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Abstract

In this paper we develop a spectral frame-
work for estimating mixture distributions,
specifically Gaussian mixture models. In
physics, spectroscopy is often used for the
identification of substances through their
spectrum. Treating a kernel function K(x, y)
as “light” and the sampled data as “sub-
stance”, the spectrum of their interaction
(eigenvalues and eigenvectors of the kernel
matrix K) unveils certain aspects of the un-
derlying parametric distribution p, such as
the parameters of a Gaussian mixture. Our
approach extends the intuitions and analyses
underlying the existing spectral techniques,
such as spectral clustering and Kernel Prin-
cipal Components Analysis (KPCA).

We construct algorithms to estimate param-
eters of Gaussian mixture models, includ-
ing the number of mixture components, their
means and covariance matrices, which are im-
portant in many practical applications. We
provide a theoretical framework and show en-
couraging experimental results.

1. Introduction

Gaussian mixture models are a powerful tool for vari-
ous tasks of data analysis, modeling and exploration.
The basic problem is to estimate the parameters of a
Gaussian mixture distribution p(x) =

∑G
g=1 πgpg(x),
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from sampled data x1, . . . , xn ∈ R
d, where the mixture

component pg = N(µg,Σg) has the mean µg and the
covariance matrix Σg, g = 1, . . . , G. Gaussian mix-
ture models are used in a broad range of scientific
and engineering applications, including computer vi-
sion, speech recognition, and many other areas.

However, effectiveness of modeling hinges on choosing
the right parameters for the mixture distribution. The
problem of parameter selection for mixture models has
a long history, going back to the work of (Pearson,
1894, [9]), who introduced the Method of Moments
and applied it to the study of a population of Naples
crabs, deducing the existence of two subspecies within
the population.

The most commonly used method for parameter es-
timation is Maximum Likelihood Estimation (MLE),
which suggests choosing the parameters in a way that
maximizes the likelihood of the observed data, given a
model. In modern practice this is most commonly done
through the iterative optimization technique known
as Expectation Maximization (EM) algorithm ([3]),
which is typically initialized using k-means clustering.
Recently significant progress on understanding theo-
retical issues surrounding learning mixture distribu-
tions and EM has been made in theoretical computer
science, e.g., [2, 4].

Another set of methods for inferring mixture distri-
bution is based on the Bayesian inference, which is
done using a prior distribution on the parameters of
the model. In recent literature ([7]) the Dirichlet pro-
cess mixture models were used to produce posterior
distribution for parameters of a mixture model. The
inference procedure involves applying Markov Chain
Monte-Carlo to draw samples from the posterior dis-
tribution.
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In this paper we propose a new method for estimat-
ing parameters of a mixture distribution, which is
closely related to non-parametric spectral methods,
such as spectral clustering (e.g., [8]) and Kernel Prin-
cipal Components Analysis [11]. Those methods, as
well as certain methods in manifold learning (e.g., [1]),
construct a kernel matrix or a graph Laplacian ma-
trix associated to a data set. The eigenvectors and
eigenvalues of that matrix can then be used to study
the structure of the data set. For example, in spec-
tral clustering the presence of a small non-zero eigen-
value indicates the presence of clusters, while the cor-
responding eigenvector shows how the data set should
be split. In particular, we note the work [12] where
the authors analyze dependence of spectra on the input
density distribution in the context of classification and
argue that lower eigenfunctions can be truncated with-
out sacrificing classification accuracy. We will develop
the intuitions and analyses underlying these methods
and take them a step further by offering a framework,
which can be applied to analyzing parametric families,
in particular a mixture of Gaussian distributions.

We would like to study mixture distributions by build-
ing explicit connections between their parameters and
spectral properties of the corresponding kernel ma-
trices. More specifically, we construct a family of
probability-dependent operators and build estimators
by matching eigenvalues and eigenfunctions of the op-
erator associated to a probability distribution to those
of the matrix associated to a data sample. Thus given
a mixture distribution p(x) =

∑G
g=1 πgpg(x), we use a

Gaussian kernel K(x, y) = e−
‖x−y‖2

2ω2 to construct the
integral operator

Gω
p f(y) =

∫

e−
‖x−y‖2

2ω2 f(x) p(x)dx

which will be the principal object of this paper. Our
framework will rely on three key observations about
the spectral properties of this operator and its connec-
tion to the sampled data.

