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ABSTRACT

Recently various versions of ensemble Kalman filters (EnKF) has been proposed and studied.

This work concerns, in a mathematically rigorous manner, the relative performance of two

major versions of EnKF when the forecast ensemble is non-Gaussian. The approach is based

on the stability of the filtering methods against small model violations, using the expected

squared L2 distance as a measure of the deviation between the updated distributions. An-

alytical and experimental results suggest that both stochastic and deterministic EnKFs are

sensitive to the violation of the Gaussianity assumption, while the stochastic filter is rela-

tively more stable than the deterministic filter under certain circumstances, especially when

there are wild outliers. These results not only agree with previous empirical studies, but

also suggest a natural choice of a free parameter in the square-root Kalman filter algorithm.
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1. Introduction

The ensemble Kalman filter (EnKF, (Evensen 1994, 2003, 2007)) has become a popular

tool for data assimilation because of its computational efficiency and flexibility (Anderson

2001; Whitaker and Hamill 2002; Ott et al. 2004; Bengtsson et al. 2003; Evensen 2007). In

various versions of EnKFs, one major difference is how to get the updated ensemble after

obtaining the updated mean and variance. Stochastic methods (Houtekamer and Mitchell

1998; Evensen 2003) directly use the Kalman gain together with random perturbations. On

the other hand, deterministic methods (Anderson 2001; Bishop et al. 2001) use a non-random

transformation on the forecast ensemble, which is also known as a special case of the Kalman

square-root filter (Tippett et al. 2003).

The analysis error of EnKF consists of two parts: the use of a linear analysis algorithm

that is suboptimal for all except Gaussian distributions; and the variance caused by using

only a finite sample. The latter is studied for the stochastic filter by Sacher and Bartello

(2008, 2009). In this paper we study the first part of error, that is, the error caused by

non-Gaussianity.

Following the direction of Lawson and Hansen (2004), who did empirical comparison of

the stochastic and deterministic filters, in this work we attempt to quantify the difference

between these two methods under non-Gaussianity, through the perspective of robustness. It

is known that in a Gaussian linear model both methods are consistent (Furrer and Bengts-

son 2007). However, when the forecasting distribution is non-Gaussian both methods are

biased even asymptotically, where the bias refers to the deviation from the true conditional

distribution or equivalently the distribution given by the Bayes rules. Suppose the previous
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updated ensemble is approximately Gaussian. After propagation through the non-linear dy-

namics, the resulting forecast ensemble will be slightly non-Gaussian if the time interval is

short. Figure 1 gives such an example by looking at the first two coordinates of the Lorenz 63

3-dimensional system1, where the previous update ensemble is Gaussian but the forecasting

ensemble has some outliers. Therefore one would expect some bias in EnKF update due to

the non-Gaussianity, and the bias could be different for different implementation of EnKF.

Our question is: which method is more stable against non-Gaussianity? Here “stability” is

a statistical notion which refers to the analysis being not seriously biased when the forecast

distribution is slightly non-Gaussian. Another notion of “stability” is introduced by Sacher

and Bartello (2009) which refers to the size of analysis error covariance being large enough

to cover the true analysis center. We give a rigorous analysis of the sensitivity of the two

EnKFs to non-Gaussianity of the forecasting ensemble based on the notion of robustness in

statistics.

We show that the stochastic filter is more robust than the deterministic filter especially

when the position of outliers is wild and/or the observation is accurate. Simulation results

support our calculation not only for the L2 distance but also for other quantities such as

the third moment. These findings are consistent with those in Lawson and Hansen (2004).

Moreover, such a comparison can be extended to many other types of model violations, such

as the modeling error in the observation and the observation model. On the other hand, we

also show that such a stability criterion leads to a natural choice of the orthogonal matrix

1The Lorenz 63 system (Lorenz 1963) is a three dimensional continuous chaotic system, which is very

sensitive to initial conditions in the discrete-step form. It has been used to test filtering methods in many

data assimilation research works (see Anderson and Anderson 1999; Bengtsson, Snyder, and Nychka 2003).
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in the unbiased ensemble square root filter Sakov and Oke (2007); Livings et al. (2008).

