropy of Z given Y. Then

HY;Z)= H(Y) - H(Y|Z) = logr — H(Y|Z).

Furthermore, by a property of mutual information and the convexity of the
Kullback-Leibler divergence (Cover & Thomas 1991, pp. 30, 33), we have

DWUCEW)

1
< 32 KB, P
®J

I{Y;2) = I(Y;8(X)) < I{Y; X)

It follows from Fano’s inequality (Cover & Thomas 1991, p. 39),
H(Y|Z) < P(Z # Y)log(r — 1) + h(P(Z = Y)),

that
P(Z#Y)log{r—1) = H(Y|Z)- h(1/2)
HY)-I(Y;Z) —log2
z logr— %ZK(P@-,%) —log2.

i,

Increase the log(r—1) to logr and replace K(F;, P;) by its upper bound 3,
then substitute the resulting lower bound for P(Z # Y) into the minimax
inequality to get the asserted bound. a

As remarked by Birgé (1986, p. 279), “[Fano’s Lemma] is in a sense more
general because it applies in more general situations. It could also replace
Assouad’s Lemma in almost any practical case ...”. Indeed, Lemma 3
implies a result similar to Assouad’s Lemma. The idea is to select the
maximal subset of vertices from the m-dimensional hypercube which are
m/3 apart in Hamming distance and apply Fano’s Lemma to the selected
set of vertices.

Lemma 4 For a universal positive comstant cy, and each m > 6, there
ezists o subset A of {—1,+1}™ consisting of at least exp(com) vertices,
each pair greater than m/3 apart in Hamming distance.

Proof:  Let k be the integer part of m/6. Let A be a maximal set of
vertices, each pair at least 2k--1 apart in Hamming distance. The Hamming
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ball B(r, 2k} of radius 2k and center 7 contains N {m, 2k) = Ef:o r_r(?nﬂ'll"?ﬁ
vertices, corresponding to the subsets of 2k or fewer coordinates at which
a vertex in the ball can differ from .

Because A is maximal, no vertex in the cube {—1,41}™ can lie further
than 2k from A; the whole cube is covered by a union of balls B(r,2k),
with T ranging over A. This union contains at most |A|N(m, 2k) vertices,
which is therefore an upper bound for 2™,

It remains to calculate an upper bound for N (m, 2k) by means of the
usual generating function argument. Let Z denote a random variable with
a Bin(m, 1/2) distribution. Put s = (m — 2k)/2k, which is greater than 1.
Then

™
N(m,2k) = 2™P(Z < 2k) < 9™ Es?*~Z = gm g2k (% + %) .
The bound simplifies to exp{mh{2k/m)), which leads to the asserted lower
bound for 4 if we take k = [m/6] . a

Lemma 5 Let m > 1 be an integer and let F,, = {£r: e {-11}"}
contoin 2™ probability mensures, and let W be the Hamming distance. Sup-
pose that there are constants o, and Ym such that

d(O(Fr), 0(Pr)) > amW (7, ') 3)

K(P;,Pr) < mp,. (4)
Then

N o 1
Amax Erd(0,,0(F) >m- —é—n—(l - a('ym + log 2/m)).

Proof: ~ Apply Lemma 3 to the set A of r = exp{com) vertices given
by Lemma 4. From (3) and the m/3 separation of vertices in A, we have
d(B(Pr), 0(Prr)) 2 amW (T, 7') > mem/3 for distinct vertices in A o

Let us now compare the conditions in Assouad’s lemma and those in
Lemma 5. The first two conditions (1) and (2) in Assouad’s Lemma do not
quite imply condition (3} in Lemma 5, but condition (2) together with the
following stronger condition

min;{d; (0(F,),8(Fr) : 7; # 7}} > am.

would imply condition (3). Note that this new condition is satisfied by
hypercube classes constructed through perturbations of a fixed density over
a partition, as in the next section. Moreover, note that condition {4) implies
& lower bound on the affinity [P, A P, i through the Kullback-Csisz4r-
Kemperman inequality (Devroye 1987, p. 10}

iPr — Pl < 2K (P, Br).
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Since ||Py ~ Prelly = 2( = |Pr A Prrl)), K(Pr, Prv) < m imiplics
|Pr A Proll 2 1= /¥ /2

This seems to suggest that condition (4) in Lemma 5 is stronger than the
affinity condition in Assouad’s lemma. However, as is the case in many, if
not all, hypercube classes one actually constructs, the probability measures
in the hypercube class often have densities bounded from below by ¢ > 0.
In this case, a lower bound S, on the affinity implies an upper bound on
the Kullback divergence: :

c P — Prlly

K(P, Py) <
= 21— P APH|)
S 26_1(1_ﬁm)

provided that [|Pr A Pre|| 2 Bm.-

So far we have connected Le Cam’s method with Assouad’s in Lemma 2
and Fano's with Assouad’s in Lemma 5. Comparing Le Cam’s with Fano’s
would complete the circle. In a way, they are similar in that they both deal
with hypothesis testing: Le Cam’s for two sets of hypotheses, and Fano’s
for multiple hypotheses. Fano's method, however, does not. cover the case
of testing two simple hypotheses since the lower bound it gives when r = 2
is non-positive.