Observation 1. (Single component) For the Gaus-
sian distribution p = N(µ,Σ), we can analytically ex-
press eigenfunctions and eigenvalues of Gω

p in terms of
the mean µ and the covariance Σ. This will allows
us to reverse this dependence and explicitly express µ
and Σ in terms of the spectral properties of Gω

p .

Observation 2. (Mixture of components)

Let p be a mixture distribution p(x) =
∑G

g=1 πgpg(x).
Note that by linearity

Gω
p f(y) =

G∑

g=1

πg

∫

e−
‖x−y‖2

2ω2 f(x) pg(x)dx

=

G∑

g=1

πgGω
pgf(y)

It can be seen (Theorem 1) that given enough separa-
tion between the mixture components, top eigenfunc-
tions of the individual components Gω

pg are approxi-
mated by top eigenfunctions of Gω

p . That will allow us
to connect eigenfunctions/eigenvalues of the mixture
to eigenfunctions/eigenvalues of the individual com-
ponents. A specific example of this is given in Fig. 2,
which will be discussed in detail in Section 4.

Observation 3. (Estimation from data) The
eigenfunctions and eigenvalues of Gω

p can be approx-
imated given data sampled from p(x) by eigenvectors
and eigenvalues of empirical kernel matrices.

To highlight the effectiveness of our methodology
consider the distribution in Fig. 1, where the den-
sity given by a mixture of two normal distributions
p = 0.9N(−3, 12)+0.1N(0, 0.32) and a histogram ob-
tained by sampling 1000 points are shown. From the
Table 1, we see that the spectroscopic estimator has
no difficulty providing reasonably accurate estimates
for the mixing coefficients π1, π2, means µ1, µ2 and
variances σ1, σ2 for each component, despite the fact
that the mixture is unbalanced. We also see that these
estimates can be further improved by using the spec-
troscopic estimate to initialize EM.

We note that, while EM is a computationally efficient
and algorithmically attractive method, it is a local op-
timization procedure and the quality of the achieved
maximum and accuracy of the resulting estimate are
sensitive to initialization (see, e.g., [10]). If the ini-
tial value happens to be close to the global maximum,
fast convergence can be guaranteed. However, finding
such “lucky” regions of the parameter space may be
nontrivial. To emphasize that point, consider the bot-
tom two rows of Table 1, where the results of k-means
clustering (k = 2) and EM initialized by k-means are
shown. We see that k-means consistently provides a
poor starting point as the energy minimizing configu-
ration splits the large component, ignoring the small
one. EM, initialized with k-means, stays at a local
maximum and cannot provide an accurate estimate
for the mixture. On the other hand, EM initialized
with our method, converges to the correct solution.

We should note that our method requires sufficient
separation between the components to provide accu-
rate results. However there does not exist a computa-
tionally feasible method for estimating parameters of
a mixture distribution in several dimensions without a
separation assumption.

The rest of the paper is structured as follows: in Sec-
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Figure 1. Histogram of 1000 data points sampled from 0.9N(−3, 12) + 0.1N(0, 0.32) and the distribution (red line).

True Parameters π1 = 0.9 π2 = 0.1 µ1 = −3 µ2 = 0 σ1 = 1 σ2 = 0.3

Spectroscopic Estimator 0.86 (0.01) 0.14 (0.01) -2.98 (0.23) -0.02 (0.08) 1.12 (0.54) 0.34 (0.10)
EM [SE initialization] 0.90 (0.01) 0.10 (0.01) -3.01 (0.04) 0.00 (0.03) 1.00 (0.03) 0.30 (0.02)

k-means [random samples] 0.68 (0.03) 0.32 (0.03) -3.42 (0.06) -1.17 (0.16) 0.74 (0.03) 0.90 (0.03)
EM [k-means initialization] 0.78 (0.07) 0.22 (0.07) -3.17 (0.09) -0.93 (0.56) 0.92 (0.05) 0.95 (0.39)