In Section 2 we introduce the ensemble Kalman filters, with a brief discussion on the

large-ensemble behavior of the EnKF. Section 3 contains the main part of our comparison,

beginning with some intuition in Section 3a; The basic concepts of asymptotic robustness can

be found in Hampel et al. (1986), and we give a brief summary in Section 3b; In Section 3c we

state our analytical results. Finally, in Section 4, we present various numerical experiments.

2. Ensemble Kalman filters

a. The Kalman filter

Consider a Gaussian linear model:

y = Hx + ǫ,

where x ∈ R
p is the hidden state variable, y ∈ R

q the observation, ǫ ∈ R
q an indepen-

dent random noise, and H ∈ R
q×p the observation matrix. Assuming all the variables are

Gaussian:

x ∼ N(µf ,Pf), ǫ ∼ N(0,R),

then the updated state variable x|yo given a specific observation yo is still Gaussian2:

x|yo ∼ N(µa,Pa),

with

µa = (I− KH)µf + Kyo, Pa = (I − KH)Pf , (1)

2Throughout this paper we use superscript “f” and “a” to denote “forecast” and “analysis (update)”

respectively.
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where K = PfHT
(

HPfHT + R
)−1

is the Kalman Gain. Throughout this paper we always

assume that Pf and R are positive definite.

Several practical issues arise in geophysics. First, the state variable is driven by non-linear

geophysical dynamics, so its exact distribution is unknown and certainly is non-Gaussian.

Usually only a random sample from the distribution is available. Second, the linear form of

the observation is, again, only an approximation. The true observation model y = h(x) + ε

might involve a nonlinear h(·), or h(·) might even have no explicit functional form (e.g.,

a black-box function). These problems are partially addressed, as described below, by the

ensemble Kalman filter.

b. The ensemble Kalman filter

Suppose (xf(i))n
i=1 is an i.i.d (independent, identically distributed) sample from the fore-

cast distribution of the state variable xf . The ensemble Kalman filter update consists of the

following steps:

i. Let µ̂f and P̂f be the sample mean and covariance.

ii. Estimate the Kalman gain: K̂ = P̂fHT
(

HP̂fHT + R
)−1

.

iii. Update the mean and covariance according to the Kalman filter:

< µ̂a >= (I− K̂H)µ̂f + K̂yo, < P̂a >=
(

I − K̂H
)

P̂f ,

where < · > denotes the expectation over the randomness of the update procedure. If

the update is deterministic, then < µ̂a >= µ̂a and < P̂a >= P̂a.
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iv. Update the ensemble (xf(i))n
1 → (xa(i))n

1 , so that

1

n

n
∑

i=1

xa(i) = µ̂a,
1

n − 1

n
∑

i=1

(xa(i) − µ̂a)(xa(i) − µ̂a)T = P̂a. (2)

It is worth noting that in practice, the sample covariance matrix P̂f is not computed explic-

itly. Instead, it is sufficient to compute P̂fHT = 1
n−1

∑

(xf(i))
(

Hxf(i)
)T

, which is computa-

tionally more efficient if p is much larger than q.

The stochastic and the deterministic filters differ in step 4. In the stochastic filter,

xa(i)
s = xf(i) + K̂(yo −Hxf(i) + ǫ(i)), ∀1 ≤ i ≤ n, (STO.)

where ǫ(i) iid
∼ N(0, R). The intuition is to use directly the Kalman gain to combine the

forecast ensemble member xf(i) and the observation yo, using additive noise ǫ(i) to adjust the

total variance of the updated ensemble, as if the perturbed observation associated with xf(i)

is another possible value of random variable y. In some applications in order to reduce the

sampling error of the noise, ǫ(i)’s are adjusted by a shifting and rescaling to ensure one of

the following:

• ǫ(i)’s have zero mean.

• ǫ(i)’s have zero mean and covariance R.

• ǫ(i)’s have zero mean, covariance R and zero covariance with X
(i)
f ’s.

When the ensemble size n is large, such a shifting and rescaling is negligible and all these

variants are equivalent to the update given by (STO.). Therefore the analysis in this paper

is applicable to these variants too.
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The deterministic filter works in a different way:

x
a(i)
d = µ̂a + Â(xf(i) − µ̂f), ∀1 ≤ i ≤ n, (DET.)

where Â satisfies ÂP̂fÂT = P̂a. Loosely speaking, the matrix Â can be viewed as the square

root of the difference between P̂a and P̂f . The matrix Â is not unique in the multivariate

case. Suppose n > p and P̂f is full rank, then Â has the general form:

Â = (P̂a)
1
2U(P̂f)−

1
2 , (3)

where U is any p×p orthogonal matrix chosen by the user. See Tippett et al. (2003); Sakov

and Oke (2007) for further discussion on the choice of U. If n ≤ p and P̂f is not full rank,

(3) no longer holds but one can work on the principal components of the state space instead

of the whole state space as described in Ott et al. (2004).

