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ABSTRACT
We analyze the “image” of a given query word in a given
corpus of text news by producing a short list of other words
with which this query is strongly associated. We use a num-
ber of feature selection schemes for text classification to help
in this task. We apply these classification techniques using
indicators of the query word’s appearance in each document
used as the document“labels”and the indicators for all other
words as document predictors/features. The features se-
lected by any scheme is then considered the list of words
comprising the query word’s “image”.

To be easily understandable, a list should be extremely
short with respect to the dictionary of terms present in
the corpus. The approach thus requires aggressive feature
(word) selection in order to single out at most a few tens of
terms in a universe of hundreds of thousands. In addition, a
word imaging scheme should scale well with the size of data
(number and size of documents, size of dictionary).

We produce one scheme for feature selection through a
sparse classification model. A standard classification algo-
rithm assigns one weight per term in the predictor dictio-
nary, in order to maximize the capacity to successfully pre-
dict the labels of document units. By imposing a sparsity
constraint on the weight vector, we single out the few words
that are most able to predict the presence or absence of a
query word in any document. This paper compares this and
several other schemes that are potentially well suited to the
task of word imaging, each method presenting a different
manner of feature selection.

We present two evaluations of these schemes. One evalu-
ates the predictive classification performance of a logistic re-
gression model trained over the corpus using only a scheme’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MIR’10, March 29–31, 2010, Philadelphia, Pennsylvania, USA.
Copyright 2010 ACM 978-1-60558-815-5/10/03 ...$10.00.

selected features. The other is based on the judgement of
human readers: a pair of word lists generated by different
schemes operating on identical queries are presented to a hu-
man subject alongside a trio of document units (paragraphs)
containing the query word. This subject then chooses the
list which in his/her estimation is the best summary of the
document units.

We apply these schemes to study the images of frequently
covered countries and regions in recent news articles from
the International section of the New York Times. Our pre-
liminary experiments indicate that, while most methods per-
form similarly well on our data in terms of predictive per-
formance, human-based evaluations appear to favor features
selected by training of sparse logistic regression, a penalized
variant of logistic regression that encourages sparse classi-
fiers. This indicates that classification metrics based on pure
predictive performance, while useful as a indicator for pre-
selecting algorithms, are not enough to predict human as-
sessment of word association algorithms.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval—Information filtering ; H.5.1 [Information Inter-
faces and Presentation]: Multimedia Information Sys-
tems—Evaluation/methodology

General Terms
Algorithms, Measurement, Performance, Experimentation,
Human Factors

Keywords
Sparsity, Evaluation, News Media, Text Classification, Lo-
gistic Regression, Regularization.

1. INTRODUCTION

Motivating application: analysis of news.
Progress in technology allows the public daily access to an

unprecedented volume of news, coming from various sources.



However, given this volume, significance and meaning of
these reports can be hard to assess and decipher. Can ma-
chine learning help? In turn, can this field of news media
analysis modify and inform progress in machine learning?

Text classification is a vibrant field [17, 18] that has been
extensively used for news data. It can help to categorize
documents [17, 5, 10], to provide sentiment analysis [12]
and opinion mining on articles [15], and to predict future
market trends. It appears that relatively little has been
done to connect the extensive technological progress in the
area of text classification to issues that are of concern to
the social scientist, such as how the media does or does not
influence our perception of the world.

There is a long academic tradition in humanities and so-
cial sciences scholarship of extracting quantitative data from
manual classification methods and then qualitatively assess-
ing the significance of usage patterns within the resulting
categories and category schemes [2, 7]. Many of these me-
dia studies usually make use of simple word frequency or
co-occurence counts. Recent work such as [6], in which the
authors seek to quantify media slant, calls into play more
elaborate statistical methods. There does seem to be an op-
portunity for a strong interplay between text classification
methods, as presented in the machine learning literature,
and qualitative approaches to discourse analysis. A call for
such an effort (within the context of literary discourse) has
been made by Moretti in [13].

Studies of word usage in the media studies have often fo-
cused on the portrayal of international issues in domestic
or international media [14]. The need for such analyses is
indeed acute for news related to foreign policy. Jervis in
1976 [8] opened foreign policy analysis to include the role
of perceptions and misperceptions in international politics,
especially in terms of security. In addition, many media
studies have clearly identified the mainstream media as the
primary source of information about world affairs. Entman’s
book, Projections of Power [3], argues that the media not
only frames the agenda, but is part and parcel of the exer-
cise of power, specifically where the predominant frame is
transmitted from the executive to other elites, then to the
media and finally to the public. We agree with Thompson
[19] that “media presentation is a crucial determinant of the
public perception of international politics,” whether or not
this frame-making is intentional. Therefore any systematic
and easy-to-use tool that can help in understanding how is-
sues, events and policies are presented in the media, has a
fundamental role to play in social sciences. One such tool
could provide analysis of word associations in a given corpus,
allowing one to better understand how concepts are linked
to shape our perceptions.

Our focus: word imaging.
Our focus is the potential use of text classification in un-

derstanding the “image” of a certain word in a given news
stories corpora. By image, we simply refer to the words in
the dictionary that, in the corpus and within the time win-
dow under consideration, are associated in some statistical
sense with the word under study (we will refer to this as the
“query” word). We believe that such images could provide a
great service to researchers in media studies.

Our approach: feature selection.
There are many ways to define association, from co-occurence

of words within (say) a paragraph to more sophisticated
methods. A first challenge in the imaging problem is thus
to choose a meaningful method to specify and quantify as-
sociation between terms. Our methodology rests on feature
selection, which roughly refers to a set of algorithms that
perform efficient reduction of the number of features consid-
ered by a classification model while maintaining satisfacto-
rily minimal classification error rates.

