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ABSTRACT 

 
Detection of clouds in satellite-generated radiance images, 
including those from MODIS, is an important first step in 
many applications of these data. In this paper we apply 
spectral unmixing to this problem with the aim of estimating 
subpixel cloud fractions, as opposed to identification only of 
whether or not a pixel radiance contains cloud contributions. 
We formulate the spectral unmixing approach in terms of 
multiple-kernel learning (MKL). To this end we propose a 
MKL-based unmixing algorithm that drives a multiple-kernel 
description of cloud, enabling estimation of sub-pixel cloud 
fractions. This approach is based on supervised learning. We 
generate training and testing samples by using CloudSat and 
CALIPSO data to compute cloud fractions within individual 
MODIS pixels. Results of our study on limited data (1875 
training and testing MODIS pixels along with their CloudSat 
and CALIPSO based sub-pixel cloud fractions) show that the 
proposed algorithm can effectively estimate sub-pixel 
MODIS cloud fraction and outperforms support vector 
machine (SVM) in terms of estimation performance. 
 

Index Terms— Cloud detection, multiple-kernel 
learning (MKL), MODIS, spectral unmixing 
 

1. INTRODUCTION 
 
The Moderate Resolution Imaging Spectroradiometer 
(MODIS) onboard the NASA Terra and Aqua satellites 
continually collects radiances in 36 spectral channels for 
both short- and long-term changes in the Earth’s land, ocean 
and atmosphere systems [1]. Detection of pixel radiances 
with cloud contributions is an important first step in the 
application of MODIS data to many Earth science 
investigations. To facilitate production of MODIS 
operational cloud products Ackerman et al. [2] developed a 
well-documented algorithm for this purpose and clearly 
describe the information content within the MODIS 
radiances at the 36 different wavelengths. From these 36 
radiances they developed 5 sets of features, via 
transformations/combinations of these 36 radiances for a 
pixel, that are subsequently used in single-valued thresholds 

tests to separate clear form cloudy pixels. One complication 
of this approach is that a single set of single-valued 
thresholds may not apply for all times and regions. Shi et al. 
[3] investigated detection of daytime arctic clouds at the 
pixel level by using radiances and features derived from 
Multi-angle Imaging Spectroradiometer (MISR) and 
MODIS data. The importance of their work was use of 
combinations of features from MISR and MODIS and 
development of a scheme that incorporated adaptable 
thresholds within Fisher’s quadratic discriminate analysis in 
order to separate clear and cloudy pixels.  

The Cloud-Aerosol Lidar and Infrared Pathfinder 
Satellite Observation (CALIPSO) [4] and CloudSat cloud 
profiling radar (CPR) were launched in 2006. These two 
instruments provide global cloud profiles from space. Most 
importantly for our study, their data are collocated with pixels 
near the center of the MODIS swath. Joint CPR and 
CALIPSO vertical cloud profiles are available. We use the 
variable CloudFraction within the data product, which reports, 
as a function of altitude, the fraction of lidar beams within a 
radar beam that contains hydrometeors. CloudFraction is 
recorded per ray and per bin as a 1-byte integer variable 
representing a percentage from 0% to 100%. Using 
CloudFraction together with those MODIS pixels with which 
it is collocated, it is possible to build a model for estimating 
cloud fractions in MODIS pixels away from the center of the 
MODIS swath and for which there are no available 
CloudFraction data. Two complicating factors for this 
estimation are the within-class variability of the radiances 
associated with cloudy MODIS pixels and the existence of 
mass-mixed (i.e., partially cloudy pixels and cloud-free pixels 
but with different surface types within them) pixels brought 
about by the spatial resolution of MODIS.  

In this paper we address the cloud detection problem 
using spectral unmixing. First, we model MODIS pixel 
radiances as linear mixtures of cloud and background. We 
then propose a multiple-kernel learning (MKL)-based 
unmixing algorithm to drive a multiple-kernel model or the 
estimation of cloud fractions at a sub-pixel level. In 
Multiple-kernel Hilbert space (MKHS) we form class 
boundaries to represent the cloudy and cloud-free pixel and 
estimate the sub-pixel cloud fractions.  



2. METHODOLOGY 
 
2.1. Feature selection for detection of cloud 
 
In our study we use the five sets of features provided by 
Ackerman et al. [2]. These features are based on brightness 
temperatures (BT) and reflectances (ρ) generated from 
MODIS radiances and include: (1) BT11, BT13.9, BT6.7 for 
detecting thick high clouds; (2) BT11-BT12, BT8.6-BT11, BT11-
BT3.9, BT11-BT6.7 for detecting thin clouds; (3) ρ0.87, ρ0.65, 
ρ0.936, BT3.9-BT3.7 for detecting low thick clouds; (4) ρ1.38 for 
detecting upper tropospheric thin clouds; and (5) sensitive 
brightness temperature differences BT11-BT12, BT12-BT4, 
BT13.7-BT13.9 for detecting cirrus. Compared with MODIS 
radiances, these five sets of features generated from them 
reduce the dimensionality of the 36 radiances and weaken 
within-class variability.  
 