Table 1. Mixture Gaussian parameters and corresponding estimators from Spectroscopic Estimation, and EM (initialized
by SE), k-means (random initialization) and EM (initialized by k-means). The mean and the (standard deviation) of each
estimator over 50 runs are shown.

tion 2, we describe our approach in the simplest setting
of a one-dimensional component in R. In Section 3,
we analyze a single component in R

d, in Section 4,
we deal with a general case of a mixture distribution
and state a basic theoretical result for the mixture. In
section 5, we show some experimental results on a sim-
ulated mixture distribution with three components in
R

5 and show some experimental results on the USPS
handwritten digit dataset. We conclude in Section 6.

2. Setting Up the Framework: Single

Component in R

We start the discussion by demonstrating the basis
of our approach on the problem of estimating pa-
rameters of a single univariate Gaussian distribution
p(x) = N(µ, σ2). We first establish a connection be-
tween eigenfunctions and eigenvalues of the convolu-

tion operator Gω
p f(y) =

∫

R
e−

(x−y)2

2ω2 f(x) p(x)dx and
the parameters µ and σ2. We show these parameters
can be estimated from sampled data. We will need the
following

Proposition 1 (Refinement of a result in [13]) Let
β = 2σ2/ω2 and let Hi(x) be the i-th order Hermite
polynomial. Then eigenvalues and eigenfunctions of
Gω

p for i = 0, 1, · · · are given by

λi =

√
2

(1 + β +
√

1 + 2β)
1/2

(
β

1 + β +
√

1 + 2β

)i

(1)

φi(x) =
(1 + 2β)1/8

√
2ii!

exp

(

− (x − µ)2

2σ2

√
1 + 2β − 1

2

)

×Hi

((
1 + 2β

4

) 1
4 x − µ

σ

)

(2)

Since H0(x) = 1, and putting C = (1 + 2β)1/8

φ0(x) = C exp

(

− (x − µ)2

2σ2

√

1 + 4σ2/ω2 − 1

2

)

(3)

We observe that that the maximum value of |φ0(x)|
is taken at the mean of the distribution µ, hence
µ = argmaxx |φ0(x)|. We also observe that λ1

λ0
=

2σ2

ω2

(

1 + 2σ2

ω2 +
√

1 + 4σ2

ω2

)−1

. Taking r = λ1/λ0, we

derive

σ2 =
rω2

(1 − r)2
. (4)

Thus we have established an explicit connection be-
tween spectral properties of Gω

p and parameters of
p(x). We now present Algorithm 1 for estimating
µ and σ2 from a sample x1, . . . , xn from p(x).

• Step 1. Construct kernel matrix Kn, (Kn)ij =

1
ne−

(xi−xj)2

2ω2 . Kn serves as the empirical version
of the operator Gω

p . Compute the top eigen-
vector v0 of Kn and the top two eigenvalues
λ0(Kn), λ1(Kn).
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Actual value µ = 0 σ = 1

SE (µ̂, σ̂) 0.000 (0.014) 1.005 (0.012)
Std Est (x̄, s) 0.002 (0.011) 1.001 (0.007)

Table 2. Average(standard deviation) of spectroscopic esti-
mator SE(µ̂, σ̂) and the standard estimator Std Est(x̄, s) of
100 simulation run. In each run, estimators are calculated
from 1000 i.i.d samples of N(0, 1).

• Step 2. Construct estimators µ̂ and σ̂2 for mean
and variance as follows:

µ̂ = xk, k = argmax
i

|(v0)i|

σ̂2 =
ω2r̂

(1 − r̂)2
,

where r̂ = λ0(Kn)
λ1(Kn) .

These estimators are constructed by substituting top
eigenvector of Kn for the top eigenfunction of Gω

p and
eigenvalues of Kn for the corresponding eigenvalues of
Gω

p .

It is well-known (e.g., [6]) that eigenvectors and eigen-
values of Kn approximate and converge to eigenfunc-
tions and eigenvalues of Gω

p at the rate 1√
n

as n → ∞,

which implies consistency of the estimators. The ac-
curacy of µ̂ and σ̂2 depends on how well the empirical
operator Kn approximates the underlying operator Gp.