Based on a given query term, we separate the news cor-
pus document units1 into two classes: those that contain
the query and those that do not. We then run these units
through the paces of a feature selection scheme, resulting
in an assignment of scheme-distinct weights/scores to each
term appearing in any unit. Only the highest scoring terms
are retained; for these purposes, only the top fifteen or so
are kept. In the estimation of the particular feature selection
scheme, the resulting short list is an image of the query.

In text applications, the number of features, n, is typi-
cally very large2. We are aim to provide a web-based news
analysis application for social science researchers in the near
future, which by its nature requires an extremely short calcu-
lation times. Hence, a satisfactory feature selection scheme
should scale well with problem size, capping the complexity
of admissible schemes. We have not yet included sophis-
ticated natural language processing techniques[11], leaving
this to future research.

Example.
To illustrate our feature selection approach, let us show

how it can be used to visualize the history of a term’s im-
age. We have applied sparse logistic regression as a fea-
ture selection scheme (see Section 2.3 below) to study of the
term “microsoft” in all the New York Times headlines be-
tween January 1981 and December 2006. (Each headline is
a document unit.) We have used the “BBR” algorithm im-
plemented in [5] on a sliding window of one year’s worth of
data taken at yearly increments. We looked at one year’s
headlines at a time and trained a sparse logistic regression
classifier, tuned to produce fewer than 10 nonzero-weighted
words for any year’s documents, to distinguish headlines
containing the term “microsoft” from those not containing
that term, repeating this for year after year. Thus, for each
year, we have obtained a short list of terms, and associ-
ated weights, that are active predictors of the appearance of
the query term in any headline. This results in a matrix of
weights, each column corresponding to a year, and each row
to a word that ever appeared in a “microsoft” image. If we
arrange the rows of the matrix so that words are listed in or-
der of appearance, the matrix will have a staircase pattern.
Tracing any row reveals the corresponding term blinking in
and out over time as a salient descriptor of “microsoft”.

One visualization of the matrix of weights is shown in
Figure 1. In the figure, each little rectangle indicates the
presence of that row’s word as an important feature for that

1These document units are free to be the full article texts,
single paragraph texts, the headlines – an experimenter may
choose how to atomize the corpus based on the degree of in-
clusivity or specificity appropriate for the media phenomena
being investigated.
2A reasonably sized corpus can easily contain tens of thou-
sands of unique words. The number of digrams, distinct
pairs of words which ever appeared consecutively, can ex-
tend into the millions.



Figure 1: Study of the term “microsoft” within
New York Times headlines: matrix of sparse logistic
regression weights with corresponding high-weight
terms highlighted.

column’s year. The darkness of the rectangle indicates its
relative weight to the other words selected for that year. The
vertical axis corresponds to the terms, shown by order of
appearance; thus, the plot shows a staircase pattern, where
we have emphasized the font of terms with a large total sum
of absolute weights over time. Table 1 provides a list of the
top 30 of such words.

The list in Table 1 appears to provide an accurate sum-
mary of Microsoft, with the top prize going to “software”
(the long-term focus of the company) and “xbox” (its most
recent best-selling product). Figure 1 goes further, in pro-
viding a story of the evolution of the company that is con-
sistent with common knowledge. The initial terms refer
to a high-growth corporation (with terms like “company”,

1 software
2 xbox
3 qtr
4 antitrust
5 europe
6 corp
7 windows
8 case
9 gates
10 net

11 apple
12 challenge
13 modify
14 briefing
15 technology
16 deal
17 settle
18 intuit
19 lotus
20 company

21 executive
22 rose
23 internet
24 broadcast
25 ruling
26 says
27 expects
28 europeans
29 dec
30 profit

Table 1: Most important words found by sparse lo-
gistic regression analysis of the term “microsoft” in
The New York Times headlines, ranked by sum of
absolute regression coefficients over time.

“net”, “profit”, “doubled”, and “qtr”, a common business-
news abbreviation for “quarter”). The list of words then
visits terms related to products, from “lotus” to “windows”
to “xbox”. Another important topic involves legal terms
(“case”, “judge”, “settle”), with a reference to the famous
anti-trust case in Europe. More recently, the terms reflect
the growing importance of the Internet (“web”) and media
(“broadcast”). Throughout, the names of important related
companies are mentioned: “lotus”, “apple”, “google”.

Reading the plot vertically gives the main topics for a
particular year. For example, the year 2002-2003 has “anti-
trust”, “europe”, and “software”. The plot also allows one to
pinpoint terms that frequently recur in the news over a long
stretch of time (e.g., “software”).

This particular example is encouraging in that this and
other feature selection schemes could be useful in providing
a quantitative, time-consistent, common-sense summary of
a widely cited topic. Obviously the question arises as to
what scheme should be used.

Contributions.
In this paper, our aim is to evaluate several schemes over

full article text drawn paragraph by paragraph from The
New York Times International section. (The schemes are
potentially well suited to a real-time imaging task.) We
use two styles of evaluation: predictive classification perfor-
mance and human evaluation based on a rigorous protocol
of comparison. We find that even though the predictive per-
formances of many schemes are similar, human-based eval-
uation seems to favor sparse logistic regression as a feature
selection scheme. This implies that predictive performance
alone is not enough to choose algorithms for the word imag-
ing task, and further research is needed to better under-
stand “what humans want” in terms of word images and to
see whether sparse logistic regression can serve as an auto-
mated method for the word imaging task more generally.