2.2. Spectral mixtures of cloud and background  
 
Traditional methods for cloud detection attempt to identify a 
pixel as either being cloudy or cloud free (or clear). This is 
not satisfying in that pixels are potentially only partly 
cloudy. Hence it is more realistic to estimate the fraction of 
cloudiness within each pixel. To this end, we formulate 
cloud detection as a problem of spectral unmixing.  

The 36 MODIS radiances associated with each pixel 
potentially contain combinations of contributions from 
clouds and the background. Expressing this as a linear 
mixture, we have  
 ( )1cloud backgroundp p= + − +s s s n  (1)
where s is the spectrum (i.e., the 36-element vector containing 
the 36 radiances per MODIS pixel) to be categorized, clouds  is 
the contribution to s from clouds, backgrounds  is the contribution 
to s of the background, n is noise and p  is the pixel cloud 
fraction that comes from the variable CloudFraction that is 
matched with the MODIS pixel. In our study, we also use all 
of features in the five sets developed by Ackerman et al. [2], 
calling this 15-element vector x.  

Let y represent the cloud-fraction label derived from 
CloudFraction and which is associated with vector x for a 
MODIS pixel. Here, y=+1 means a cloud fraction of 1 (i.e., 
fraction p=1), y=-1 means only a background contribution 
(i.e., fraction p= 0). In this way, we can generate a set of N  
training samples { } 1

N
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y
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,x  containing only completely 
cloudy and clear MODIS pixels. The problem to be solved 
is estimation of the cloud fractions within the other MODIS 
pixels of the testing and training data set, after which the 
model can be applied to any MODIS pixel. The fully 
constrained least squares (FCLS) method that was proposed 
in [5] can be used to solve the problem represented by Eq. 
(1), as can be a support vector machine (SVM) [6], which 
improves performance for nonlinear spectral mixtures.  

In Fig.1, we present the main idea of an extended SVM 
algorithm that is proposed for hyperspectral unmixing in [7, 

8]. The region between the hyperplanes formed by the pixels 
on the class boundaries (support vectors) is recognized as 
containing partly cloudy pixels whereas the other two 
regions are related to pure pixels. In other words, in Hilbert 
Space, if a pixel is located between the class boundaries, it 
is identified as a mixed pixel. If a pixel is located in a region 
whose SVM output is less than -1, it is identified as a pixel 
with pure background contributions; otherwise, it is 
identified as a pure pixel with only cloud contributions. The 
support vectors located on the hyperplanes +1 and -1 are 
defined as pure pixels for the two classes.  

Given the labeled data set {( ) 1 2 }i iy i N, , = , ,...,x , where 
L

i ∈x R  is the input training vector of features with L 
elements (L is the dimension of the feature space) and 
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where w is the vector of parameters which support the 
optimal decision hyperplane , ( ) 0bφ∗ ∗+ =w x  and b is a 
bias, w* and b* represent the optimal solution to the problem 
of all possible solutions, ξi is a non-negative slack variable 
necessary for dealing with noisy and nonlinearly separable 
data, ( )φ i is an implicitly defined nonlinear mapping and 
occursin the form of an inner product which will be replaced 
with a kernel function ( ) ( )(x ,x ) x , xi j i jK φ φ= , and C ( 0≥ ) 
is the regularization parameter which is given beforehand.  

Solving Eq. (2), we obtain decision hyperplanes like 
those shown in Fig. 1. According to the extended SVM 
algorithm, we have  
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where ( )p x  is the pixel cloud fraction and 
( )1 21 , ( ) , 1 , ( )D b D bφ φ∗ ∗ ∗ ∗ ∗ ∗⎡ ⎤ ⎡ ⎤= − − = + +⎣ ⎦ ⎣ ⎦x w x w w x w

 
2.3. MKL-based unmixing algorithm  
 
Nowadays, MKL methods have shown the value in 
exploiting multiple kernels rather than a single fixed kernel 
such as for SVM [9] [10]. As a result, MKL theory is a new 
kernel method of value in fields such as machine learning 
which aims at simultaneously learning a kernel and the 
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Fig. 1 pure and mixed pixels’ locations in feature space 



associated predictor within supervised learning settings. We 
now turn to present the formalism of a MKL-based 
algorithm for the estimation of sub-pixel cloud fraction.  

Within the MKL framework, an equivalent kernel is 
obtained by a linear convex combination of a series of base 
kernels and is used to replace the single kernel in SVM. In 
this way MKL achieves the effect of feature extraction. The 
equivalent kernel is represented as  
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where M  is the number of base kernels { }
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the combination and md  is the weight for the mth base 
kernel. All the weighting coefficients are nonnegative and 
sum to one to ensure that the combined kernel is positive 
semidefinite (PSD) and with the same normalization as the 
base kernels. After replacing the single kernel in SVM with 
the equivalent kernel, we turn to solve the dual optimization 
problem under the SVM routine as follows:  
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where α  is a vector composed of auxiliary variables iα  
which are Lagrange multipliers, and d is the weight vector 
composed of { } 1

M
m m

d
=

, and ( , )∗ ∗α d  is the optimal solution to 
the problem of Eq. (5).  

