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ABSTRACT

Particle filters are ensemble-based assimilation schemes that, unlike the ensemble Kalman filter, employ
a fully nonlinear and non-Gaussian analysis step to compute the probability distribution function (pdf) of
a system’s state conditioned on a set of observations. Evidence is provided that the ensemble size required
for a successful particle filter scales exponentially with the problem size. For the simple example in which
each component of the state vector is independent, Gaussian, and of unit variance and the observations are
of each state component separately with independent, Gaussian errors, simulations indicate that the re-
quired ensemble size scales exponentially with the state dimension. In this example, the particle filter
requires at least 10'" members when applied to a 200-dimensional state. Asymptotic results, following the
work of Bengtsson, Bickel, and collaborators, are provided for two cases: one in which each prior state
component is independent and identically distributed, and one in which both the prior pdf and the obser-
vation errors are Gaussian. The asymptotic theory reveals that, in both cases, the required ensemble size
scales exponentially with the variance of the observation log likelihood rather than with the state dimension
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per se.

1. Introduction

Ensemble methods for data assimilation are pres-
ently undergoing rapid development. The ensemble
Kalman filter (EnKF), in various forms, has been suc-
cessfully applied to a wide range of geophysical systems
including atmospheric flows from global to convective
scales (Whitaker et al. 2004; Snyder and Zhang 2003),
oceanography from global to basin scales (Keppenne et
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al. 2005), and the land surface (Reichle et al. 2002).
Particle filters are another class of ensemble-based as-
similation methods of interest in geophysical applica-
tions. [See Gordon et al. (1993) or Doucet et al. (2001)
for an introduction. |

In their simplest form, particle filters calculate pos-
terior weights for each ensemble member based on the
likelihood of the observations given that member. Like
the EnKF, particle filters are simple to implement and
largely independent of the forecast model, but they
have the added attraction that they are, in principle,
fully general implementations of Bayes’s rule and ap-
plicable to highly non-Gaussian probability distribu-
tions. Unlike the EnKF, however, particle filters have
so far mostly been applied to low-dimensional systems.
This paper examines obstacles to applying particle fil-
ters in high-dimensional systems.
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Both particle filters and the EnKF are Monte Carlo
techniques—they work with samples (i.e., ensembles)
rather than directly with the underlying probability
density function (pdf). Naively, one would expect such
techniques to require ensemble sizes that are large rela-
tive to the dimension of the state vector. Experience
has shown, however, that this requirement does not
hold for the EnKF if localization of the sample covari-
ance matrix is employed (Houtekamer and Mitchell
1998, 2001; Hamill et al. 2001). The feasibility of the
EnKF with ensemble sizes much smaller than the state
dimension also has theoretical justification. Furrer and
Bengtsson (2007) and Bickel and Levina (2008) exam-
ine the sample covariance structure for reasonably
natural classes of covariance matrices and demonstrate
the effectiveness of localizing the sample covariance
matrix.

There is much less experience with particle filters in
high dimensions. Several studies have presented results
from particle filters and smoothers for very low di-
mensional systems, including that of Lorenz (1963) and
the double-well potential (Pham 2001; Kim et al. 2003;
Moradkhani et al. 2005; Xiong et al. 2006; Chin et al.
2007). Both van Leeuwen (2003) and Zhou et al.
(2006), however, apply the particle filter to higher-
dimensional systems. Van Leeuwen (2003) considers a
model for the Agulhas Current with dimension of
roughly 2 X 10°, and Zhou et al. (2006) use a land
surface model of dimension 684. We will return to the
relation of our results to their studies in the concluding
section.

One might expect that particle filters, which in es-
sence attempt to approximate the full pdf of the state,
will be substantially more difficult to apply in high di-
mensions than the EnKF, which only involves approxi-
mation of the mean and covariance. The estimation of
continuous pdfs is known to suffer from the “curse of
dimensionality,” requiring computations that increase
exponentially with dimension (Silverman 1986).

We argue here that high-dimensional particle filters
face fundamental difficulties. Specifically, we explore
the result from Bengtsson et al. (2008) and Bickel et al.
(2008) that, unless the ensemble size is exponentially
large in a quantity 7%, the particle-filter update suffers
from a “collapse” in which with high probability a
single member is assigned a posterior weight close to
one while all other members have vanishingly small
weights. The quantity 72 is the variance of the observa-
tion log likelihood, which depends not only on the state
dimension but also on the prior distribution and the
number and character of observations. As will be dis-
cussed later, 7> may be considered an effective dimen-
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sion as it is proportional to the dimension of the state
vector in some simple examples.

The tendency for collapse of weights has been re-
marked on previously in the geophyscial literature
(Anderson and Anderson 1999; Bengtsson et al. 2003;
van Leeuwen 2003) and is also well known in the par-
ticle-filtering literature, where it is often referred to as
“degeneracy,” “impoverishment,” or “sample attri-
tion.” Unlike previous studies, however, we emphasize
the collapse of weights as a fundamental obstacle to
particle filtering in high-dimensional systems, in that
very large ensembles are required to avoid collapse
even for system dimensions of a few tens or hundreds.!

Because of the tendency for collapse, particle filters
invariably employ some form of resampling or selection
step after the updated weights are calculated (e.g., Liu
2001), in order to remove members with very small
weights and replenish the ensemble. We do not analyze
resampling algorithms in this paper but rather contend
that, whatever their efficacy for systems of small dimen-
sion and reasonably large ensemble sizes, they are un-
likely to overcome the need for exponentially large en-
sembles as 7> grows. Resampling proceeds from the
approximate posterior distribution computed by the
particle filter; it does not improve the quality of that
approximate posterior.