Our paper is organized as follows. We provide an overview
of the schemes used in Section 2, including details on pre-
processing the text data. We describe our statistical metrics
based on predictive performance in Section 3. Section 4 is
devoted to our human evaluation protocol and the results
reported by five volunteer readers. In both these sections,
we provide results pertaining to the image of various oft-
cited countries and regions in the international section of
The New York Times between December 2008 and October
2009.

2. FEATURE SELECTION SCHEMES
The five schemes we tested fall under two approaches.

Four algorithms use independent feature models in their
selection: co-occurence count (COOC), Delta-TFIDF (D-
TFIDF), Binomial Normal Separation (BNS),and a thresh-
old of p-values as calculated assuming a χ2 log-likelihood of
appearance rates (CHI). A fifth feature selection method,
sparse logistic regression (L1LR), does not rely on indepen-
dence assumptions, and instead uses a l1-penalized variant of
logistic regression to select features. (By abandoning these
assumptions, a cost is borne in terms of increased compu-
tational complexity.) We detail these schemes in turn after
describing how we transformed raw text data into a numer-
ical form.



2.1 Pre-processing

Corpus.
Our data are a series of news articles from the Interna-

tional section of the New York Times, as syndicated on their
RSS feed. Publication dates run from December 15, 2008, to
October 18, 2009. We stripped the corpus of capitalization,
reverting all characters to lower case. Punctuation was also
scrubbed, with marks deleted and their neighboring charac-
ters joined. White space was maintained (For example, the
plaintext“Asian-American Studies”becomes“asianamerican
studies”.) From here, the text was vectorized. In our anal-
yses, we only considered single-word terms (no digrams or
trigrams), and we considered each paragraph to be a single
document unit.

Bag of words.
To extract the statistical structure of a corpus, the news

data must first be somehow enumerated. We used a “bag-
of-words” approach, where each paragraph of the corpus is
represented by a vector whose dimensionality includes one
element for each distinct word. The j-th element for vector i
is then set to the number of times word j appears in the i-th
document unit. Our news corpus is comprised of 79, 494 dis-
tinct words (our dictionary) used across 109,686 paragraphs,
leading to a data matrix X ∈ Rm×n, with m = 109, 686
rows (number of data points) and n = 79, 494 columns (di-
mension of feature space, that is, dictionary size). As most
paragraphs have a word count under sixty, less than 0.05
percent of elements of this matrix are nonzero.

Document labels.
We sought to distinguish between paragraphs containing a

given query word and those that did not. Let q ∈ {1, . . . , n}
be the index of the query word. We labeled each paragraph
i as a positive example if the query word appears in it at
least once, and negative otherwise, that is:

yi(q) =

(
+1 if Xiq > 0,

−1 else,
i = 1, . . . ,m.

The number of positive examples for our several experi-
ments varied between fifty and two-thousand (representing
between roughly 0.05% and 2% of the document units). In
our experiments, we always remove the q-th column in the
data matrix, which corresponds to the query word.

Stop words.
In many cases, words may be deemend intrinsically un-

interesting. Terms such as “in”, “with”, “and”, “but”, “the”,
etc., carry little-to-no descriptive weight. We can state a
priori that they have no place in a word image. Dropping
them from the matrix before processing the data costs lit-
tle, helps decrease runtime, and ensures more descriptive
images. However, this process is not riskless: while the
word “said” is typically used as a neutral linking verb with
little connotative value, its proper noun heteronym “Said”
(perhaps as in Edward Said, the literary theorist), is indeed
informative. We have used a limited list of 300 words, avail-
able at our web site3. These 300 words were removed from
the dataset.

3www.eecs.berkeley.edu/~gawalt/MIR2010/

Stemming.
Many distinct words share meaning: verbs can describe

an identical action but vary by tense, a noun can be another
noun’s plural, etc. As with stop words, it can be helpful to
reduce the size of the overall dictionary by mapping words
with shared roots into a common feature. This process of
stemming is common in many applications. We have de-
clined to stem our dataset. The same risk of lost informa-
tion as in stop words above applies even more severely here.
For example, a stemmer might be expected to consider“iraq”
and“iraqis”equivalent, but the connotation of an image that
focuses on a nation’s individual citizens as opposed to one
focused on the nation as a whole is an important distinc-
tion for our purposes. We cannot tune stemming with the
same precision allowed by the stop-word list above. Note
that some authors recommend stemming in text classifica-
tion [18], while others warn of a potential loss of predictive
performance [17].

After these steps, the dataset is ready for statistical anal-
ysis. The algorithms we used are all based on a first step
where feature selection is performed. Then a standard logis-
tic regression algorithm, described next, is applied to assign
weights to the selected features.

2.2 Independent-model feature selection meth-
ods

Our words have been indexed by set J = {1, 2, ..., n} and
document units (paragraphs) by the set I = {1, 2, ...,m}.
Given a query q, these document units have been perfectly
partitioned into two subsets, I+(q) = {i ∈ I|yi(q) = +1}, of
cardinality #I+(q) = m+

q , and I−(q) = {i ∈ I|yi(q) = −1},
of cardinality #I−(q) = m−q . (Note, m = m+

q + m−q for
all q). We sought by each scheme a subset K ⊆ J with
cardinality as close as possible to a given target k. The
schemes are summarized below.

Co-occurence (COOC).
For each word j ∈ J , we compute the COOC score c+j (q) =P
i∈I+(q)Xij . Let c̄k(q) be the k+1th highest value found in

vector c+(q) = {c+j (q)}. By this method, we build Kk
c (q) =

{j ∈ J : c+j (q) > c̄k(q)}. We have picked by this method
the k non-stop-words which most frequently appear in para-
graphs in which our query also appears.

