
Minimax rates of convergence
for high-dimensional regression

under ℓq-ball sparsity

Garvesh Raskutti1 Martin J. Wainwright1,2

Bin Yu1,2

1Department of Statistics, and
2Department of EECS

UC Berkeley, Berkeley, CA 94720

Abstract— Consider the standard linear regression
model y = Xβ∗ + w, where y ∈ R

n is an observation
vector, X ∈ R

n×d is a measurement matrix, β∗ ∈ R
d

is the unknown regression vector, and w ∼ N (0, σ2I)
is additive Gaussian noise. This paper determines sharp
minimax rates of convergence for estimation of β∗ in ℓ2
norm, assuming that β∗ belongs to a weak ℓq-ball Bq(Rq)
for some q ∈ [0, 1]. We show that under suitable regular-
ity conditions on the design matrix X , the minimax error

in squared ℓ2-norm scales as Rq

`

log d

n

´1−
q

2 . In addition,
we provide lower bounds on rates of convergence for
general ℓp norm (for all p ∈ [1, +∞], p 6= q). Our
proofs of the lower bounds are information-theoretic
in nature, based on Fano’s inequality and results on
the metric entropy of the balls Bq(Rq). Matching upper
bounds are derived by direct analysis of the solution to
an optimization algorithm over Bq(Rq). We prove that
the conditions on X required by optimal algorithms are
satisfied with high probability by broad classes of non-
i.i.d. Gaussian random matrices, for which RIP or other
sparse eigenvalue conditions are violated. For q = 0, ℓ1-
based methods (Lasso and Dantzig selector) achieve the
minimax optimal rates in ℓ2 error, but require stronger
regularity conditions on the design than the non-convex
optimization algorithm used to determine the minimax
upper bounds.

I. INTRODUCTION

The area of high-dimensional statistical inference

concerns the estimation in the “large d, small n”

regime, where d refers to the ambient dimension

of the problem and n refers to the sample size.

Such high-dimensional inference problems arise in

various areas of science and engineering, including

communication and coding, imaging, natural language

processing, database management, and computational

biology, among others. In the absence of additional

structure, it is frequently impossible to obtain consis-

tent estimators unless the ratio d/n converges to zero.

Accordingly, for applications in the high-dimensional

regime with d≫ n, an active line of research is based

on imposing various types of low-dimensional struc-

tural conditions, such as sparsity, manifold structure,

or graphical model structure, and then studying the

performance of various estimators.

In this paper, we consider one canonical family of

high-dimensional inference problems—namely, high-

dimensional linear regression. More concretely, sup-

pose that we observe a vector y ∈ R
n of response

variables and a design matrix X ∈ R
n×d of covariates,

linked by the standard linear model y = Xβ∗ +
w, where w ∈ R

n represents additive noise with

w ∼ N (0, σ2In×n), and the goal is to estimate the

vector β∗ ∈ R
d of regression coefficients. The sparse

instance of this problem, in which β∗ is assumed

to either have exactly s ≪ d non-zero entries, has

been studied extensively over the past decade. A

variety of practical algorithms have been proposed and

studied, many based on ℓ1-regularization, such as basis

pursuit [1], the Lasso [2], and the Dantzig selector [3].

Various authors have obtained convergence rates for

prediction error [4], [5], ℓ2-error [5], [3], [6], as well

as model selection consistency [7], [8], [9], under

either “hard sparsity” assumptions, meaning that β∗

has exactly s≪ d non-zero entries, or “weak sparsity”

assumptions, based on imposing a certain decay rate

on the ordered entries of β∗.

Of complementary interest to the achievable rates

of practical algorithms are the fundamental or

information-theoretic limits of performance, applica-

ble to any algorithm regardless of computational com-

plexity. An understanding of such fundamental limits

has various consequences, including demonstrating

when current algorithms are rate-optimal (up to con-

stant factors), or conversely, when there are substantial

gaps between the best-known practical algorithms and

optimal algorithms. The information-theoretic limits

of model selection for sparse high-dimensional re-

gression have been investigated by various authors

(e.g., [10], [11], [12], [13], [14]). In contrast for other

error metrics, such as the ℓ2-error or prediction error,

there does not seem to be have been any analysis for

general design matrices X .