There is another formula for the update step of the deterministic filter using the right-

multiplication:

x
a(i)
d = µ̂a +

n
∑

j=1

â′
ij(x

f(j) − µ̂f). (4)

This formula can be shown to be closely related to (DET.) when the filter is unbiased, i.e.,

1
n

∑n

i=1 x
a(i)
d = µ̂a (Tippett et al. 2003; Livings et al. 2008). We will use the left-multiplication

throughout this paper because: 1) it has a clear geometrical interpretation; 2) we assume

that n is large.

In practical applications, good performance of the EnKFs defined by (STO.) and (DET.)

depends on a sufficiently large ensemble and on system dynamics and observation models

that are sufficiently close to linear. For example, the EnKF will dramatically underestimate

Pa with small ensembles as it is analytically described by Sacher and Bartello (2008). As
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a result, covariance localization and covariance inflation have been widely used to overcome

such practical difficulties (Whitaker and Hamill 2002; Ott et al. 2004; Anderson 2003, 2007).

c. The large-ensemble behavior of the EnKF

If n → ∞, then by law of large numbers, everything converges to its population coun-

terpart. That is, µ̂f P
→ µf , P̂f P

→ Pf , K̂
P
→ K, µ̂a P

→ µa, P̂a P
→ Pa, and Â

P
→ A where

A = (Pa)
1
2 U(Pf)−

1
2 is the population counterpart of Â. Here

P
→ denotes convergence

in probability3. Let δx denote the point mass at x (i.e., a probability distribution that

puts all its mass at x), then intuitively the empirical updated distributions F̂s = 1
n

∑

δ
x

a(i)
s

and F̂d = 1
n

∑

δ
x

a(i)
d

should converge weakly to the distribution of the random variables

(I − KH)x + K(y + ǫ) and µa + A(x − µf), respectively. In fact it can be shown that the

above intuition is true (Appendix A, Proposition 6). As a result, our comparison between

the stochastic filter and the deterministic filter will be based on the comparison between

these two limiting distributions.

3For a sequence of random variables αn, n ≥ 1, and constant β, αn
P
→ β means that for any δ > 0,

limn→∞ P (|αn − β| > δ) = 0.
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3. Comparing the stochastic and the deterministic fil-

ters

a. Intuition and the contaminated Gaussian model

A simple and natural deviation from Gaussianity is a contaminated Gaussian model:

xf ∼ Fr = (1 − r)F + rG, (5)

where, without loss of generality, F = N(0,P), G = N(t,S), where P and S are positive

definite, and 0 ≤ r < 1 is the amount of contamination. The interpretation of model (5) is

that we assume a proportion of (1 − r) of the forecast ensemble are drawn from a Gaussian

distribution centered at 0, with covariance P, while the rest are outliers coming from another

Gaussian distribution centered at t with covariance S. Since we use the Gaussian distribution

G = N(t,S) to model the outliers, we would expect G to be much different from F = N(0,P),

the majority of the forecast ensemble. That is, we expect (t, S) to be somewhat extreme:

||t||2 >> 0 and/or ||S||2 >> ||P||2. For example, a large4 t and small S mean that the

outliers forms a small cluster far away from the majority, while a small t and a large S mean

that the outliers are widely dispersed. Also, denote Fo,r(·|y) the true distribution of xa, here

the subindex “o” stands for “optimal”. Again, the optimal updated distribution refers to

the one given by the Bayes rule. Similarly, the corresponding limiting updated distributions

of EnKFs are denoted by Fs,r(·|y) and Fd,r(·|y), respectively. Here we keep in mind that t

and S are fixed. For simplicity, we focus on the case q = p and P = Ip.