The Table 2 reports the average and the standard devi-
ation of our spectroscopic estimators (µ̂, σ̂2) compared
the standard estimators (x̄, s2) for one hundred repeti-
tions of the simulation. We see that our spectroscopic
estimators are comparable to the standard estimators
for mean and variance of a single Gaussian.

3. Setting Up the Framework: Single

Component in R
d

In this section we extend our framework to estimat-
ing a single multivariate Gaussian p = N(µ,Σ) in R

d.

Let Σ =
∑d

i=1 σ2
i uiu

t
i be the spectral decomposition of

the covariance matrix Σ. As before we put Gω
p f(x) =

∫

Rd e−
‖x−y‖2

2ω2 f(y) p(y)dy. Since the kernel e−
‖x−y‖2

2ω2 is
invariant under rotations, it follows that the operator
Gω

p can be decomposed as: Gω
p = ⊕d

i=1 Gω
pi

, where pi is
an 1-dimensional Gaussian with variance σ2

i and mean
〈µ, ui〉 along the direction of ui.

It is easy to see that given two operators F , H, the
spectrum of their direct sum F ⊕ H consists of pair-
wise products λµ, where λ and µ are their respective

eigenvalues. The corresponding eigenfunction of the
product is e[λ,µ](x, y) = eλ(x) eµ(y).

Applying this result, we see that eigenvalues and eigen-
functions of of Gω

p can be written as products

λ[i1,...,id](Gω
p ) =

d∏

j=1

λ ij
(Gω

pj
)

φ [i1,...,id](Gω
p )(x) =

d∏

j=1

φ ij
(Gω

pj
)(〈x, uj〉)

Where [i1, . . . , id] is a multindex over all components.
It can be seen that φ [0,...,0] is (up to a scaling factor)
a Gaussian with the same mean µ as the original dis-
tribution p(x). Thus µ can be estimated as the point
with maximum value φ [0,...,0] in the same way as for
1-dimensional distributions.

Consider now φI , where I = [0, . . . , 0
︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0].

Since H2(x) = 2x, Eq. 1 implies that φI(x)
φ [0,...,0](x) is a

linear function in x with the gradient pointing in the
direction of ui. That allows us to estimate the prin-
cipal directions. The resulting Algorithm 2 for esti-
mating µ and Σ is presented below:

Step 1. Construct kernel matrix Kn, (Kn)st =

1
ne−

‖xs−xt‖
2

2ω2 . Kn serves as the empirical version of the
operator Gω

p . Compute eigenvalues λ(Kn) and eigen-
vectors v(Kn) of Kn. Denote the top eigenvector by
v0 and the corresponding eigenvalue by λ0.

Step 2. Identify each eigenvector vi, vi 6= v0, i =
1, . . . , d such that the values of vi

v0
are approximately

linear in x, that is

vi(xs)

v0(xs)
≈ aT xs + b, a, b ∈ R

d

The corresponding principal direction ui is estimated
by ûi = a

‖a‖ . Let the corresponding eigenvalue be λi.

Step 3. Construct estimators µ̂ and Σ̂ for mean and
variance as follows:

µ̂ = xk, k = argmax
i

|(v0)i|

Σ̂ =
d∑

i=1

σ̂2
i ûiû

t
i,

where σ̂2
i = ω2r̂i

(1−r̂i)2
and r̂i = λ0

λi
.
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4. Spectroscopic Estimation for

Mixtures of Gaussians

We now extend our framework to the case of a mix-
ture of several multivariate Gaussian distributions
with potentially different covariance matrices and mix-
ture coefficients. To illustrate our approach we sam-
ple 1000 points from two different Gaussian distribu-
tions N(2, 12) and N(−2, 12) and from their mixture
0.5N(2, 12)+0.5N(−2, 12). The histogram of the mix-
ture density is shown in the top left panel of Fig 2, and
histograms of each mixture component are shown in
the right top panels. Taking the bandwidth ω = 0.3,
we construct three kernel matrices K1, K2 and K for a
sample from each of the components and the mixture
distribution respectively. The middle and lower left
panels show the top two eigenvectors of K, while the
middle and lower right panels show the top eigenvector
of K1 and K2 respectively.