Delta TF-IDF (D-TFIDF).
The Delta TF-IDF method (D-TFIDF for short) [12] uses

a variant of the well-known Term Frequency, Inverse Docu-
ment Frequency (TF-IDF) vectorization of text documents.

Having established c+(q) above, we calculate for each word
j ∈ J the count of positive and negative paragraphs with
that word. Namely, let d+

j (q) := #{i ∈ I+(q) : Xij > 0}
and d−j (q) := #{i ∈ I−(q) : Xij > 0} Note that d+

j (q)/m+
q

is the percent of times word j appears at least once in the
positive examples. Similarly for d−j (q).

We use these values to produce the D-TFIDF score:

δj(q) = c+j (q) log

 
m+
q

d+
j (q)

d−j (q)

m−q

!
, j = 1, . . . , n.

Let δ̄k(q) be the (k + 1)-th highest value found among the
magnitude of these values |δ(q)|. We build Kk

δ (q) = {j ∈
J : |δj(q)| > δ̄k(q)}. This method selects by a combination



of seeking words that appear commonly alongside our query
term, with added sophistication to penalize those words that
co-occur too often in the positive examples (perhaps an in-
dication of what is effectively, for this query word, a stop
word) and rewarding those that appear rarely in our nega-
tive example paragraphs.

Bi-normal separation (BNS).
The bi-normal separation (BNS for short) method has

been proposed in [4].
We take vectors d+(q) and d−(q) as above. For each word

j ∈ J , we compute the BNS score bj(q) = Φ−1

„
d+j (q)

m+
q

«
−

Φ−1

„
d−j (q)

m−q

«
, where Φ−1(·) is the inverse of the cumulative

distribution function of the standard normal distribution.
Let b̄k(q) be the (k + 1)-th highest value found among the
magnitude of these values |bj(q)|. We build Kk

b (q) = {j ∈
J : |bj(q)| > b̄k(q)}. This method selects words with
divergence between rates of appearance in each paragraph
class using an underlying normal model for appearance rates.
This allows for greater distinction between tail and modal
behavior; extremely rare or common words are assessed by
a different standard than words that appear about half the
time.

χ2 log likelihood (CHI).
Multiple testing problems require identifying the signifi-

cance of numerous hypotheses inferred from common data
simultaneously. We take a hypothesis for each word j ∈ J :
that there exists a significant difference in the appearance
rate of word j between the two document classes. A p-
value for each hypothesis can be calculated, and we assumed
the log-likelihood ratios used in these calculations approxi-
mately follow χ2 distributions. The ranked p-values of each
hypothesis are used to judge these differences and their sig-
nificance. The selection of a threshold for these p-values,
accepting only those hypotheses whose values surpass the
threshold, can lead to control of many types of error rate,
such as the false discovery rate or family wise error rate [1,
16]. We have adapted this method to the feature selection
problem.

We again take d+(q) and d−(q) as above. For each word
j ∈ J , we compute the log-likelihood ratio score fj(q) :

fj(q) = d+
j (q) log

 
d+
j (q)

m+
q

!
+

[m+
q − d+

j (q)] log

 
1−

d+
j (q)

m+
q

!
+

d−j (q) log

 
d−j (q)

m−q

!
+

[m−q − d−j (q)] log

 
1−

d−j (q)

m−q

!
−

[d+
j + d−j ] log

 
d+
j + d−j
m

!
−

[m− d+
j (q)− d−j (q)] log

 
1−

d+
j (q) + d−j (q)

m

!

Let f̄k(q) be the (k+1)-th highest value found among the
magnitude of these values |f |. We build the set of features
for this scheme Kk

χ = {j ∈ J : |fj(q)| > f̄k(q)}.

Breaking ties.
In certain cases, there may be a tie for the k-th highest

score under any of the above schemes. Often this can be
avoid by repeatedly executing the scheme on a subset of the
training data, allowing scores to accumulate for words across
each iteration. We reran each scheme for 10 iterations, hold-
ing out a randomly selected 10% of the training data each
time. This has the added benefit of promoting stability in
the word choices: the effect of outlier paragraphs on word
scores can be muted in this way. Should any ties remain
in the cumulative scores, the wordlist was padded out to a
length of k by randomly and uniformly drawing from among
the words tied for k-th place.

Assumptions of feature independence.
The appeal of the above schemes lies in their scalability.

The order of computational complexity is linear in the num-
ber of distinct words and documents. However, this scalabil-
ity results from an underlying assumption of independence
between the appearances of words across documents. Be-
low, we investigate applications of a more computationally
intensive scheme which may take advantage of dependence
between word use patterns, test whether this approach leads
to better word images, and consider whether the image im-
provement is worth the increased computation costs.

2.3 Logistic regression
Logistic regression is a classical classification method based

on a generalized linear model [5]. For each query q, Take
data points xi ∈ Rn and associated labels yi(q) ∈ {−1, 1},
i = 1, . . . ,m. The logistic regression model is based on the
following expression for the conditional probabilities:

P (yi(q) = 1|xi) =
1

1 + exp(−xTi β − γ)
,

where β ∈ Rn is the vector of regression coefficients in the
model, also referred to as “weights”, and γ ∈ R is an inter-
cept. An estimate of the vector β can be obtained by solving
the corresponding maximum (log-)likelihood problem, which
can be expressed as

(β̂, γ̂) = arg min
β,γ
−L(β, γ), (1)

where

L(β, γ) := −
mX
i=1

log
“

1 + exp(−yi(xTi β + γ))
”

is the log-likelihood function. Logistic regression has been
widely used in data mining and text classification [5].