The particle filter can also be cast in the framework
of importance sampling (see Doucet et al. 2001 for an
introduction), which allows one to choose the proposal
distribution from which the particles are drawn. All the
analysis in this paper assumes that the proposal is the
prior distribution, a simple and widely used approach.
Although the possibility is yet to be demonstrated,
clever choices of the proposal distribution may be able
to overcome the need for exponentially large ensemble
sizes in high-dimensional systems.

The outline of the paper is as follows. In section 2, we
review the basics of particle filters. Section 3 illustrates
the difficulty of particle filtering when 72 is not small
through simulations for the simplest possible example:
a Gaussian prior and observations of each component
of the state with Gaussian errors, both of which have
identity covariance. In section 4, we derive (following
Bengtsson et al. 2008) an asymptotic condition on the
ensemble sizes that yield collapse when both the prior
and observation errors are independent and identically

! This obstacle is equally relevant to a related class of “mixture”
filters in which the prior ensemble serves as the centers for a
kernel density estimate of the prior (Anderson and Anderson
1999; Bengtsson et al. 2003; Smith 2007). These filters also involve
the calculation of the weight of each center given observations,
and thus are subject to similar difficulties.
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distributed in each component of the state vector. Sec-
tion 5 extends those results to the more general case of
Gaussian priors and Gaussian observation errors. Sec-
tion 6 briefly discusses the effect of a specific heavy-
tailed distribution for the observation error.

2. Background on particle filters

Our notation will generally follow that of Ide et al.
(1997) except for the dimensions of the state and ob-
servation vectors and our use of subscripts to indicate
ensemble members.

Let x of dimension N, be the state of the system
represented in some discrete basis, such as the values of
all prognostic variables on a regular grid. Since it can-
not be determined exactly given imperfect observa-
tions, we consider x to be a random variable with pdf
p(x).

The subsequent discussion will focus on the update of
p(x) given new observations at some time ¢ = £,. That is,
suppose that we have both a prediction p[x(¢,)] and a
vector of observations y that depends on x(%,) and has
dimension N,. {To be more precise, p[x(f,)] is condi-
tioned on all observations prior to ¢ = #,. Since all pdfs
here pertain to ¢t = ¢, and will be conditioned on all
previous observations, in what follows we suppress ex-
plicit reference to ¢, and the previous observations.} We
wish to estimate p(xly), the pdf of x given the observa-
tions y, which we will term the posterior pdf.

For simplicity, let the observations have a linear re-
lation to the state and be subject to additive random
errors e:

y=Hx+e 1)

More general observation models are of course possible
but (1) suffices for all the points we wish to make in this
paper.

The particle filter begins with an ensemble of states
{x/,i=1,..., N, that is assumed to be drawn from
p(x), where the superscript f (for “forecast”) indicates a
prior quantity. The ensemble members are also known
as particles. The update step makes the approximation
of replacing the prior density p(x) by a sum of delta
functions, N, '=N-,8(x — x{). Applying Bayes’s rule
yields

p(ylx)p(x)
pixly) =————
j p(yx)p(x) dx

where the posterior weights are given by

f
= POKD 3)

i N,
> plylx])
j=1

Ne
=2 wax—x{), @
i=1
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In the posterior, each member x/ is weighted according
to how likely the observations would be if x/ were the
true state.

If one of the likelihoods p(ylx{) is much larger than
the rest, maxw; will be close to 1 and the particle filter
approximates the posterior pdf as a single point mass.
The particle-filter estimates of posterior expectations,
such as the posterior mean

Ne
E(xly) = J xXp(xly) dx ~ Zl wix, )

may then be poor approximations. We will loosely term
this situation, in which a single member is given almost
all the posterior weight, as a collapse of the particle
filter. The goal of our study is to describe the situations
in which collapse occurs, both through the rigorous as-
ymptotic results of Bengtsson et al. (2008) for large N,
and N, and through simulations informed by the as-
ymptotics.

3. Failure of the particle filter in a simple example

We next consider a simple example, in which the
prior distribution p(x) is Gaussian with each compo-
nent of x independent and of unit variance and the
observations y are of each component of x individually
with independent Gaussian errors of unit variance.
More concisely, consider N, = N,, H = I, x ~ N(0, 1),
and € ~ N(0, I), where the symbol ~ means “is distrib-
uted as” and N(p, P) is the Gaussian distribution with
mean p and covariance matrix P.

Figure 1 shows histograms for maxw; from simula-
tions of the particle-filter update using N, = 10, 30, and
100, and N, = 10°. In the simulations, x, €, and an
ensemble {x/, i = 1, ..., N,} are drawn from N(0, I).
Weights w; are then computed from (3). The histograms
are based on 10° realizations for each value of N,.

The maximum w; is increasingly likely to be close to
1 as N, and N, increase. Large weights appear occa-
sionally in the case N, = 10, for which maxw; > 0.5 in
just over 6% of the simulations. Once N, = 100, the
average value of maxw, over the 10° simulations is
greater than 0.8 and maxw; > 0.5 with probability 0.9.
Collapse of the weights occurs frequently for N, = 100
despite the ensemble size N, = 10°.

Two comparisons illustrate the detrimental effects of
collapse. The correct posterior mean in this Gaussian
example is given by x* = (x/ + y)/2, where the super-
script a (for “analysis”) indicates a posterior quantity
and the prior mean x” = 0 in this example. The expected
squared error of x* is E(x* — x?) = [E(xX — x” +
E(ly — xI*)]/4 = N./2, while that of the observations
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Fi1G. 1. Histograms of maxw, for N, = 10, 30, and 100 and N, =
10° from the particle-filter simulations described in text: N, = 10,
x ~ N(,1), N, = N,,H =1, and € ~ N(0, I).