The key observation is to notice the similarity between
the left and right panels. That is, the top eigenvectors
of the mixture are nearly identical to the top eigenvec-
tors of each of the components. Thus knowing eigen-
vectors of the mixture allows us to approximate top
eigenvectors (and the corresponding eigenvalues) for
each of the components. Having access to these eigen-
vectors and using our Algorithms 1,2, allows us to es-
timate parameters of each of the mixture components.

This phenomenon is easily understood from the point
of view of operator theory. The leading eigenfunctions
of operators defined by each mixture component are
approximately the eigenfunctions of the operators de-
fined on the mixture distribution. To be explicit, let
us consider the Gaussian convolution operator Gω

p de-
fined by the mixture distribution p(x) = π1p1 + π2p2,
with Gaussian components p1 = N(µ1,Σ2) and p2 =
N(µ2,Σ2) and the Gaussian kernel K(x, y) with band-
width ω. The corresponding operators are Gω

p1 and

Gω
p2 and Gω

p = π1Gω
p1 + π2Gω

p2 respectively. Con-

sider an eigenfunction φ1(x) of Gω
p1 with eigenvalue λ1,

Gω
p1φ1 = λ1φ1. We have

Gω
p φ1(y) = π1λ1φ1(y) + π2

∫

K(x, y)φ1(x)p2(x)dx.

It can be shown that eigenfunction φ1(x) of Gω
p1

is centered at µ1 and decays exponentially away
from µ1. Therefore, assuming the separation
‖µ1 − µ2‖ is large enough, the second summand
π2
∫

K(x, y)φ1(x)p2(x)dx ≈ 0 for all y uniformly, and
hence Gω

p φ1 ≈ π1λ1φ1. When the approximation holds
the top eigenfunctions of Gω

p are approximated by top
eigenfunctions of either Gω

p1 or Gω
p2 .

Theorem 1 Given a d-dimensional mixture of two
Gaussians p(x) =

∑2
i=1 πipi(x) where πi is mix-

ing weight and pi is the density corresponding
to N(µi, σ

2I). Define β = 2σ2/w2 and ξ =√
2σ/

√√
1 + 2β − 1, then the first eigenfunction (φ1

0

with an eigenvalue λ1
0) of Gw

p1
is approximately an

eigenfunction of Gw
p in the following sense: For any

ǫ > 0 we have that for all y

Gw
p φ1

0(y) = π1λ
1
0(φ

1
0(y) + T (y)) and |T (y)| ≤ ǫ

assuming that the separation satisfies

‖µ1 − µ2‖2

ξ2 + σ2
≥ 2 log

(
π2

π1

)

+ 2 log

(
1

ǫ

)

+
d

4
log(1 + 2β)

We do not provide a proof of Theorem 1 for lack of
space. A more general version of the theorem for sev-
eral Gaussians with different covariance matrices can
also be given along the same lines. Together with
some perturbation analysis ([5]) it is possible to pro-
vide bounds on the resulting eigenvalues and eigen-
functions of the operator.

We now observe that for the operator Gω
pg , the top

eigenfunction is the only eigenfunction with no sign
change. Therefore, such eigenfunction of Gω

p corre-
sponds to exactly one component of the mixture distri-
bution. This immediately suggest a strategy for iden-
tifying components of the mixture: we look for eigen-
functions of Gω

p that have no sign change. Once these
eigenfunctions of Gω

p are identified, each eigenfunction
of Gω

p can be assigned to a group determined an eigen-
function with no sign change. As a result, the eigen-
values and eigenfunctions in each group only depend
on one of the component pg and mixing weight πg.
By reversing the relationship between parameters and
eigenvalues/eigenfunctions, parameter estimations for
each mixing component can be constructed based only
on the eigenvalues/eigenvectors in the corresponding
group.