Sparse logistic regression (L1LR).
Sparse logistic regression (L1LR for short) [5] allows for si-

multaneously performing feature selection and model fitting,
via the introduction of an l1-norm penalty to the maximum-
likelihood problem:

(β̂(λ), γ̂(λ)) := arg min
β,γ
−L(β, γ) + λ

X
j

|βj |, (2)



where λ > 0 is a penalty parameter. The presence of the
l1-norm encourages many components of the estimated vec-
tor β to be zero, an effect that becomes more pronounced as
λ → +∞. The lower bound of λ > 0 and the upper bound
for λ provided by [9] (beyond which all weights of the clas-
sifier are zero) allows for fast binary line search to obtain a

λ such that only k nonzero elements remain in vector β̂(λ).
We used the efficient BBR software described in [5]. We
encountered no need for a tie-breaking mechanism along-
side this process. The search for a λ to produce k nonzero
elements was completed reliably and quickly for all topics
considered; whatever ties might be occurring are handled
by the BBR implementation without a need for additional
preprocessing from us. According to our experiments, for
a fixed λ, the BBR algorithm takes about 15 seconds for a
problem with 87,743 observations and 72,443 words4 when
conducted on a typical laptop computer5. (Computation
times for the independent-model schemes are too small to
measure.) While L1LR is more computationally intensive
than the independent-feature schemes described above, the
speed and efficiency of present implementations and hard-
ware are together sufficient to admit L1LR’s use in analyzing
news data.

In our approach, we used L1LR purely as a feature selec-
tion mechanism. As with the four previous approaches, once
the features are identified this way, we resorted to (unpenal-
ized) logistic regression on the selected features to obtain
the classifier weights.

3. PREDICTIVE PERFORMANCE EVALU-
ATION

Although we do not focus on text classification predictive
performance as an end in itself, we would like to explore
whether classification performance could be used as a proxy
to evaluate which method gives “better” results for this word
imaging task. (We elaborate on what “better” means in Sec-
tion 4 on Human Evaluation.)

Train-test split.
As is standard procedure in machine learning, we have

divided the dataset into two partitions. The documents
from the larger partition are used to train a classifier accord-
ing to a particular model or algorithm, and the predictions
this classifier yields on the smaller partition’s documents are
compared to their true labels. Given a query q, we executed
a random split while ensuring that there are four training
documents for every test document and that the proportion
of positive examples to negative examples are equivalent in
each partition. Rows marked for testing are removed from
data set [X, y(q)] and stacked in test set [Xtest, ytest(q)].

Procedure.
We selected a list of 47 query terms from the list of frequently-

cited countries and regions in our corpus6. For each training

4This reduction in dictionary size reflects not only the re-
moval of stop words in the preprocessing step, but also those
which never appear in the training set.
5The specific hardware had CPU speeds near 2.7GHz, and
64MB of memory was used by the software.
6This list of queries, as well as the words generated from the
training data by each scheme, is provided on our web site,
www.eecs.berkeley.edu/~gawalt/MIR2010/.

set [X, y(q)] associated with each of 47 query words found
in the news corpus, and for a cardinality target k held con-
stant across all schemes, we established five logistic regres-
sion models. k varied across queries from 10 to 17 terms.

We first utilized one of the above feature selection meth-
ods: COOC, D-TFIDF, BNS, CHI, and L1LR. Each in turn
was used to create its own feature set K′, from which a par-
ticular input matrix could be crafted X ′ = {xij : i ∈ I, j ∈
K′}. This matrix, combined with label vector y(q), was used
to produce a logistic regression model (now of dimensional-
ity k, thanks to the pruning of aggressive feature selection),
leading to a vector of coefficients β′ and intercept γ′.

Each of the trained logistic models is then used to gen-
erate predictions ŷ(q) based on Xtest. Given an input test
vector xnew and a logistic model with parameter (β, γ), a
probability

P (xnew | β, γ) =
1

1 + exp(−βTxnew − γ)

can be calculated. For a given threshold p̄, we then predict
the new label as follows:

ŷnew(q) =

(
+1 if P (xnew | β, γ) > p̄,

−1 otherwise.

In our experiments, we used p̄ = 0.5 unless otherwise noted.
The performance of the prediction as compared to the

known, true values in ytest(q) was evaluated according to
four well-known scores: precision, recall, F1 (for a given p̄)
and Area-Under-Curve (AUC, a metric which considers all
p̄ ∈ [0, 1]). Precision measures the ratio of the number of
correct positive predictions #{i : ŷi(q) = 1, ytest

i (q) = 1} to
the number of positive predictions #{i : ŷi(q) = 1}; recall
measures the ratio of number of correct positive predictions
to the number of positive examples #{i : ytest

i (q) = 1}.
As there traditionally exists a tradeoff between these two
measures, the measure F1, which is the harmonic mean of
precision P and recall R, F1 = 2PR

P+R
, can be used as a

summarization of the two.
The AUC score requires a sweep of the p̄ parameter from

0 to 1, establishing true positive rate:

TPR =
#{i : ŷtest

i (q) = 1, ytest
i (q) = 1}

#{i : ytest
i (q) = 1}

and false positive rate:

FPR =
#{i : ŷtest

i (q) = 1, ytest
i (q) = −1}

#{i : ytest
i (q) = −1}

Plotting TPR against FPR for each p̄ ∈ [0, 1] provides the
receiver operator characteristic for the classification model,
and the area under this curve (AUC) is a metric of the
model’s fitness to the data.