[E(ly — xI*)] is equal to N,. The posterior mean esti-
mated by the particle filter,

N,
X' = E wx!,
=1

has squared error of 5.5, 25, and 127 for N, = 10, 30,
and 100, respectively, when averaged over the simula-
tions. Thus, X? has error close to that of x“ only for
N, = 10. For N, = 100, collapse of the weights is pro-
nounced and X is a very poor estimator of the posterior
mean—it has larger errors than either the prior or the
observations.

As might be expected, the effects of collapse are also
apparent in the particle-filter estimate of posterior vari-
ance, which is given by Sw/lx/ — &“*. The correct pos-
terior variance is given by E(Ix — x“?) = N,/2, yet the
particle-filter estimates (again averaged over 10° simu-
lations) are 4.7, 10.5, and 19.5 for N, = 10, 30, and 100,
respectively. Except for N, = 10, the particle-filter up-
date significantly underestimates the posterior variance,
especially when compared with the squared error of X“.
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FIG. 2. The ensemble size N, as a function of N, (or N,) re-
quired if the posterior mean estimated by the particle filter is to
have average squared error less than the prior or observations, in
the simple example considered in the text. Asterisks show the
simulation results, averaged over 400 realizations. The best-fit line
is given by log, N, = 0.05N, + 0.78.

The natural question is how large the ensemble must
be in order to avoid the complete failure of the update.
This example is tractable enough that the answer may
be found by direct simulation: for various N,, we simu-
late with N, = 10 X 2* and increase k until the average
squared error of X is less than that of the prior or the
observations. We emphasize that this merely requires
that the particle-filter estimate of the state is no worse
than simply relying on the observations or the prior
alone (i.e., that the particle filter “does no harm”). The
N, required to reach this minimal threshold is shown as
a function of N, (or N,) in Fig. 2.

The required N, appears to increase exponentially
in N,. The limitations this increase places on implemen-
tations of the particle filter are profound. For N, =
N, = 90, somewhat more than 3 X 10> ensemble mem-
bers are needed. Ensemble sizes for larger systems can
be estimated from the best-fit line shown in Fig. 2. In-
creasing N, and N, to 100 increases the necessary en-
semble size to just under 10°, while N, = N, = 200
would require 10'" members.

The exponential dependence on N, is also apparent
in other aspects of the problem. Figure 3 shows the
minimum N, such that maximum w; (averaged over 400
realizations) is less than a specified value. For each of
the values 0.6, 0.7, and 0.8, the required N, increases
approximately exponentially with N.

4. Behavior of weights for large N,

The previous example highlights potential difficulties
with the particle-filter update but does not permit more
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FIG. 3. The ensemble size of log,,N, as a function of N, (or N,)
such that maxw; averaged over 400 realizations is less than 0.6
(plus signs), 0.7 (circles), and 0.8 (asterisks) in the simple example
considered in the text.

general conclusions. Results of Bengtsson et al. (2008),
outlined in this section and the next, provide further
guidance on the behavior of the particle-filter weights.
Our discussion will be largely heuristic; we refer the
reader to Bengtsson et al. for more rigorous and de-
tailed proofs.

a. Approximation of the observation likelihood

Suppose that each component ¢; of € is independent
and identically distributed (i.i.d.) with density f(). Then
for each member x/, the observation likelihood can be
written as

p(yix) = [T 0y, = ()], 5)

where y; and (Hx/ ); are the jth components of y and
Hx/, respectively. An elementary consequence of (5) is
that, given y, the likelihood depends only on N,, () and
the prior as reflected in the observed variables
Hx. There is no direct dependence on the state dimen-
sion N,.

Defining () = log f(),

Ny Ny

P(Y|X{) = exp{E d‘[}’, - (HX{)/]} = exp( _E Vij>7
j=1 j=1

(6)

where V;; = —y[y;, — (Hx/)], the negative log likeli-

hood of the jth component of the observation vector
given the ith ensemble member. It is convenient to cen-
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ter and scale the argument of the exponent in (6) by
defining

Ny
Si = (E szf_M>71a (7a)
j=1
where
Ny Ny
o= Z E(V;) and = Var<2 V,-j> - (7b)
j=1 =1
Then (6) becomes
p(yIx]) = exp(—p — 7)), @®)

where S, has zero mean and unit variance. The simplest
situation (as in the example of section 3) is when the
random variables V;, j = 1, ..., N,, are independent
given y, so that

Ny
7= 2 Var(Vl-]-|y).
j=1

Because S; is a sum of N, random variables, its distri-
bution will often be close to Gaussian if N, is large.
When V;;,j = 1,..., N,, are independent given y, the
distribution of §; on any fixed, finite interval ap-
proaches the standard Gaussian distribution for large
N, if the Lindeberg condition holds with probability
tending to 1 (see Durret 2005, section 2.4a). More gen-
erally, the approximate normality of S; holds for any
observation error density f() such that [f'7<(¢) dt is
finite for some € > 0 and when the V;; are not i.i.d. but
have sufficiently similar distributions and are not too
dependent (see Bengtsson et al. 2008). We note in pass-
ing that the requirement that the V;; be not too depen-
dent as N, increases means that N, must become large
as well and also that the components of the state vector
are not strongly dependent. The pdf of the x/ must also
have a moment-generating function, but is otherwise
unconstrained. We will return to the role of N, in the
collapse later.

Equation (8) together with the approximation S; ~
N(0, 1) is the basis for the asymptotic conditions for
collapse derived in section 4b. They allow statements
about the asymptotic behavior of likelihood, and thus
of the w;, for large sample sizes N, and large numbers of
observations N,, using asymptotic results for large
samples from the standard normal distribution.