The focus of this paper is the following question:

given an instance of the sparse high-dimensional re-

gression model, what is the optimal rate, in a minimax

sense to be made precise, that it is possible for any

algorithm to estimate the vector β∗ in ℓp norm, where

p ∈ [1,∞]? For the case p = 2, we provide a

sharp characterization of the minimax rate for general

designs X , including both upper and lower bounds

that are matching up to constant factors. Our analysis

applies to signal or regression vectors β∗ that belong

to so-called “weak” ℓq-balls for q ∈ [0, 1].

The main contribution of our work is to show

that under suitable regularity conditions on design X ,

the ℓ2 minimax rate scales as Rq

(
log d

n

)1− q

2 (where

q ∈ [0, 1]). Additionally we derive lower bounds

on the ℓp (p ≥ 1) minimax rate which scales as

Rq

p−q

2−q

(
log d

n

) p−q

2 . We also demonstrate that for q = 0,
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two ℓ1-based methods achieve the minimax optimal

rate but require stronger conditions on X than the

conditions required for the non-convex optimization

algorithm used to derive upper bounds on the minimax

rate (see Section IV-C).

The remainder of this paper is organized as follows.

We begin in Section II by setting up the model pre-

cisely, and specifying and discussing the assumptions

on the design matrix X that underlie our analysis.

Section III is devoted to stating our main results and

discussing some of their consequences, including con-

nections to the normal sequence model (Section IV-A),

specialization to general Gaussian designs (Section IV-

B), and comparison to ℓ1-based rates and conditions

(Section IV-C). We conclude with some discussion in

Section V.

II. PROBLEM SET-UP

We begin by setting up our model precisely, before

describing the assumptions on the design matrix.

A. Observation model and sparsity constraint

Given a design matrix X ∈ R
n×d, this paper

focuses on the sparse linear observation model

y = Xβ∗ + w, (1)

where w ∼ N(0, σ2In×n) is an n-vector of noise. The

pair (y,X) ∈ R
n × R

n×d are both observed, and the

goal is to estimate the signal or regression vector β∗.

In this paper, we assume that the regression vector

β∗ belongs to a weak ℓq-“ball”, defined as follows.

For a fixed parameter q ∈ [0, 1], define the ℓq norm

‖β‖q
q =

∑d
i=1 |βi|q , and the ℓq-“ball” of radius Rq

via

Bq(Rq) :=
{
β ∈ R

d |
d∑

i=1

|βi|q ≤ Rq

}
. (2)

Note that in the special case q = 0, this set reduces

to the ℓ0 “ball” of radius R0 = s, corresponding to

the set of vectors with at most s non-zero entries.

Therefore when q = 0, we have a a classical hard

sparsity constraint.

Given a procedure that determines an estimate β̂ for

the true parameter β∗, there are various criteria for

determine the quality of the estimate. Typically a loss

function L(β̂, β∗) is used to assess performance of

an estimator β̂. For this paper, we analyze the ℓp-loss

function given by Lp(β̂, β
∗) = (

∑d
i=1(β̂i − β∗

i )p)1/p

for p ∈ [1,∞]. The ℓp risk is defined as E‖β̂ − β∗‖p
p.

We determine lower bounds on the minimax ℓp risk of

convergence over the ℓq ball Bq(Rq) for p > q; this

minimax risk is given by

Mp(Bq(Rq);X) = min
bβ

max
β∗∈Bq(Rq)

E‖β̂ − β∗‖p
p, (3)

assuming that we observe y ∈ R
n from the lin-

ear observation model (1) with design X , and the

minimization is taken over all measurable functions

β̂ = β̂(y). The main results presented in Section III

highlight that the upper and lower bounds on minimax

risk depend significantly on the assumptions imposed

in X . In the next section, we define and briefly explain

the conditions.

B. Assumptions on design matrices

We next specify and discuss the assumptions im-

posed on the design matrix; as will be clear, each of

our results uses a subset of the following assumptions.

Our first assumption provides an upper bound on

‖Xθ‖2/
√
n in terms of the ordinary ℓ2-norm ‖θ‖2

and a residual term. This bound is required for proving

lower bounds on the minimax ℓp-risk:

Assumption 1. There exists a constant ψu(X) < ∞
and function fu(n, d,Rq) such that

1√
n
‖Xθ‖2 ≤ ψu(X)(‖θ‖2 + fu(n, d,Rq) ‖θ‖1)

for all θ ∈ Bq(2Rq).