Results.
The boxplots for the precision, recall, F1 and AUC met-

rics as calculated for the 47 queries can be found in Figure 2.
Tables 2, 3, 4, and 5 display the results of one-sided paired T-
tests. These tests establish a p-value for the metric’s hypoth-
esis, “Given results for all queries, scheme a scores higher on
this metric than scheme b.” We can see a pattern in these
tables and figures: classification based on features selected
by COOC or BNS underperforms compared to classification
based on features selected by the schemes L1LR, D-TFIDF,



and CHI. These three“winners”are largely indistinguishable
from each other in their effects on predictive performance,
as are the two “losers”. (COOC does outperform BNS on
the metric of precision.)

Figure 2: Statistical Evaluation

L1LR CHI DTF COOC BNS
L1LR 0.29 0.34 0.10 0.03

CHI 0.71 0.62 0.20 0.03
DTF 0.66 0.38 0.16 0.03

COOC 0.90 0.80 0.84 0.14
BNS 0.97 0.97 0.97 0.86

Table 2: Precision. p-values from a one-sided paired
T-test to compare the five different schemes on the
metric of classifier precision, addressing the hypoth-
esis, “Does the scheme indicated by the column out-
perform the scheme indicated by the row?” Signifi-
cant comparisons (p < 0.05) are high-lighted.

4. HUMAN EVALUATION

The Experiment.
We have seen the performance of the five schemes in terms

of classification error. Ideally, for a given query, the main
features selected for classification also capture an inherent
aspect of the query in a given data set. This potential con-
nection is a theory that we aimed to substantiate with a hu-
man validation experiment. In our experiment, human read-
ers were given a survey of 60 questions. For each question,
the subject read three random paragraphs about a query and
selected which of four word lists (as generated by schemes
above) best captured the image of those paragraphs. They
then were asked to identify the common query itself as a
way to validate the paragraphs selected.

L1LR CHI DTF COOC BNS
L1LR 0.96 0.87 0.00 0.04

CHI 0.04 0.11 0.00 0.01
DTF 0.13 0.89 0.00 0.01

COOC 1.00 1.00 1.00 0.73
BNS 0.96 0.99 0.99 0.27

Table 3: Recall. p-values from a one-sided paired
T-test to compare the five different schemes on the
metric of classifier recall, addressing the hypothesis,
“Does the scheme indicated by the column outper-
form the scheme indicated by the row?” Significant
comparisons (p < 0.05) are high-lighted.

L1LR CHI DTF COOC BNS
L1LR 0.91 0.81 0.00 0.02

CHI 0.09 0.17 0.00 0.00
DTF 0.19 0.83 0.00 0.01

COOC 1.00 1.00 1.00 0.54
BNS 0.98 1.00 0.99 0.46

Table 4: F1. p-values from a one-sided paired T-test
to compare the five different schemes on the met-
ric of classifier F1, addressing the hypothesis, “Does
the scheme indicated by the column outperform the
scheme indicated by the row?” Significant compar-
isons (p < 0.05) are high-lighted.

For each human subject, and given the set of queries Q,
we repeated the following steps 60 times:

1. Select two schemes a and b. Select a query q ∈ Q.
Select a “decoy”, r ∈ Q, r 6= q. Select three paragraphs
at random that mention the query but do not mention
the decoy, i.e. select uniformly from the set {i : i ∈
I+(q), i /∈ I+(r)}.

2. Show the subject a screen with the three paragraphs
followed by four word lists, each of a length between 10
and 17 words. The word lists are (in a random order)
the four word lists resulting from running scheme a
over q, scheme b over q, scheme a over r, and scheme
b over r.

3. Ask the reader to pick their first- and second-choice
word lists, among those on display, that best capture
the image of the three paragraphs.

4. On a seperate screen, ask the reader if the three para-
graphs are about q, r, both, or neither.

In this way, a survey question now resembles a trial or con-
test between the two schemes involved. We cycled through
a random permutation of the 10 possible scheme pairings 6
times to balance the head-to-head scheme comparisons. An
order on the set of queries were permuted, instead of sam-
pled with replacement, and taken as the order of the queries
across the 60 questions. For each question, a decoy was
drawn at random. This helped maintain balance in query-
decoy pairings. In all trials, word lists were truncated to
the length of the shortest word list: all lists presented at a



L1LR CHI DTF COOC BNS
L1LR 0.45 0.68 0.00 0.00

CHI 0.55 0.78 0.00 0.00
DTF 0.32 0.22 0.00 0.00

COOC 1.00 1.00 1.00 0.00
BNS 1.00 1.00 1.00 1.00

Table 5: AUC. p-values from a one-sided paired T-
test to compare the five different schemes on the
metric of classifier AUC, addressing the hypothesis,
“Does the scheme indicated by the column outper-
form the scheme indicated by the row?” Significant
comparisons (p < 0.05) are high-lighted.

time were the same length. Since all schemes score their fea-
tures, truncation always took those features with the highest
magnitude weights.

In each question, there are three categories of responses
step (3) could elicit. First, the list of scheme a over q could
be selected as the best; second, the list of scheme b over q
could be selected as the best. In both these cases, the re-
sponse presents a datum in evidence of a outperforming b
or b outperforming a, respectively. Third, the reader could
select either a or b over r. This outcome suggests either that
a and b are of low quality, or that the paragraphs fail to es-
tablish the image of the query. This is where the response to
step (4) is useful; if the reader was able to correctly identify
the query but rejected either scheme’s image of that query,
then this is evidence that the schemes are at fault. When
the reader was unable to correctly name the query based on
the paragraphs, the response to (3) was dropped from the
analysis.