Showing that the approximation S; ~ N(0, 1) is ad-
equate for our purposes is nontrivial, since the behavior
in the tails of the distribution is crucial to the deriva-
tions but convergence to a Gaussian is also weakest
there. The interested reader will find details and proofs
in Bengtsson et al. (2008). In fact, the approximation is
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adequate when the S;s are distributed as noncentral x>
variables with N, degrees of freedom, which is exactly
the case when the observations themselves are Gauss-
ian. As the study of Bengtsson et al. (2008) shows, the
adequacy of the Gaussian approximation for the S§;
holds if ¢ = logf has a moment generating function, for
instance if f is Cauchy. In what follows, however, we
will assume that S; ~ N(0, 1) holds in a fashion which
makes succeeding manipulations valid.

b. Heuristic derivation of conditions for collapse

Using (8), the maximum weight w(y , can be ex-
pressed as

Ne
Win,) = <1 + 22 exp{—[S; — S(l)]}>l’ )

where S, is the ith-order statistic of the sample {S;, i =
1,..., N,).? Defining

Ne
Ir= E exp{—[S, — Sl (10)
i=2
we then have
W, = V(1 +T). (11)

Collapse of the particle-filter weights occurs when T
approaches zero.

To obtain asymptotic conditions for collapse, we next
derive an expression for E(T') for large N, and N, by
approximating E[T'S;)] and then taking an expectation
over the distribution of S,,. For an expectation condi-
tioned on Sy, the sum in (10) may be replaced by a sum
over an unordered ensemble with the condition §; >
S)- In that case the expectation of each term in the
sum will be identical and

E[T|Sy)] = (N, = DE(exp{ — 7S = S, )I}), (12)

where S is drawn from the same distribution as the S,
but with values restricted to be greater than .

We now proceed with the calculation under the as-
sumption that S, ~ N(0, 1). Then S has the density

(P(z)/6[s(])]a z> S(l)’
p@) =
0, = S(])’

where ¢() is the density for the standard normal distri-
bution and ®(x) = [Te¢(z) dz. Writing the expectation
explicitly with the density of S yields

N,—1
H”%JZEEjJMfW*ﬂZ‘%m“””°

(13)

% In other words, S, is the minimum of the sample, S, is the
next smallest element, and so on until the maximum, Sy,
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Next, we replace ¢(z) by (2m) "2 exp(—z*2) in the
integrand in (13), complete the square in the exponent,
and use the definition of ®(x) to obtain the following:

(N, — 1) exp[7Sy, + 72107 + S;1)]

E[T|S(1)] = E[S(l)]

(14)

The behavior of Gaussian order statistics, such as the
minimum of a sample, are well known (David and Na-
garaja 2003). An important result is that,’ as N, — o,

Say=—V2logN, + 0,(1).

Thus, since S, is becoming large and negative, E[S(l)]
approaches 1 and may be ignored in (14) when calcu-
lating the asymptotic behavior of E(T1S)).

Now suppose that 7/\/log N, — » as N, — . In this
limit, 7 + S, =~ 7(1 — \/2 log N,/7) — = and so, by the
standard approximation to the behavior of ® for large
positive values of its argument:

QD[T + S(l)]
T+ 8y

(15)

Dt + 8] = [1+0,(1)], (16)

which may be easily derived with integration by parts

(e.g., see section 6.3 of Bender and Orszag 1978).
Substituting (16) in (14), we conclude after some al-

gebra* that

e[Sl V2 10gN,

E[T|S(1)] ~(N,—1) |S(1)| r

17
But, reversing the reasoning that led to (16) gives
(P[S(l)]/l S(])l ~ q)[S(l)], where (I)(x) =1- (I)(x) is the
cumulative distribution function (cdf) for the standard
Gaussian. Thus,

\/2 logN,

E[T|S(1)] ~ NeCD[S(])] T (18)
as N, - .
Taking the expectation of (18) over S(;, then gives

\/2logN,
—

E(T) = E[V/wp,] — 1~ (19)
To see this, recall that evaluating the cdf of a random
variable at the value of the random variable, as in
d(S,), yields a random variable with a uniform distri-
bution on [0, 1]. This property underlies the use of rank

3 If a random variable X depends on a parameter a, we write
X(a) = o,(1) as (say) a — « if Pr(IX] = §) — 0 for all = 0.

* To derive (17), we have included a factor of S| ~'"V2log N, =
1 + 0,(1/Vlog N,) on the rhs in order to simplify the manipula-
tions that follow.
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histograms as diagnostics of ensemble forecasts (Hamill
2001 and references therein) and is known in statistics
as the “probability integral transform.” Thus, ®[S ] is
distributed as the minimum of a sample of size N, from
a uniform distribution and E{®[S)]} ~ 1/N,. In the
next section, we will confirm (19) with direct simula-
tions.

Equation (19) implies that the particle filter will suf-
fer collapse asymptotically if N, < exp(7°/2). More gen-
erally, N, must increase exponentially with 7* in order
to keep E[1/wy,] fixed as 7 increases. This exponential
dependence of N, on 72 is consistent with the simulation
results of section 3, where 72 « N,

In contrast to the most obvious intuition, the asymp-
totic behavior of wy given in (19) does not depend
directly on the state dimension N,. Instead, the situa-
tion is more subtle: 72, a measure of the variability of
the observation priors, controls the maximum weight.
The dimensionality of the state enters only implicitly,
via the approximation that S; is asymptotically Gauss-
ian, which requires that N, be asymptotically large. One
can then think of 72 as an equivalent state dimension, in
the sense that 7° is the dimension of the identity-prior,
identity-observation example (in section 3) that would
have the same collapse properties.