Our second assumption, which provides a lower

bound on ‖Xθ‖2/
√
n in terms of ‖θ‖2 and a residual

term, is required for proving achievable or upper

bounds on the minimax ℓ2- risk:

Assumption 2. There exists a constant ψℓ(X) > 0
and a function fℓ(n, d,Rq) such that

1√
n
‖Xθ‖2 ≥ ψℓ(X) (‖θ‖2 − fℓ(n, d,Rq) ‖θ‖1)

for all θ ∈ Bq(2Rq).

In addition, our lower bounds on the minimax risk

involve the set defined by intersecting the kernel of

X with the ℓq-ball, which we denote Nq(X) :=
Ker(X) ∩ Bq(Rq). We define its diameter in the ℓp-

norm

diamp(Nq(X)) := max
θ∈Bq(Rq), Xθ=0

‖θ‖p. (4)

In the case of ℓ2 risk, the significance of this di-

ameter should be apparent: for any “perturbation”

∆ ∈ Nq(X), it follows immediately from the linear

observation model (1) that no method could ever

distinguish between β∗ and β∗ + ∆.

It is worth observing that the lower bound (4) is

closely related to the diameter condition (4): more

specifically, in the case p = 2, the condition (4)

implies that

diam2(Nq(X)) ≤ R1/q
q fℓ(n, d,Rq). (5)
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To see this fact, note that if

diam2(Nq(X)) > R
1/q
q fℓ(n, d,Rq), then there

must exist some θ ∈ Bq(Rq) with Xθ = 0 and

‖θ‖2 > fℓ(n, d,Rq)‖θ‖q ≥ fℓ(n, d,Rq)‖θ‖1.

Consequently, we have

0 =
1√
n
‖Xθ‖2 < ‖θ‖2 − fℓ(n, d,Rq)‖θ‖1,

which implies there cannot exist any ψℓ(X) for which

the lower bound (4) holds.

III. STATEMENT OF MAIN RESULTS

We are now ready to state our main results, and

discuss some of their consequences. In all of the

statements to follow, we use the quantities κq,p, κ′q,2,

κ̃q,2 etc. to denote numerical constants, independent

of n, d, Rq, σ2 and the design matrix X .

A. Lower bounds on risks in ℓp-norm

We begin with a result on lower bounds:

Theorem 1 (Lower bounds on ℓp-risk). Consider the

linear model (1) for a fixed design matrix X ∈ R
n×d.

(a) Conditions for q ∈ (0, 1]: Suppose

that X satisfies Assumption 1 with

fu(n, d,Rq) = o
(
Rq

−1/2( log d
n )q/4

)
. For any

p ∈ [1,∞) with p > q, the minimax ℓp-risk

Mp(Bq(Rq);X) is lower bounded by

κq,p max

{
diamp

p(Nq(X)), R
p−q

2−q

q

[
σ2

ψ2
u(X)

log d

n

] p−q

2

}
.

(6)

(b) Conditions for q = 0: Suppose that X satisfies As-

sumption 1 with fu(n, d,Rq) = 0. For any p ∈ [1,∞),
the minimax risk Mp(B0(s);X) is lower bounded as

κ0,p max

{
diamp

p(N0(X)),

[
σ2

ψ2
u(X)

s log(d−s
2s )

n

] p

2

}
.

(7)

Note that both lower bounds consist of two terms.

The first term is simply the diameter of the set

Nq(X) = Ker(X) ∩ Bq(Rq), reflecting the extent to

which the linear model (1) is unidentifiable. Clearly,

one cannot estimate β∗ any more accurately than

the diameter of this set. In both lower bounds, the

ratio σ2/ψ2
u(X) reflects a type of inverse signal-to-

noise ratio, comparing the noise variance σ2 to the

parameter ψ2
u(X). As the proof will clarify, the term

[log d]
p−q

2 in the lower bound (6), and similarly the

term s log(d−s
2s ) in the lower bound (7), are reflections

of the “volume” of the ℓq-ball, as measured by its

metric entropy. For many classes of design matrices,

the second term is of larger order than the diameter

term, and hence determines the rate. (In particular, see

Section IV-B for an in-depth discussion of the case of

random Gaussian designs.)

B. Upper bounds on risks in ℓ2-norm

We now state upper bounds on the ℓ2-norm minimax

risk over ℓq balls. For some of these results, we impose

the following column normalization condition on the

design matrix X:

‖X‖j√
n

: =
( 1

n

n∑

i=1

X2
i,j

) 1

2 ≤ γ(X) for some finite γ(X).