Survey responses.
Five different versions of the above survey were adminis-

tered to five of the project’s undergraduate assistants. In
60% of the responses, only one list was picked (there was no
second-choice word list given). 27% of responses had both
a first- and second-choice selected. The remaining 13% had
no response at all. Table 6 shows the number of times each
scheme was picked first, picked second, not picked at all
(“skipped”), or lost out to a selection of a decoy list (“bad”).
Questions for which the subject indicated the paragraphs
were not about the query (10% of all replies), or were about
both query and the decoy (6%), were not included in the
below analysis.

L1LR COOC DTF CHI BNS
first 60 50 37 15 10

second 8 12 8 3 6
skipped 21 28 48 78 54

bad 3 9 6 11 29
total 92 99 99 107 99

Table 6: Number of times each scheme was picked
first, second, not at all, or picked below a decoy list.

In Table 7 we show the p-values for the hypotheses,“Scheme
a was selected at a higher rate than simple random chance,”
comparing the rate at which a scheme was selected as a first-
choice to the 1 in 4 chance it would have if selected at com-

plete random on each question. The results suggest L1LR,
COOC, and D-TFIDF score well; BNS and CHI do not. This
test is a conservative measure, however, of a scheme’s effec-
tiveness at imaging. It is not necessary for this test that
BNS or CHI lists be themselves of low quality, only that
they rarely exhibit a quality sufficient to be picked ahead of
another scheme’s list. We examine the dynamics of head-
to-head selection of one scheme over another in the next
section.

picked n p̂ P -value
L1LR 60 92 0.65 0.000

COOC 50 99 0.51 0.000
DTF 37 99 0.37 0.004
CHI 15 107 0.14 0.998
BNS 10 99 0.10 1.000

Table 7: First column is the number of trials a
scheme was picked first for valid paragraph sets.
Second column is number of trials where the scheme
appeared at all. p̂ is proportion of time process was
picked first. p-value is for a one-sided binomial test
against α = 0.25.

Comparing the schemes.
For a given survey question, a scheme’s word list over the

query can be picked first, picked second, or not picked. If a
question pits scheme a against scheme b, we score the contest
as being for a if a’s query list is picked first, for b if the b’s
query list is picked first, and a tie otherwise. Responses
where a decoy list was picked first, instead of either query
list, suggest that the quality of neither schemes’ list was
satisfactory.

If scheme a is superior to scheme b, evidence of this could
be found two ways. First, a could be picked more often than
b in the head-to-head contests between the two. Second,
the rate at which a is selected over a third scheme c in a-c
contests could surpass the rate at which b is selected over c
in b-c contests. We combine evidence of both kinds to create
an overall test statistic of scheme performance.

Each survey provides six passes through the 10 possible
question pairings for our five schemes. One of these ques-
tions on a given pass is the head-to-head contest of a and b.
Three questions involve pitting a vs. c, d, or e, and three
questions involve pitting b vs. c, d, or e. The remaining
questions concern neither a nor b.

For the head-to-head contests, the null hypothesis con-
tending that there is no difference in imaging capability be-
tween a and b holds a 50% chance of a being picked (taking
as given that one of them was picked at all). We can test
this hypothesis with a binomial test with α = 0.5. Let the
resultant p-value be p1(a, b).

Under the null hypothesis there is no difference between
a and b, there is common probability η of either a or b being
picked over c, d, or e in those contests — the rate at which a
beats any of the other three should equal the rate b beats any
of the other three if the two schemes are of equal quality.7

7Actually, this η could be different depending on the oppo-
nent being c, d, or e (assuming topics are random). There
is thus a mixture, but the marginal probabilities will be the
same when integrating out the other processes.



We test this using the (approximate) χ2 test on the two-way
table of process vs. being picked first. (As long as the data
determining a’s performance over the others is independent
of those of b, this test is a valid construction.) Let the
resultant p-value be p2(a, b).

For a pair of schemes a and b, p1(a, b) and p2(a, b) are inde-
pendent of each other, as they are derived from independent
sets of trials. Let our test statistic of scheme quality differ-
ence be the product of the two p-values, B(a, b) ≡ p1(a, b) ·
p2(a, b). If the tests behind p1(a, b) and p2(a, b) were contin-
uous and exact, then under the null the p-values are inde-
pendent random variables distributed uniformly: pi(a, b) ∼
Uni[0, 1]. The cumulative density function of B(a, b) un-
der the null hypothesis, and equivalently B(a, b)’s p-value,
is then:

P{B ≤ b} = b(1− log b)

The smaller the measurement of B(a, b), the more extreme
the difference between the two processes.

Although both tests are asymptotically exact and contin-
uous, p1(a, b) is a binomial test, which is exact and discrete
and p2(a, b) is a χ2 test on the 2 × 2 table of Scheme ×
Win-Loss count, which is approximate and asymptotically
exact;8, making our final p-values for the B(a, b)-statistics
also approximate. We therefore verified the results with a
permutation test on the distribution of B(a, b) results did
not substantively change.

Interpreting a significant result with this test requires a
modicum of care. The overall test is built out of two bi-
directional tests. If these are in different directions, and we
have a significant result, then we can say that the processes
differ but not that they are ordered. Furthermore such a sit-
uation would call into question whether we could order the
processes overall, and would unveil that they perform in con-
text. If both sub-tests are in the same direction then we can
interpret it as we interpret any normal test of difference—the
larger/better thing is significantly larger or better. But we
must remember we are testing for difference in something
potentially more complex than a single dimension, and so
ordering is not necessarily well defined.