5. The Gaussian—Gaussian case

The analysis in the previous section focused on situ-
ations in which the log likelihoods for the observations
(considered as random functions of the prior) were mu-
tually independent and identically distributed. In gen-
eral, however, the observation likelihoods need not be
i.i.d., since the state variables are correlated in the prior
distribution and observations may depend on multiple
state variables. In this section, we consider the case of a
Gaussian prior, Gaussian observation errors, and linear
H, where analytic progress is possible even for general
prior covariances and general H.

Let the prior x ~ N(0, P) and the observation error
e ~ N(0, R). We may assume that both x and e have
mean zero since, if the observations depend linearly on
the state, E(y) = HE(x) and p(ylx) is unchanged if y is
replaced by y — E(y) and x by x — E(x).

For Gaussian observation errors €, the transforma-
tion y' = R~y also leaves p(y/x) unchanged but re-
sults in cov(e’) = cov(R™"?€) = I. Further simplifica-
tion comes from diagonalizing cov(R™"?Hx) via an ad-
ditional orthogonal transformation in the observation
space. Let y’ = Q"y’, where Q is the matrix of eigen-
vectors of cov(R*I/sz) with corresponding eigen-
values 7, j = 1, ,; then cov(Q'R™?Hx) = diag
(AL, .. A2 s whlle € = QTe’ still has identity covari-
ance and p(ylx) is again unchanged because Q is or-
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thogonal. [Anderson (2001) presents a similar transfor-
mation that diagonalizes the problem in terms of the
state variables, rather than the observation variables.]
We therefore assume, without loss of generality, that

R =1, cov(Hx)=HPH" = diag(A,..., )\,Zvy), (20)

and drop primes in the sequel.

a. Analysis of the observation likelihood

With the assumptions in (20), the observation errors
are independent, so p(ylx/) can be written in terms of a
sum over the log likelihoods V;; as in (6). In addition,
the pdf for each component of the observations is
Gaussian with unit variance and, given x/, mean Hx/.
Thus,

1 -
Vij = _E[Yj - (Hx'i)j] +c.
The additive constant ¢ results from the normalization
of the Gaussian density and may be omitted without
loss of generality, since it cancels in the calculation of
the weights w;.

We wish to approximate the observation likelihood
as in (8). This requires E 1V, to be approximately
Gaussian with mean w and Varlance 7. Leaving aside
for the moment the conditions under which the sum is
approximately Gaussian, the mean and variance giveny
of =,V can be calculated directly using (20) together
with the properties of the standard normal distribution
and the fact that the V;; are independent as j varies [as
in (7b)]. This yields

Ny Ny
bS] =330

(21a)

and

T —var(EV,/>—E (; /+y/> (21b)

Equations (21) still depend on the specific realization
y of the observations. Proceeding rigorously would re-
quire taking the expectation of (19) over y. Here, we
simply assume that expectation may be approximated
by replacing 7 in (19) by its expectation over y. Using
the fact that E(y;) = A7 + 1, we have

1
E(w) = —5 2, 2\ +1) (222)
j=1
and
Ny 3
E) =, Af(l +3 Af) (22b)
j=1

As discussed in section 3 of Bickel et al. (2008), if

M=\ , the distribution of §; = (ZV,; — )/t
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FIG. 4. Evaluation of (19) against simulations in the case A7 = 1,j = 1,..., N,. For each
of 60 (N,, N,) pairs as detailed in the text, E[1/wy,] was estimated from an average of 1000
realizations of the particle-filter update. The best-fit line to the data, given by E[1/wy,] —

1 = —0.006 + 0.964
is shown by a dashed line.

converges to a standard Gaussian as N, — o if and
only if

Ny
Do (23)
j=1

That is, S; converges to a Gaussian when no single
eigenvalue or set of eigenvalues dominate the sum of
squares: (23) implies that max;(A7)/2A7 — 0 as N, — .
The condition (23) also means that 7> — o, which in
turn leads to collapse if log N,/7° — 0.

On the other hand, in the case that (23) is not satis-
fied, the unscaled log likelihood converges to a quantity
that does not have a Gaussian distribution. Collapse
does not occur since the updated ensemble empirical
distribution converges to the true posterior as N, — »,
whatever N, may be.

b. Simulations

First, we check the asymptotic expression for E[1/w )| —
1 as a function of N, and N,, given in (19), for the
Gaussian-Gaussian case. For simplicity, let A; = 1, j =
1,..., N, (as in the example of section 2). Then (22b)
implies that E(7*) = 5N,/2 and (19) becomes

E[1w,] — 1~ \/45\/1og(N,)/N,.

(24)

log(N,)/N,, is indicated by the solid line, while the prediction in (24)

This approximation is valid when N, is large enough
that the sample minimum follows (15) and N, is large
enough that log(N,)/N,, is small. To capture the appro-
priate asymptotic regime, we have performed simula-
tions with N, = N7, a = 0.75, 0.875, 1.0, 1.25, N,, varying
over a dozen values between 600 and 3000, and E(1/w(y,))
approximated by averaging over 1000 realizations of the
experiment. As can be seen from Fig. 4,1 — E[1/wy )] has
an approximately linear relation to, \/log(N,)/N,, though
considerable scatter is present. The best-fit line to the
simulation results has a slope of 0.96 with a 95% confi-
dence interval of +0.087, which captures the predicted
slope of \/R ~ (0.89.