Theorem 2. [Upper bounds on ℓ2-risk] Consider the

model (1) with a fixed design matrix X ∈ R
n×d.

(a) Conditions for q ∈ (0, 1]: Suppose that X satisfies

the column normalization condition (8), and Assump-

tion 2 holds with fℓ(n, d,Rq) = o
(
Rq

−1/2( log d
n )q/4

)
.

Then the minimax risk is upper bounded as

M2(Bq(Rq);X) ≤ 24Rq

[ γ2(X)

ψ2
ℓ (X)

σ2

ψ2
ℓ (X)

log d

n

]1−q/2

,

(8)

(b) Conditions for q = 0: Suppose that the design ma-

trix X satisfies the column normalization condition (8)

and Assumption 2 holds with fℓ(n, d,Rq) = 0, then

the minimax risk is upper bounded as

M2(B0(s);X) ≤ 6
γ2(X)

ψ2
ℓ (X)

σ2

ψ2
ℓ (X)

s log d

n
. (9)

Alternatively, if the design matrix X satisfies both

Assumptions 1 and 2 with fu(n, d,Rq) = 0
and fℓ(n, d,Rq) = 0, then the minimax risk

M2(B0(s);X) is upper bounded as

M2(B0(s);X) ≤ 144
ψ2

u(X)

ψ2
ℓ (X)

σ2

ψ2
ℓ (X)

s log(d/s)

n
.

(10)

For q ∈ (0, 1], note that if we substitute p = 2 into

Theorem 1 (a) the upper bound from Theorem 2 (a)

matches the lower bound up to constant, highlighting

the optimality of the upper and lower bounds. For q =
0, if d

s → dα for some α ∈ (0, 1), the lower bound

from Theorem 1 (b) and the upper bound from Eq. (9)

match. If such scaling on d and s does not hold, the

upper bound from Eq. (10) which requires stronger

conditions matches the lower bound.

IV. SOME CONSEQUENCES

In this section, we discuss various consequences

of our results. We begin by considering the classical

Gaussian sequence model, which corresponds to a

special case of our linear regression model. We make
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explicit comparisons to the results of Donoho and

Johnstone [15] on minimax risks over ℓq-balls for the

Gaussian sequence model.

A. Connections with the normal sequence model

The normal (or Gaussian) sequence model is de-

fined by the observation sequence

yi = θ∗i + εi, for i = 1, . . . , n, (11)

where θ∗ ∈ Θ ⊆ R
n is a fixed but unknown vector,

and the noise variables εi ∼ N (0, τ2

n ) are i.i.d. normal

variables. Many non-parametric estimation problems,

including non-parametric regression and density esti-

mation, are asymptotically equivalent to an instance of

the Gaussian sequence model [16], [17], [18], where

the set Θ depends on the underlying “smoothness”

conditions imposed on the functions. For instance, for

functions that have an mth derivative that is square-

differentiable (a particular kind of Sobolev space), the

set Θ corresponds to an ellipsoid; on the other hand,

for certain choices of Besov spaces, it corresponds to

an ℓq-ball.

In the case Θ = Bq(Rq), our linear regression

model (1) includes the normal sequence model (11)

as a special case. In particular, it corresponds to

setting d = n, the design matrix X = In×n, and

noise variance σ2 = τ2

n . For this particular model,

the seminal work by Donoho and Johnstone [15]

determined sharp asymptotic results on the minimax

error for general ℓp-norms over ℓq balls. Here we show

that a corollary of our main theorems yields the same

scaling in the case p = 2 and q ∈ (0, 1].

Corollary 1. Consider the normal sequence

model (11) with Θ = Bq(Rq) for some q ∈ (0, 1].
The the minimax risk in ℓ2-norm is given by

M2(Bq(Rq); I) ≍ Rq(
τ2 log n

n
)1−

q

2 . (12)

B. Random Gaussian Design

Another special case of particular interest is that

of random Gaussian design matrices. A widely stud-

ied instance is the standard Gaussian ensemble, in

which the entries of X ∈ R
n×d are i.i.d. N(0, 1)

variables. A variety of results are known for the

singular values of random matrices X drawn from this

ensemble (e.g., [19], [20], [21]); moreover, some past

work [22], [23] has studied the behavior of various ℓ1-

based methods for the standard Gaussian ensemble. In

modeling terms, requiring that all entries are i.i.d. is

an overly restrictive assumption, and not likely to be

met in applications where the design matrix cannot be

chosen. Accordingly, let us consider the more general

class of Gaussian random design matrices X ∈ R
n×d,

in which the rows are independent, but there can

be arbitrary correlations between the columns of X .