Here, we adopt the SimpleMKL [11] as the solution to 
Eq. (5). The SimpleMKL addresses the MKL problem via a 
weighted 2-norm regularization formulation with an 
additional constraint on the weights that encourages sparse 
kernel combinations. A detailed description of SimpleMKL 
can be found in [11]. The final MKL decision function 
based on the training samples is expressed as  
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where C
∗w  is the vector of parameters defining the optimal 

decision hyperplane of MKL.  
After training with SimpleMKL, we have the MKHS 

spanned by the optimal base kernels. We now turn to 
estimation of pixel cloud fraction by way of MKL. In the 
MKHS the distance between a mixed pixel and a class 
boundary indicates the information about the proportion of 
cloud contribution to a pixel and is written as  
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where 1( )D x  is the distance from the feature vector x to the 
boundary representing completely cloudy pixels and 2 ( )D x  is 
the distance to background boundary within the feature space.  

Integrating the distances between hyperplanes which 
respond to y=+1, y=-1 and the optimal decision given in Eq. 
(6), we can obtain the cloud fraction. The pixel cloud 
fraction can be estimated by the following procedures:  
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where ( )p x  is the cloud fraction of the pixel to which x 
belongs.  
 

3. EXPERIMENTAL RESULTS  
 
Fig.2 illustrates a swath of CALIPSO vertical cloud profiles 
across Hurricane Bill near Cuba in 2009 as captured by a 
MODIS radiance image. Using the variable CloudFraction 
produced from CALIPSO/CloudSat vertical cloud profiles, 
we label each MODIS pixel coincident with the 
CALIPSO/CloudSat swath with its cloud fraction. We label 
1875 MODIS pixels in this way. We choose 50 MODIS 
pixels for which p=1 ({ }50

1
1i i i

y
=

, =x ) and 50 MODIS pixels 

for which p=0 ( { }50

1
1j j j

y
=

, = −x ) to serve as our training 

samples. The remaining 1875 labeled pixels are used for 
testing. In our experiments 10 Gaussian kernels 
( ( )2 2( , ) exp || || 2i j i jK σ= − −x x x x , σ +∈R ) with different 
bandwidths σ  are used as the base kernels. The 10 
bandwidths σ  range from [0.8, 1.9] and are set by cross-
validation (CV) before MKL optimization. The extended 
SVM algorithm is used to compare with our MKL-based 
unmixing algorithm and 1.3σ =  chosen by CV. 

We compare our MKL-based unmixing algorithm 
results with those from the extended SVM algorithm for the 
1775 test samples in Table I. We show results both for 
training and testing on radiance vectors s and feature vectors 
x. In Table I our results are presented as root mean square 
error (RMSE): follows.  

 ( )2
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1 testN
t

i i
itest

RMSE p p
N =

= −∑  (8)

where ip  is the model estimated pixel cloud fraction and t
ip  

is the observed pixel cloud fraction from 
CALIPSO/CloudSat data, and 1775testN =  is the number of 
test samples.  

For this limited data sample the MKL-based algorithm 
outperforms the SVM-based algorithm. Moreover, training 



on feature vectors x improves estimation compared to 
training on radiance vectors s. The results from SVM using 
features approach those of MKL based on radiances, which 
would seem to imply that MKL may have the effect of 
feature extraction. Applying the MKL- and SVM-derived 
estimation models based on feature vector training to 300 by 
300 MODIS pixels not in the training and testing set (Fig. 3) 
leads to the results in Fig. 4. By observing the experimental 
results given in Fig. 4(a) and Fig.4(b), especially focusing 
on the color bars, we can find that the values for SVM is 0, 
0.2, 0.4, 0.6, 0.8,1, but the values for MKL is 0, 0.1, 0.2, 0.3, 
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. We can draw the conclusion 
that the MKL can achieve more precious accuracy of 
unmixing or estimating the fractions. In this way, the 
compared results in Fig.4 also strongly support the 
numerical results given in Table I.  
 

4. CONCLUSION  
 
In this paper an MKL-based unmixing algorithm is proposed 
for MODIS pixel cloud fraction estimation. In estimating 
pixel cloud fraction this algorithm goes beyond existing, 
operational ones. Algorithm parameters are set using 
training data obtained from the variable CloudFraction in 
the CALIPSO/CloudSat product that is collocated with 

MODIS pixels. Importantly, the proposed MKL-based 
algorithm makes full use of the ability of MKL to capture 
effectively the similarity of samples across different 
bandwidth scales. Therefore, the MKL-based unmixing 
algorithm outperforms the single kernel SVM-based 
algorithm in terms of estimation performance.  
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Table I Evaluations of unmixing results for cloud detection 

Methods SVM MKL 
All bands Features All bands Features

RMSE 0.28 0.18 0.16 0.11 
 

 
(a)                                                     (b) 

Fig. 4 Unmixing results of sub-image with color bar of cloud fractions, (a) 
by SVM, (b) by MKL 

 
Fig. 3 The false color composite picture of the sub-image 

 
Fig. 2 The relationship between MODIS and 

CALIPSO((http://www.nasa.gov/images/content/508982main_diabar-
calipso-full.jpg). 