In the next section, we apply the above lemmas to & concrete class where
Le Cam's method provides the optimal rate of convergence for a quadratic
functional estimation problem and both Fano’s and Assouad’s lernmas pro-
vide the optimal rate for a global density estimation problem. These results
are known. See for example Bickel & Ritov (1988) and Devroye (1987) re-
spectively. The common feature of these two lower bound problems is that
they both rely on the same hypercube class.

29.3 Two examples

Let M denote the class of smooth densities f’s on [0,1] for which

1
D<ey < flr)<e <oo, 1f® )] € ez < 00, f flzydz=1.
0

Let us apply the results from Section 2 to derive lower bounds for minimax
rates in two cases: a quadratic functional of f, with errors measured by the
usual Euclidean distance; and the whole density f, with errors measured
by Hellinger distance.

In both cases assume the estimators are based on a sample of n indepen-
dent observations from some f in M. Write f* for the joint density, and
P for the corresponding class of product measures, with f in M.
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The lemmas will be applied to small perturbation of the uniform den- -

sity, u, on [0,1]. Take g a fixed twice differentiable function on [0,1] for
which ‘

1 1 1
/l; g(z)dz = O,/; g*(z)dz = @ > 0 and ./0 (g'(m))z.dz =b>0.

Divide [0, 1] into m disjoint intervals of size 1/m and denote their centers
by zy,...,&Zm. For =1,2,...,m, let
9(z) = em™*g(mz — ;)

with ¢ small enough so that |g;| < 1. Let

Mp={fr =1 +Z7'jgj(m) T = (T, Te) € {=1, 4137,

=1

and define the hypercube class

Fn= MYy = {f2: fr € My}

Note that M, is simply the class of perturbed uniform densities with a
rescaled g as the perturbation.

Example 1 Consider the quadratic functional

T(f) = fo (' (@))?de

on .'Fm. That is, 8(f") = 6(f) = T(f), which takes values in the real line
equipped with its metric d(§,8") = |8 — &'|. :

To obtain a minimax lower bound, we might try to use Assouad’s lemma,
or Fano’s method. Unfortunately, the functional 8(f) = T(f) takes the
same value on the vertices of the hypercube and therefore the two results
give only the trivial lower bound zero. However 8(u) = 0, which differs from
6(f-) for every 7, which lets us apply Le Cam’s method to u® and f*. For
any fixed 7 on the hypercube, it is.easy to check that "

B f) = O [@)=0m ¢ a-m™) =0,
i

e~ 2l < 2H(un, f7)
21— (1 -27'H%(q, f,)"
2(1~ (1 - O(m™4)"),

Tlw) =0 #7(f) = T [ 6 = o2,

M
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If we choose m = O(n'/%), then
lu™ A f7 =1 = |lu™ = fFl1/2 2 1 - O(m™)") > 0,

and by Le Cam’s method (Lemma 1), a lower bound on the minimax esti-
mation rate is

IT(w) = T(5,)] = [T(f:)] = O(~4) = O(n=1/?).

Unfortunately, this rate is not optimal, but the minirnax optimal rate can
be obtained (Bickel & Ritov 1988, Birgé & Massart 1992, Pollard 1993}, by
Le Camn’s method applied to Py = {u"} and P> = F.,. To be precise, an
upper bound on the L! distance is obtained between u™ and the mixture of
the product measures of the densities indexed by the vertices of the hyper-
cube. Hence we can derive a lower bound on supp, ¢cop,) || P1 A P2||. Denote
by ha(z™) = 27™ % [, fr(z:) the mixture of the product measures.
Then the L! distance between u™ and h,, can be bounded, for example, by
Pollard (1993) or by Birgé & Massart (1992) as

fu — hall? < exp(2~1n? 3 j @) - 1. (5)
M

Note that

n2Z(fg?)2 ~c4a2n2m 9’
ki

and if we choose m = O(n?/°) and c small, then there is an € > 0 such that
o~ hall? < exp(z'n? ([ 9%~ 1 < (201~ 20)%
i

Hence
lu™ Abn]| =1 —fu™ —hall1/221—(2~26}/2=€>0.
Thus by Le Cam’s method (Lemma 1) and because
T(u) =0, T(fr)=cbm™2 = On~¥?),

we have a lower bound decreasing at the slower n~%/? rate, which turns
out to be the achievable rate (Bickel & Ritov 1988},

Example 2 Consider estimation of the whole density 8(f™) = 6(f) =
as an element of the space P = { densities on [(,1] } equipped with the
Hellinger metric, defined by

#(7,0)= [ (VI&@ - V@) do
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That is, d(f,9) = H(f,9).
Denote by A; the jth subinterval of size 1/m of [0,1] and let

Giho)= [ (VF-VaP, thendlfig)= S d(f.9)

Note that d; are not pseundo-metrics, but non-negative symmetric functions
satisfying the weaker triangle inequality with a universal constant 4 = 1/2.
Therefore Assouad’s method (Lemma 2) applies with an extra factor 1/2
in the lower bound.