4.1. Algorithm for Estimation of a Mixture of
Gaussians

Following the discussion above, we now describe the
resulting algorithm for estimating a multidimensional
mixture of Gaussians p(x) =

∑G
g=1 πgN(µg,Σg), from

a sample x1, . . . , xn ∈ R
d, first giving the following

Definition 1 For vectors d, e ∈ R
n), we define

1. ǫ-support of d is the set of indices {i: |di| ≥ ǫ,
i = 1, · · · , n}.
2. d has no sign changes up to precision ǫ, if d is
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Figure 2. Eigenvectors of a Gaussian kernel matrix (ω = 0.3) of 1000 data sampled from a Mixture Gaussian distribution
P = 0.5N(2, 12) + 0.5N(−2, 12). Top left panel: Histogram of the data. Middle left panel: First eigenvector of Kn.
Bottom left panel: Second eigenvector of Kn. Top right panel: Histograms of data from each component. Middle right
panel: First eigenvector of K1

n. Bottom right panel: First eigenvector of K2

n.

either positive or negative on the ǫ-support of e.
{i : |ei| ≥ ǫ} ⊂ {i : |di| ≥ ǫ}.

Algorithm 3. Spectroscopic estimation of a Gaussian
mixture distribution.

Input: Data x1, . . . , xn ∈ R
d. Parameters: Kernel

bandwidth ω > 0, threshold ǫ > 0.1

Output: Number of components Ĝ. Estimated mean
µ̂g ∈ R

d, mixing weight π̂g, g = 1, . . . , Ĝ and covari-
ance matrix Σg for each component.

• Step 1. Constructing Kn, the empirical approx-
imation to Gω

p :

Put (Kn)ij = 1
n exp

(

−‖xi−xj‖2

2ω2

)

, i, j =

(1, . . . , n). Compute the (leading) eigenvalues
λ1, λ2, . . . and eigenvectors v1, v2, . . . of Kn.

• Step 2. Estimating the number of components
G:

Identify all eigenvectors of Kn, which have no sign
changes up to precision ǫ. Estimate G by the
number (Ĝ) of such eigenvectors and denote those
eigenvectors and the corresponding eigenvalues by

v1
0 , v2

0 , . . . , vĜ
0 and λ1

0, λ
2
0, . . . , λ

Ĝ
0 respectively.

1In our implementation of the algorithm we choose ǫ =
maxj |(vi)j |/n for each eigenvector vi. In the description
of the algorithm we will use the same ǫ for simplicity.

• Step 3. Estimating the mean µg and the mixing
weight πg of each component:

For the g’th component, g = 1, . . . , Ĝ, estimate
the mean and the mixing weight as follows:

µ̂g = xk, where k = argmax
i

|(vg
0)i|

π̂g =
ng

∑Ĝ
h=1 nh

,

where nh = cardinality of ǫ-support of vh
0 .

To estimate the covariance matrix Σg of each compo-

nent pg: we first all eigenvectors such that v(xs)
vg
0 (xs)

is

approximately a linear function of xs on the ǫ-support
of vg

0 . Then we can apply the estimation methods de-
scribed in Algorithm 2, Step 3 on the ǫ-support of
vg
0 .

5. Simulations and Experiments

Simulation: multivariate Gaussian mixture dis-
tribution.
A simulation on five dimensional data is carried out to
test the proposed algorithm. The first two variables
X1 and X2 are a mixture three Gaussian components
p(X) =

∑3
g=1 πgN(µg,Σg) with mixing weights and

group means shown in Table 3 and covariance matri-
ces:

Σ1 =

(
0.5 −0.25

−0.25 0.5

)

, Σ2 =

(
0.5 0.25
0.25 0.5

)

,
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Figure 3. Left: Histogram of the first coordinate X1; Middle: Two dimensional histogram of the first two coordinates
(X1, X2). Right: Histogram of X2.

Σ3 =

(
0.5 −0.25

−0.25 0.5

)

The remaining three variables are Gaussian noise
N(0, 0.1I). In each simulation run, 3000 data points
are sampled. The histogram of X1, two-dimensional
histogram of X1 and X2, and histogram of X2 for one
simulation run are shown in Figure 3. We see that
it is impossible to identify the number of components
by investigating the one-dimensional histograms. The
Algorithm 3 with ω = 0.1 was used to estimate the
number of components G, mixing weights πg. The sim-
ulation is run 50 times and the algorithm accurately
estimated the number of groups in 46 of the 50 runs.
Two times the number of groups was estimated as 2
and two times as 4. The average and standard devia-
tion of the estimators of mixing weights and means for
the 46 runs are reported in Table 3. We see that the es-
timates for mixing weights are close to the true values
and the estimated group means are close to the esti-
mates from labeled data. Covariance estimates, which
we do not show due to space limitations, also show
reasonable accuracy.