Equation (19) also implies that asymptotic collapse
of the particle filter depends only on 7 rather than the
specific sequence {A;, j = 1, ..., N,}. To illustrate that
7 does control collapse, we consider various A se-
quences by setting A7 = ¢j~’. In this case, the simula-
tions fix N, = 4 X 10% and N, = 10° while 6 takes the
values 0.3, 0.5, and 0.7 and c is varied such that substi-
tuting (22b) in (19) gives 0.01 < E[1/wy,] — 1 < 0.075.
These values are again chosen to capture the appropri-
ate asymptotic regime where the normalized log likeli-
hood S; is approximately Gaussian. The expectation
E[l/wy,] is approximated by averaging over 400 real-
izations of the experiment.
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FiG. 5. Evaluation of (19) against simulations in the case )\,2 =¢%j=1,..., N, The

parameters 6 and c are varied as described in the text, while N, = 4 X 10° and N, = 10°
are fixed. The expectation E[1/wy,] was estimated by averaging over 400 realizations of
the particle-filter update. The best-fit line to the data, given by E[l/w,] — 1 = 0.006 +
1.008V2 logN, /7 is indicated by the solid line, while the prediction in (19) is shown by a

dashed line.

Figure 5 shows results as a function of \/2 logN,/t.
As predicted by (19), E[1/w(y,] depends mainly on 7
rather than on the specific A sequence. The simulations
thus confirm the validity of (19) and, in particular, the
control of the maximum weight by 7. Nevertheless,
some limited scatter around the theoretical predic-
tion remains, which arises from weak dependence of
E[1/w,] on the A sequence for finite 7. We defer to a
subsequent study a more detailed examination of the
behavior of the maximum weight for finite T and N, and
the limits of validity of (19).

6. Multivariate Cauchy observation-error
distribution

Van Leeuwen (2003) proposes the use of a multivari-
ate Cauchy distribution for the observation error to
avoid collapse and gives some numerical results sup-
porting his claim. In Bengtsson et al. (2008), analytical
arguments as well as simulations indicate that collapse
still occurs but more slowly with such an observation-
error distribution. Specifically, they show that, in the

limit \/log(N,)/N, — 0, E(T) approaches zero at a rate

given by \/log(N,)/N, logl\/log(N,)/N,I|. This condi-

tion emerges from the analysis of the log likelihood of
the mulivariate Cauchy in the same way as (24)
emerges from analysis of the Gaussian—-Gaussian case.
The condition for E(7) — 0 and collapse is then iden-
tical to that in the Gaussian—Gaussian case, namely,
log(N,)/N,, — 0, but the rate is distinctly slower than
those implied by (19) or (24).

Intuitively, what happens is that if € has a multivari-
ate Cauchy distribution, then € can be written as

- -1
€= |ZNy+1| (2155 2Zy),

where z;, ..., zy, are iid. N(0, 1). For given N+
close to 0, the errors have very long Gaussian tails. This
makes collapse harder because the true posterior re-
sembles the prior, implying that the observations have
relatively little information.

7. Conclusions

Particle filters have a well-known tendency for the
particle weights to collapse, with one member receiving
a posterior weight close to unity. We have illustrated
this tendency through simulations of the particle-filter
update for the simplest example, in which the priors for
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each of N, state variables are i.i.d. and Gaussian, and
the observations are of each state variable with inde-
pendent, Gaussian errors. In this case, avoiding col-
lapse and its detrimental effects can require very large
ensemble sizes even for moderate N,. The simulations
indicate that the ensemble size N, must increase expo-
nentially with N, in order for the posterior mean from
the particle filter to have an expected error smaller than
either the prior or the observations. For N, = 100, the
posterior mean will typically be worse than either the
prior or the observations unless N, > 10°.

Asymptotic analysis, following Bengtsson et al.
(2008) and Bickel et al. (2008), provides precise condi-
tions for collapse either in the case of i.i.d. observation
likelihoods or when both the prior and the observation
errors are Gaussian (but with general covariances) and
the observation operator is linear. The asymptotic re-
sult holds when N, is large and 72, the variance of the
observation log likelihood defined in (7b), becomes
large and has an approximately Gaussian distribution.
Then, in the limit that ~'\/N, — 0, the maximum
weight wy ) satisfies E[1/wy,)] =~ 1 + 77'\/21ogN..
The maximum weight therefore approaches 1 (and col-
lapse occurs) as T increases unless the ensemble size N,
grows exponentially with 7.

In the case that both the prior and observation errors
are Gaussian, 7° can be written as a sum over the eigen-
values of the observation-space-prior covariance ma-
trix. The theory then predicts that collapse does not
depend on the eigenstructure of the prior covariances,
except as that influences 7. Simulations in section 5
confirm this result.

It is thus not the state dimension per se that matters
for collapse, but rather 7, which depends on both the
variability of the prior and the characteristics of the
observations. Still, one may think of 7 as an effective
dimension, as it gives the dimension of the identity-
prior, identity-observation Gaussian system (as in sec-
tion 3) that would have the same collapse properties.
This analogy is only useful, however, when the normal-
ized observation log likelihood S; defined in (7a) has an
approximately Gaussian distribution, which requires
that N, not be too small.

Our results point to a fundamental obstacle to the
application of particle filters in high-dimensional sys-
tems. The standard particle filter, which uses the prior
as a proposal distribution together with some form of
resampling, will clearly require exponentially increas-
ing ensemble sizes as the state dimension increases and
thus will be impractical for many geophysical applica-
tions. Nevertheless, some limitations of this study will
need to be addressed before the potential of particle
filtering in high dimensions is completely clear.
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First, the simulations and asymptotic theory pre-
sented here have not dealt with the most general situ-
ation, namely, when the prior and observations are
non-Gaussian and have nontrivial dependencies among
their components. There is no obvious reason to expect
that the general case should have less stringent require-
ments on N, and we speculate that the Gaussian—
Gaussian results of section 5 will still be informative
even for non-Gaussian systems. Some support for this
claim comes from the results of Nakano et al. (2007),
who apply the particle filter with a variety of ensemble
sizes to the fully nonlinear, 40-variable model of Lorenz
(1996). Consistent with Fig. 2, they find that an en-
semble size between 500 and 1000 is necessary for the
posterior from the particle filter to have smaller rms
errors than the observations themselves.