Since on A;

o VI = fot frs + 20 Fr frs S 2fr + fri) =4

[ WE-VEPzet [ o)
Ay Aj

= cam ™ = an.

Note that for 7 ~ 7/, [{Pr APw|| = ||f2A F7 = O((1— O(m~5))"). Plugging
this and o, into the expression in Assouad’s Lemma and maximizing the
lower bound by choosing m = O(n'/®), we obtain a lower bound of order
O(n~*/%), which is achieved by a kernel estimator with binwidth QO(n~1/5);
hence the rate is optimal. '

Since all the densities in M,, are bounded from below by 1 — ¢, for
¢y == ¢'Sup, |g(x)|, one can bound the K-L divergence from above as follows

jﬂ (\/Tf\/f-r_')

T

d.i(fﬂ fr-"')

K(f7, f7) = nK{fr, fr')

1A

A

n(t-e)™ [ (- Vs

2n{l — ¢5) 'mam, = My,

IA

where v, = 2(1 — ¢g) " 'nou,. Note also that _
d(B(f:),0(F:)) = H*(fr, frr) =3 fA (VFr = VF)de 2 anW(r, 7).
3 YA

Recalling Lemma 4, and choosing m = O(n!/®} we obtain a lower bound of
the optimal order O(n~%%), Therefore, both Fano’s method and Assouad’s
lemma give the optimal rate lower bound for this problem.

Acknowledgments: This work began when I was visiting Yale University in
the spring of 1993. I would like to thank members of the Statistics Depart-
ment for a friendly working environment and Professor David Pollard in




434 Bin Yu

particular for many stirmmulating discussions on related topics and for many
helpful comments on the draft. Thanks are also due to Professor Sergio
Verdt for commenting on the draft,

Research supported in part by ARO Grant DAAL03-91-G-007.

29.4 REFERENCES

Assouad, P. (1983), ‘Deux remarques sur Pestimation’, Comptes Rendus
de UAcademie des Sciences, Paris, Ser. I Math 296, 1021-1024.

Bickel, P. J. & Ritov, Y. (1988), ‘Estimating integfated squared density
derivatives: sharp best order of convergence estimates’, Sankhyd: The
Indian Journal of Statistics, Series A 50, 381-393.

Birgé, L. (1986), ‘On estimating a density using Hellinger distance and
some other strange facts’, Probability Theory and Related Fields
71, 271-291.

Birgé, L. & Massart, P. (1992), Estimation of integral functionals of a
density, Technical Report 024-92, Mathematical Sciences Research
Institute, Berkeley.

Bretagnolle, J. & Huber, C. (1979), ‘Estimation des densites: risque
minimax’, Zeitschrift fir Wahrscheinlichkeitstheorie und Verwandte
Gebiete 47, 119-137.

Cover, T. M. & Thomas, J. A. (1991), Elements of Information Theory,
Wiley, New York.

Devroye, L. (1987), A Course in Density Estimation, Birkhiuser, Boston.

Donoho, D. L. & Liu, R. C. (1991), ‘Geometrizing rates of
convergence, II', Annals of Statistics 19, 633-667.

Donoho, D. L. & Nussbaum, M. (1990), ‘Minimax quadratic estimation of
a quadratic functional’, Journal of Complexity 6, 290-323.

Fan, J. (1991), ‘On the estimation of quadratic functionals’, Annals of
Statistics 19, 1273-1294.

Gilbert, E. N. (1952), ‘A comparison of signaling alphabets’, Bell Systern
Technical Journal 31, 504-522.

Han, T. 8. & Verdd, 8. (1994), ‘Generalizing the Fano inequality’, IEEFE
Transactions on Information Theory 4CQ, 1247-1251.

Has’minskii, R. & Ibragimov, L. (1978), On the non-parametric estimation
of functionals, in P. Mandl & M. Huskové, eds, ‘Prague Symposium
on Asymptotic Statistics’, North Holland, Amsterdam, pp. 41-52.

29. Assouad, Fano, and ]i;e Cam 435
Ibragimov, I. A. & Has'minskii, R. Z. (1981), Stetistical Estimation:
Asymptotic Theory, Springer-Verlag, New York.

Le Cam, L. (1973), ‘Convergence of estimates under dimensionality
restrictions’, Annals of Statistics 1, 38-53.

Le Cam, L. (1986), Asymptotic Methods in Statistical Decision Theory,
Springer-Verlag, New York.

Pollard, D. (1993), Hypercubes and minimax rates of convergence,
Technical report, Yale University.

Stone, C. (1984), ‘An asymptotically optimal window selection rule for
kernel density estimates’, Annals of Statistics 12, 1285-1297.