We show that random matrices drawn from such

ensembles satisfy a version of Assumptions 1 and 2

with high probability.

Proposition 1. Consider a random design matrix

X ∈ R
n×d formed by drawing each row Xi ∈ R

d

i.i.d. from a N(0,Σ) distribution. Then for some

numerical constants ci > 0, i = 1, 2 with probability

1 − c1 exp(−c2n), we have for all v ∈ R
d,

‖Xv‖2√
n

≤ 3‖Σ1/2v‖2 + 9
(
√

[maxi Σii] log d

n

)
‖v‖1,

‖Xv‖2√
n

≥ 1

2
‖Σ1/2v‖2 − 9

(
√

[maxi Σii] log d

n

)
‖v‖1.

The proof of Proposition 1 uses Slepian’s lemma

[21] and Gordon’s inequality [24] combined with

concentration of Gaussian measure results [25].

For q = 0, we note that if v ∈ B0(2s), then ‖v‖1 ≤√
2s‖v‖2, which implies that

√
log d

n
‖v‖1 ≤

√
2s log d

n
‖v‖2;

Consequently, once n is sufficiently large such that
maxi Σiis log d

n < 1, then Assumptions 1 and 2 both

hold with fu(n, d,Rq) = fℓ(n, d,Rq) = 0.

For q > 0, Theorem 2 require that Assump-

tion 2 holds with fℓ(n, d,Rq) = fℓ(n, d,Rq) =
o
(
Rq

−1/2( log d
n )q/4

)
. But since log d/n = o(1), we

have ( log d
n )q/4 ≥

(
log d

n

)1/2
for n sufficiently large.

Therefore Proposition 1 implies that Gaussian random

designs satisfy Assumption 2 holds in the case q > 0.

Based on (5) and Proposition 1,

diam2
2(Nq(X)) ≤ 81Rq

2/q [maxi Σii] log d

n
.

Since the minimax rate for ℓ2 error is lower

bounded by a maximum of diam2
2(Nq(X)) and

O(( log d
n )1−q/2), the diameter term is clearly of lower

order.

Let us now discuss the implications of this result

for Assumptions 1 and 2. We note that past work

by Amini and Wainwright [26], in the analysis of

sparse PCA, established the upper bound (13a) in the

very special case Σ = Id×d. More generally, consider

an ensemble with any covariance matrix Σ whose

eigenspectrum is bounded from below and above. This

class of matrices includes, for instance, any Toeplitz

matrix. For such matrices, Proposition 1 guarantees

that

‖Xv‖2√
n

≥ λmin(Σ)

2
‖v‖2 − 9

√
log d

n
‖v‖1

with a similarly simplified upper bound. Consequently,

for any vector v ∈ R
d such that ‖v‖1/‖v‖2 =
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o(
√
n/ log d), we are guaranteed (for n large enough)

that
‖Xv‖2√

n
≥ c′‖v‖2 for some constant c′ > 0.

C. Comparison to ℓ1-based methods

We compare the optimal minimax rates of con-

vergence for ℓ2 error with ℓ1-based methods, the

Lasso selector [2] and the closely related Dantzig

selector [3]. Here we focus discuss only the case q = 0
since we are currently unaware any ℓ2-error bound for

ℓ1-based methods for q ∈ (0, 1]. For the Lasso, past

work [9], [27] has shown that its ℓ2-error is upper

bounded by s log d
n which is the minimax rate from

Theorem 2 (b) Eq. (9). Candes and Tao [3] showed

that the Dantzig selector also achieves the minimax

optimal rate under restricted isometry properties (RIP)

to be discussed below. More recently, Bickel et. al [5]

showed (amongst other results) that both the Lasso and

Dantzig selector achieve the rate s log d
n under some

restricted eigenvalue (RE) conditions. This shows that

both the Lasso and Dantzig achieve the minimax rate

derived in Theorem 2 (b), Eq. (9) for q = 0.