Second, the asymptotic theory pertains to the behav-
ior of the maximum weight, but says nothing about how
the tendency for collapse might degrade the quality of
the particle-filter update. Indeed, the update may be
poor long before the maximum weight approaches
unity, as illustrated by Figs. 2 and 3. What is needed is
practical guidance on ensemble size for a given problem
with finite N,, N, and 7. Though rigorous asymptotic
analysis will be difficult, we anticipate that simulations
may provide useful empirical rules to guide the choice
of ensemble size.

Third, we have not addressed the possible effects of
sequentially cycling the particle filter given observa-
tions at multiple instants in time. Overall, cycling must
increase the tendency for collapse of the particle filter.
The quantitative effect, however, will depend on the
resampling strategy, which again makes analytic
progress unlikely.

Fourth, we have not considered proposal distribu-
tions other than the prior nor have we considered re-
sampling algorithms, which are frequently employed to
counteract the particle filter’s tendency for collapse of
the ensemble. We emphasize that resampling strategies
that do not alter the update step are unlikely to over-
come the need for very large N,, since they do not
improve the estimate of the posterior distribution, but
merely avoid carrying members with very small weights
further in the algorithm. It is conceivable that the re-
quired N, might be reduced by splitting a large set of
observations valid at a single time into several batches,
and then assimilating the batches serially with resam-
pling after each update step. Alternatively, one might
identify states in the past that will evolve under the
system dynamics to become consistent with present ob-
servations, thereby reducing the need for large en-
sembles of present states when updating given present
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observations. Gordon et al. (1993) term this process
“editing,” and a similar idea is employed by Pitt and
Shephard (1999). Such a scheme, however, would likely
demand very large ensembles of past states.

As noted in the introduction, both van Leeuwen
(2003) and Zhou et al. (2006) have applied particle fil-
ters to systems of dimension significantly larger than
100. In Zhou et al., however, each update is based on
only a single observation (and only 28 observations to-
tal are assimilated); assuming that the prior uncertainty
is comparable to the observation variance, * < 28 in
their case and their ensemble sizes of O(1000) would be
adequate based on Fig. 3. Based on the characteristics
of the sea surface height observations assimilated by
van Leeuwen, we estimate that the particle-filter up-
date uses O(100) observations at each (daily) analysis.
Allowing for the possibility that nearby observations
are significantly correlated owing to the relatively large
scales emphasized by sea surface height, then van Leeu-
wen’s use of 500-1000 ensemble members would seem
to be at the edge of where our results would indicate
collapse to occur. Consistent with this, van Leeuwen
notes a strong tendency for collapse.

Fundamentally, the particle filter suffers collapse in
high-dimensional problems because the prior and pos-
terior distributions are nearly mutually singular, so that
any sample from the prior distribution has exception-
ally small probability under the posterior distribution.
For example, in the Gaussian i.i.d. case, the prior and
posterior distributions have almost all their mass con-
fined to the neighborhood of hyperspheres with differ-
ent radii and different centers. The mutual singularity
of different pdfs becomes generic in high dimensions
and is one manifestation of the curse of dimensionality.

Another way of looking at the cause of collapse is
that the weights of different members for any chosen
state variable are influenced by all observations, even if
those observations are nearly independent of the par-
ticular state variable. The particle filter thus inherently
overestimates the information available in the observa-
tions and underestimates the uncertainty of the poste-
rior distribution. Similar problems occur for the EnKF
and, for spatially distributed systems with finite corre-
lation lengths (e.g., most geophysical systems), can be
reduced by explicitly restricting any observation’s influ-
ence to some spatially local neighborhood. This moti-
vates the development of nonlinear, non-Gaussian en-
semble assimilation schemes that perform spatially lo-
cal updates, as in Bengtsson et al. (2003) or Harlim and
Hunt (2007).

Acknowledgments. 1t was T. Hamill who first intro-
duced the lead author to the potential problems with

SNYDER ET AL.

4639

the particle-filter update in high dimensions. This work
was supported in part by NSF Grant 0205655.

REFERENCES

Anderson, J. L., 2001: An ensemble adjustment filter for data
assimilation. Mon. Wea. Rev., 129, 2884-2903.

——, and S. L. Anderson, 1999: A Monte Carlo implementation
of the nonlinear filtering problem to produce ensemble as-
similations and forecasts. Mon. Wea. Rev., 127, 2741-2758.

Bender, M., and S. Orszag, 1978: Advanced Mathematical Meth-
ods for Scientists and Engineers. McGraw-Hill, 593 pp.

Bengtsson, T., C. Snyder, and D. Nychka, 2003: Toward a non-
linear ensemble filter for high-dimensional systems. J. Geo-
phys. Res., 108 (D24), 8775-8785.

——, P. Bickel, and B. Li, 2008: Curse of dimensionality revisited:
Collapse of the particle filter in very large scale systems.
Probability and Statistics: Essays in Honor of David A. Freed-
man, D. Nolan and T. Speed, Eds., Vol. 2, Institute of Math-
ematical Statistics, 316-334, doi:10.1214/193940307000000518.
[Available online at http:/projecteuclid.org/DPubS/Repository/
1.0/Disseminate?view=body&id=pdf_1&handle=euclid.imsc/
1207580091.]

Bickel, P., and E. Levina, 2008: Regularized estimation of large
covariance matrices. Ann. Stat., 36, 199-227.