USPS ZIP code data.
To apply our method to some real-world data we
choose a subset of the USPS handwritten digit dataset,
consisting of 16x16 grayscale images. In this experi-
ment, 658 “3”s, 652 “4”s, and 556 “5”s in the training
data are pooled together as our sample (size 1866).
The Spectroscopic estimation algorithm using a Gaus-
sian kernel with bandwidth 2 is applied to the sample .
Here we do not use the algorithm to estimate mean and
variance of each component, since we do not expect
the distribution of the 256 dimensional data to like
a Gaussian distribution. Instead, we investigate the
eigenvectors with no sign change over {x : |v(x)| > ǫ}.
We expect (1) the data corresponding to large absolute
values of each of such eigenvectors present one mode

Figure 4. Images ordered by the three eigenvectors v1, v16

and v49 identified by Algorithm 3. The images are the
digits corresponding to the 1st, 41st, 81st, · · ·, 361st largest
entries of |v1| (first row), |v16| (second row) and |v49| (third
row).

“3” (T) “4” (T) “5” (T)
“3” (P) 625 0 45
“4” (P) 17 640 32
“5” (P) 16 12 479

Table 4. Confusion matrix of clustering results for USPS
handwritten digits. Each cell shows the number of data
points belonging both in the True group (e.g. “3”) and
the Predicted group (e.g. “3”)

(cluster) and (2) those data points are in the same
digit group.

In the output of our algorithm, three eigenvectors v1,
v16 and v49 of Kn satisfy the condition of no sign
change over {x : |v(x)| > ǫ} with ǫ = max(v)/n. We
first rank the data by an decreasing order of |v| and
show the 1st, 41st, 81st, · · ·, 361st digits in Figure 4.
All digits with larger value of |v1| belong to the group
of “4”s, and other digits (“3” and “5”) correspond to
smaller values of |v1|. Similarly, larger values of |v16|
are in the group of “3”s and |v49| for “5”s.

By assigning digits to their component defined by one
of the eigenvectors (v1, v16, v49) we obtain the cluster-
ing results shown in the confusion Table 4. We see that
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Parameter value π1 = 0.4 π2 = 0.3 π3 = 0.3
Spectroscopy (STD) 0.40 (0.03) 0.30 (0.03) 0.30 (0.03)

Parameter value µ1
1 = 1 µ1

2 = 1 µ2
1 = 0 µ2

2 = −1 µ3
1 = −1 µ3

2 = 1
Spectroscopy (STD) 1.00 (0.12) 1.00 (0.19) 0.01 (0.20) -0.94 (0.21) -0.96 (0.22) 0.99 (0.22)

x̄(STD) of each group 1.00 (0.02) 1.00 (0.022) -0.00 (0.03) -1.00 (0.02) -1.00 (0.02) 0.99 (0.03)

Table 3. Estimation of mixing weight and mean of each component

the overall accuracy of clustering is 93.46%. This clus-
tering method can be thought of as an extension of the
framework provided in this paper. While this method
is closely related to spectral clustering, the procedures
for choosing eigenvectors are different.

6. Conclusion

In this paper we have presented Data Spectroscopy, a
new framework for inferring parameters of certain fam-
ilies of probability distributions from data. In particu-
lar we have analyzed the case of a mixture of Gaussian
distributions and shown how to detect and estimate its
components under the assumption of reasonable com-
ponent separation. The framework is based on the
spectral properties of data-dependent convolution op-
erators and extends intuitions from spectral clustering
and Kernel PCA. We have developed algorithms and
have shown promising experimental results on simu-
lated and real-world datasets.

We think that our approach provides new connections
between spectral methods and inference of distribu-
tions from data, which may lead to development of al-
gorithms for using labeled and unlabeled data in prob-
lems of machine learning.
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