Finally, we compare the conditions needed for upper

bounding the ℓ2-error (Assumption 2) using an optimal

method (Theorem 2) to those imposed in previous

analyses of ℓ1-based methods for q = 0. One set of

conditions, known as the restricted isometry property

or RIP for short [23] is based on constraining the

condition numbers of various submatrices of X . In

particular, for a given subset T ⊆ {1, 2, . . . , d}, let

us define the condition number of the sub-matrix

XT ∈ R
n×|T | via δ(T ) = σmax(XT )/σmin(XT ),

where σmax and σmin refer (respectively) to the max-

imum and minimum singular values of XT . In order

to guarantee good recovery in ℓ2-norm for hard-sparse

signals (q = 0), the RIP condition requires that the

worst-case condition numbers δt = sup|T |=t δ(T )
be extremely close to 1 for subsets up to size 2s
[3]. These restrictive conditions are satisfied only by

matrices that are extremely close to orthogonal (e.g.,

when X is drawn from the standard i.i.d. Gaussian

design with n sufficiently large), but fail to be satisfied

for any matrix with sub-blocks that are not close to

orthogonal (e.g., Toeplitz matrices).

Bickel et al. [5] show that it suffices to impose a

much weaker lower bound on the restricted eigenval-

ues (RE). Before stating the assumption, we define

the following notation. For any subset S ⊂ {1, . . . d},

define ‖θS‖1 =
∑

i∈S |θi|. For each integer s =
1, 2, . . . d, define the set Γ(s, c0) as

Γ(s, c0) =
{
θ ∈ R

d; |S| ≤ s | ‖θS‖1 ≥ c0‖θSc‖1

}
.

In words, the set Γ(s, c0) contains all vectors in

R
d where the ℓ1-norm of the largest s co-ordinates

provides an upper bound (up to constant c0) to the

ℓ1 norm over the smallest d − s co-ordinates. For

example if d = 3, (1, 1/2, 1/4) ∈ Γ(1, 1) while

(1, 3/4, 3/4) /∈ Γ(1, 1).
With this notation, the restricted eigenvalue (RE)

assumption can be stated as follows:

Assumption 3. There exists a function κ(X, c0) > 0
such that

1√
n
‖Xθ‖2 ≥ κ(X, c0)‖θ‖2,

for all θ ∈ Γ(s, c0).

We now claim that the condition required by the

optimal method—namely, Assumption 2—is weaker

than Assumption 3 for q = 0. In the case q = 0,

Theorem 2 requires that there exists a ψℓ(X) > 0
such that

1√
n
‖Xθ‖2 ≥ ψℓ(X)‖θ‖2,

for all θ ∈ B0(2s). (This corresponds to Assumption 2

with fℓ(n, d,Rq) = 0.) To prove that Assumption 2

is weaker than Assumption 3, it suffices to show

that B0(2s) ⊂ Γ(s, c0) for all c0 ≥ 1. Note that

if θ ∈ B0(2s), then there exist disjoint subsets S1

and S2, |Si| ≤ s (i=1,2) and ‖θS1
‖1 ≥ ‖θS2

‖1.

Since ‖θSc
1
‖1 = ‖θS2

‖1, ‖θS1
‖1 ≥ ‖θSc

1
‖1. Hence

θ ∈ Γ(s, c0).
In summary, for the hard sparsity case q = 0,

the Lasso and Dantzig selectors achieve the minimax

ℓ2-error in Eq. (9) of O( s log d
n

)
. However current

analyses of ℓ1-methods are based on imposing stronger

conditions on the design matrix X than those required

by the analysis of the NP-hard combinatoric opti-

mization algorithm used to derive the minimax rate.

We believe the analysis and conclusion generalizes to

q ∈ (0, 1] and are currently in the process of analyzing

this case.

V. CONCLUSION

In this paper, we determine sharp minimax rates

of convergence for Model (1) for ℓ2 error and lower

bounds for ℓp error p ∈ [1,∞] under the assumption

that the true parameter lies in an ℓq (q ∈ [0, 1]). It

was shown that the ℓ2 rates of convergence scale as

Rq

(
log d

n

)1− q

2 under suitable conditions on the design

matrix X . Gaussian random design matrices with

suitably structured covariance matrices satisfy the con-

ditions with high probability. It was also shown that

the Lasso and Dantzig selectors achieve the minimax

risk for q = 0. However, the conditions on the design

matrix X required for the Lasso and Dantzig selectors

to achieve the minimax risk are stronger than the

conditions required for the non-convex algorithm used

to derive upper bounds for the minimax risk.
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There are a variety of open questions and extensions

to our analysis. In particular, it would be interesting to

see whether the assumptions on design matrix hold for

other matrices (e.q Bernoulli or general sub-Gaussian

matrices). Further, it would be interesting to determine

whether analysis of the model under noise distribution

with heavier tails lead to different rates.