——, B. Li, and T. Bengtsson, 2008: Sharp failure rates for the
bootstrap particle filter in high dimensions. Pushing the
Limits of Contemporary Statistics: Contributions in Honor of
Jayanta K. Ghosh, Vol. 3, B. Clarke and S. Ghosal Eds.,
Institute of Mathematical Statistics, 318-329, doi:10.1214/
074921708000000228.

Chin, T. M., M. J. Turmon, J. B. Jewell, and M. Ghil, 2007: An
ensemble-based smoother with retrospectively updated
weights for highly nonlinear systems. Mon. Wea. Rev., 135,
186-202.

David, H. A., and H. N. Nagaraja, 2003: Order Statistics. 3rd ed.
John Wiley and Sons, 458 pp.

Doucet, A., N. de Freitas, and N. Gordon, 2001: An introduction
to sequential Monte Carlo methods. Sequential Monte Carlo
Methods in Practice, A. Doucet, N. de Freitas, and N. Gor-
don, Eds., Springer-Verlag, 2-14.

Durret, R., 2005: Probability: Theory and Examples. 3rd ed. Dux-
bury Press, 512 pp.

Furrer, R., and T. Bengtsson, 2007: Estimation of high-
dimensional prior and posteriori covariance matrices in Kal-
man filter variants. J. Multivar. Anal., 98 (2), 227-255.

Gordon, N.J., D.J. Salmond, and A. F. M. Smith, 1993: Novel
approach to nonlinear/non-Gaussian Bayesian state estima-
tion. /IEEE Proc., 140, 107-113.

Hamill, T. M., 2001: Interpretation of rank histograms for verify-
ing ensemble forecasts. Mon. Wea. Rev., 129, 550-560.
——, J.S. Whitaker, and C. Snyder, 2001: Distance-dependent
filtering of background error covariance estimates in an en-

semble Kalman filter. Mon. Wea. Rev., 129, 2776-2790.

Harlim, J., and B. R. Hunt, 2007: A non-Gaussian ensemble filter
for assimilating infrequent noisy observations. Tellus, S9A,
225-237.

Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation
using an ensemble Kalman filter technique. Mon. Wea. Rev.,
126, 796-811.

——, and ——, 2001: A sequential ensemble Kalman filter for
atmospheric data assimilation. Mon. Wea. Rev., 129, 123-137.

Ide, K., P. Courtier, M. Ghil, and A. C. Lorenc, 1997: Unified



4640

notation for data assimilation: operational, sequential, and
variational. J. Meteor. Soc. Japan, 75 (Special Issue), 181-189.

Keppenne, C. L., M. M. Rienecker, N. P. Kurkowski, and D. A.
Adamec, 2005: Ensemble Kalman filter assimilation of tem-
perature and altimeter data with bias correction and applica-
tion to seasonal prediction. Nonlinear Processes Geophys.,
12, 491-503.

Kim, S., G.L. Eyink, J. M. Restrepo, F.J. Alexander, and G.
Johnson, 2003: Ensemble filtering for nonlinear dynamics.
Mon. Wea. Rev., 131, 2586-2594.

Liu, J.S., 2001: Monte Carlo Strategies in Scientific Computing.
Springer-Verlag, 364 pp.

Lorenz, E.N., 1963: Deterministic nonperiodic flow. J. Atmos.
Sci., 20, 130-148.

——, 1996: Predictability: A problem partly solved. Proc. Seminar
on Predictability, Vol. 1, Reading, Berkshire, United King-
dom, ECMWEF, 1-18.

Moradkhani, H., K.-L. Hsu, H. Gupta, and S. Sorooshian, 2005:
Uncertainty assessment of hydrologic model states and
parameters: Sequential data assimilation using the particle
filter. Water Resour. Res., 41, W05012, doi:10.1029/
2004WR003604.

Nakano, S., G. Ueno, and T. Higuchi, 2007: Merging particle filter
for sequential data assimilation. Nonlinear Processes Geo-
phys., 14, 395-408.

Pham, D. T., 2001: Stochastic methods for sequential data assim-

MONTHLY WEATHER REVIEW

VOLUME 136

ilation in strongly nonlinear systems. Mon. Wea. Rev., 129,
1194-1207.

Pitt, M. K., and N. Shephard, 1999: Filtering via simulation: Aux-
illiary particle filters. J. Amer. Stat. Assoc., 94, 590-599.
Reichle, R. H., D. B. McLaughlin, and D. Entekhabi, 2002: Hy-
drologic data assimilation with the ensemble Kalman filter.

Mon. Wea. Rev., 130, 103-114.

Silverman, B. W., 1986: Density Estimation for Statistics and Data
Analysis. Chapman and Hall, 175 pp.

Smith, K. W., 2007: Cluster ensemble Kalman filter. Tellus, 59A,
749-757.

Snyder, C., and F. Zhang, 2003: Assimilation of simulated Dopp-
ler radar observations with an ensemble Kalman filter. Mon.
Wea. Rev., 131, 1663-1677.

van Leeuwen, P.J., 2003: A variance-minimizing filter for large-
scale applications. Mon. Wea. Rev., 131, 2071-2084.

Whitaker, J.S., G.P. Compo, X. Wei, and T. M. Hamill, 2004:
Reanalysis without radiosondes using ensemble data assimi-
lation. Mon. Wea. Rev., 132, 1190-1200.

Xiong, X., I. M. Navon, and B. Uzunoglu, 2006: A note on the
particle filter with posterior Gaussian resampling. Tellus,
58A, 456-460.

Zhou, Y., D. McLaughlin, and D. Entekhabi, 2006: Assessing the
performance of the ensemble Kalman filter for land surface
data assimilation. Mon. Wea. Rev., 134, 2128-2142.