Results.
Using the above test statistic, we get the results shown in

Table 8. For readability, B(a, b) has been log-transformed so
the scale is not tiny and so higher values are more extreme.
We have 10 hypothesis that are definitely related. Under
a Bonferroni correction, all tests are significant except for
L1LR vs COOC, COOC vs D-TFIDF, and CHI vs BNS. We
can conclude that L1LR is better than all the other methods
except, possibly, COOC. All sub-tests for significant B(a, b)
are in alignment — p1(a, b) always agreed with p2(a, b) over
which scheme appeared preferable — so interpretation is
more straightforward.9

The direction of all head-to-head comparisons produces
the order: L1LR, COOC, D-TFIDF, CHI, BNS. All pairwise
8Although we made the values for p2(a, b) more exact using
a Monte Carlo method.
9There is measured disagreement in the two sub-tests only
when comparing CHI and BNS: CHI wins in head-to-head
contests against BNS, but BNS is selected over L1LR, D-
TFIDF, and COOC more often than CHI is. However, the
degree of discrepancy over all is not enough to rise to a level
of statistical significance, and so the matter of interpretation
is moot.

comparisons follow this ordering. Although the top three are
not entirely separated, given our original hypothesis that
L1LR would produce better lists due to its consideration
of interfeature collinearity, the above data do suggest its
superiority. Furthermore, the p-value for the comparison of
L1LR to COOC went down to 0.04 under the more exact
permutation test.

Our experiment asked readers to sort out four objects of
moderate complexity in relation to groups of three small
blocks of text. We extend their assessment of these to the
entire corpus of data. Our conclusions are still dependent
on a large number of conditions and assumptions. For ex-
ample, we need to verify more substantively whether the
cognitive load of the readers’ task is reasonable; we should
certainly assess how long the lists can be before they are
too difficult to evaluate. Another piece of future work is to
give the same randomly selected items to multiple people
to assess inter-rater reliability, i.e., whether there is much
noise introduced by readers’ assessments. We want this to
be low, since that strengthens the argument that the results
(e.g., that a given process generates better word lists) are
generally true rather than individual-specific. Sample size is
also, of course, of concern. To bring greater power to these
tests, and to convince ourselves of the generalizability of
our results, we plan on running a wider array of human val-
idation studies with larger number of participants to better
substantiate our preliminary findings.

5. CONCLUSIONS
Social scientists engaged in media studies can find many

useful tools in the literature of text classification techniques.
By allowing quick summarization of words and concepts as
they are portrayed in the media, an approach from machine
learning can provide a useful starting point on the analysis
of how news media may shape readers’ perceptions of the
world. But we need to assess quality of these instruments by
means other than simple classification performance. As an
alternative, we conducted human evaluations of word lists.
We find it is important to avoid evaluating feature selection
schemes solely on standard predictive error metrics when the
objects of interest are the features themselves.

Over these news data, three selection schemes we have
studied perform more or less equivalently superior to the
remaining two in terms of predictive performance: sparse
logistic regression (L1LR), Delta-TF-IDF and the χ2 like-
lihood ratio score. However, when the list quality of these
three schemes is assessed by human readers that we find the
L1LR scheme pulls distinctly ahead, coming out on top in
both dimensions of qualtiy. The added computational inten-
sity is likely worth the improved quality, though this claim
requires further investigation.

Additional further research will concentrate on solidify-
ing our human evaluation surveys with larger sample sizes;
addressing new and more informative schemes building off
of regularized classifier training; speeding computation; and
seeking greater input from true intended end users to ensure
that design priorities maintain productive alignment. It is
hoped that our approach can guide the development of ma-
chine learning algorithms and performance metrics that are
well attuned to human requirements in word imaging tasks
for media studies.



Sch. a Sch. b % a n p1 %a−%b na, nb p2 −logB p-value
L1LR COOC 70 23 0.115 9 69,76 0.300 3.4 0.151
L1LR DTF 60 22 0.503 31 70,77 0.000 8.3 0.002
L1LR CHI 95 26 0.000 46 66,81 0.000 17.1 0.000
L1LR BNS 94 21 0.000 50 71,78 0.000 15.8 0.000

COOC DTF 62 25 0.383 11 74,74 0.257 2.3 0.327
COOC CHI 95 27 0.000 26 72,80 0.001 17.0 0.000
COOC BNS 75 24 0.077 43 75,75 0.000 10.2 0.000

DTF CHI 67 26 0.302 25 73,81 0.001 8.1 0.003
DTF BNS 79 26 0.057 26 73,73 0.001 9.8 0.001
CHI BNS 80 28 0.109 -2 79,71 0.785 2.5 0.297

Table 8: Comparing Scheme Performance, Head-to-Head. By column: the name of scheme a; the name of
scheme b; rate at which a beat b in the number n of head-to-head a v. b contests; associated p1(a, b) value;
the rate a beat any third scheme minus that of b’s; total number of such third-party contests for scheme a, b;
associated p2(a, b) value; negative logarithmic transform of B(a, b) score, and B(a, b)’s p-value. Scheme victories
scored by counting the number of times they were picked first. Direct contests between a and b with no
first-place winner are dropped. Contests between either a or b vs. any of the others are counted as win if a
or b was picked first and a loss otherwise. Contests where the content validation step (on the paragraphs)
failed (as in paragraphs deemed not about the target topic) also dropped; thus the ns (and power) vary by
test. p-values suggesting scheme a significantly outperforms scheme b highlighted.
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