APPENDIX

A. Proof of Lemma ??

Defining the set S = {i | |∆i| > τ}, we have

‖∆‖1 = ‖∆S‖1 +
∑

i/∈S

|∆i|

≤
√
|S|‖∆‖2 + τ

∑

i/∈S

|∆i|
τ

≤
√
|S|‖∆‖2 + τ

∑

i/∈S

( |∆i|
τ

)q

≤
√
|S|‖∆‖2 + 2Rqτ

1−q.

Lastly, we have

2Rq ≥
∑

i∈S

|∆i|q ≥ |S|τ q,

so that we conclude that

‖∆‖1 ≤ τ−q/2
√

2Rq ‖∆‖2 + 2Rqτ
1−q,

as claimed.

B. Proof of Lemma ??

For a given radius r > 0, define the set

S(s, r) := B0(2s) ∩ B2(r), and the random variables

Zn = Zn(s, r) given by

Zn : = sup
θ∈S(s,r)

1

n
|wTXθ|.

For a given ǫ ∈ (0, 1) to be chosen, let us upper bound

the minimal cardinality of a set that covers S(s, r) up

to (rǫ)-accuracy in ℓ2-norm. We claim that we may

find such a covering set {θ1, . . . , θN} ⊂ S(s, r) with

cardinality N = N(s, r, ǫ) that is upper bounded as

logN(s, r, ǫ) ≤ log

(
d

2s

)
+ 2s log(1/ǫ).

To establish this claim, note that here are
(

d
2s

)
subsets

of size 2s within {1, 2, . . . , d}. Moreover, for any

2s-sized subset, there is a rǫ covering in ℓ2-norm

of the ball B2(r) with at most 22s log(1/ǫ) elements

(e.g., [35]).

Consequently, for each θ ∈ S(s, r), we may find

some θi such that ‖θ − θi‖2 ≤ rǫ. By triangle

inequality, we then have

1

n
|wTXθ| ≤ 1

n
|wTXθi| + 1

n
|wTX(θ − θi)|

≤ 1

n
|wTXθi| + ‖w‖2√

n

‖X(θ − θi)‖2√
n

.

Given the assumptions on X , we have ‖X(θ −
θi)‖2/

√
n ≤ ψu(X)‖θ − θi‖2 ≤ ψu(X) rǫ. More-

over, since the variate ‖w‖2
2/σ

2 is χ2 with n degrees

of freedom, we have
‖w‖2√

n
≤ 2σ with probability

1 − c1 exp(−c2n). Putting together the pieces, we

conclude that

1

n
|wTXθ| ≤ 1

n
|wTXθi| + 2ψu(X)σ r ǫ

with high probability. Taking the supremum over θ on

both sides yields

Zn ≤ max
i=1,2,...,N

1

n
|wTXθi| + 2ψu(X)σ r ǫ.

It remains to bound the finite maximum over the

covering set. We begin by observing that each vari-

ate wTXθi/n is zero-mean Gaussian with variance

σ2‖Xθi‖2
2/n

2. Under the given conditions on θi and

X , this variance is at most σ2ψ2
u(X)r2/n, so that by

standard Gaussian tail bounds, we conclude that

Zn ≤ σ r ψu(X)

√
3 logN(s, r, ǫ)

n
+ 2ψu(X)σr ǫ

= σ r ψu(X)
{√

3 logN(s, r, ǫ)

n
+ 2ǫ

}
. (14)

Finally, suppose that we ǫ =
√

s log(d/2s)
n . With this

choice and recalling that n ≤ d by assumption, we

obtain

logN(s, r, ǫ)

n
≤ log

(
d
2s

)

n
+
s log n

s log(d/2s)

n

≤ log
(

d
2s

)

n
+
s log(d/s)

n

≤ 2s+ 2s log(d/s)

n
+
s log(d/s)

n
,

where the final line uses standard bounds on bino-

mial coefficients. Since d/s ≥ 2 by assumption,

we conclude that our choice of ǫ guarantees that
log N(s,r,ǫ)

n ≤ 5 s log(d/s). Substituting these rela-

tions into the inequality (14), we conclude that

Zn ≤ σrψu(X)
{

4

√
s log(d/s)

n
+ 2

√
s log(d/s)

n

}
,

as claimed.
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