The merit of a filter can be characterized naturally in terms of the distance between

4Here and throughout this paper, by saying a vector or matrix is large we mean its L2 norm is large.
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the updated density and the optimal density fo,r. Recall that if xf is Gaussian, i.e., r = 0,

then Fs,0 and Fd,0 are both Gaussian, with the same mean and covariance agreeing with the

optimal conditional distribution: Fs,0 = Fd,0 = Fo,0 = N(µa
o,P

a
o). Now the question is, when

r 6= 0, i.e., xf is non-Gaussian, which one is closer to Fo,r?

We take a quick look at the densities of Fo,r, Fs,r and Fd,r in a simple one-dimensional

setup similar to Lawson and Hansen (2004), but with r = 0.05 (right column of Figure

2). The original figure in Lawson and Hansen (2004) with r = 0.5 are included in the left

column for comparison. We choose t = 8, S = 1, and y = 0.5, which makes y a plausible

observation from Fr. We consider three values of R: In the top row, R = Pf
r/4, where

Pf
r is the variance of Fr. In this case the observation is accurate, which indicates that the

likelihood function is highly unimodal (with a single high peak). As a result, the stochastic

filter approximates the true density better because adding Gaussian perturbations to the

bimodal ensemble will make the distribution more unimodal. In the middle row R = Pf
r,

where the accuracy is modest and it is hard to tell which filter gives better approximation to

the truth. Finally, in the bottom row we have R = 4Pf
r, a relatively inaccurate observation.

Now when the two components are equally weighted (left column), the stochastic incorrectly

populates the middle part because of the random perturbation while the deterministic retains

the bimodal structure. In the right column, when the weights of two the components are

very unbalanced, the deterministic update is closer to the optimal for a wide range of x near

the origin. However, it carries more outliers due to the small bump at +7, which might

cause a larger bias in the higher moments.

Remark 1. In model (5) the assumption that G is Gaussian is only for mathematical conve-
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nience. It can be an arbitrary distribution, since any distribution can be approximated by

a mixture of Gaussian, and as we will see in the next section (eq. (7)), the effect of mixture

contamination is approximately additive when the total amount of contamination r is small.

b. The robustness perspective

Robustness (Hampel et al. 1986) is a natural notion of the stability of an inference

method against small model violation. Intuitively, a “good” method should give stable

outcomes when the true underlying distribution deviates slightly from the ideal distribution.

In the context of EnKF, the ideal distribution refers to the Gaussian forecast distribution

under which the EnKF gives unbiased analysis. In parameter estimation, let g(F̂n) be the

estimator of parameter from the empirical distribution F̂n, and g(F ) denotes its population

counterpart, which is usually the large-sample limit of g(F̂n). Suppose the true distribution

is (1 − r)F + rG, a contaminated version of F , for some small r > 0. Then the estimator

becomes g((1 − r)F + rG). The robustness of g at F means that no matter what G looks

like, g((1 − r)F + rG) should be close to g(F ) as long as r is small. The quantification of

this idea leads to the Gâteaux derivative and the influence function.

The Gâteaux derivative and the influence function

Following the above notation, the estimator can be viewed as a function of r, the amount

of contamination. The Gâteaux derivative of g at F in the direction of G is defined by

ν(G, F ; g) = lim
r→0+

g((1 − r)F + rG) − g(F )

r
. (6)
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Intuitively, the Gâteaux derivative measures approximately how g is affected by an infinites-

imal contamination of shape G on F .

If G = δt is a point mass at t, then one can define

IF(t; F, g) = ν(δt, F ; g),

which is the influence function of g at F . There is a close analogy between the influence

function and Green’s function. In both cases, the general solution to a linear problem

is a superposition of the solution to point mass problems. It can be shown that, under

appropriate conditions, (see Bickel and Doksum, ch. 7.3),

ν(G, F ; g) =

∫

IF(t; F, g)dG(t). (7)

As a result, the function IF(·; F, g) reflects the robustness of g at F . An important criterion

in designing robust estimators is a bounded influence function:

sup
t

|IF(t; F, g)| < ∞.

Intuitively, this means that distorting any small proportion of the data can not have a big

impact on the outcome.

c. Comparison from the robustness perspective: analytical results

In our study, the parameter, and hence the estimator, is a distribution. For any fixed

x, y, the Gâteaux derivatives of the conditional densities at x are5, under Model (5),

ν(G, F ; fs(x|y)) = lim
r→0+

fs,r(x|y) − fs,0(x|y)

r
=

∂

∂r
fs,r(x|y)

∣

∣

∣

∣

r=0

(8)

5In this paper we use f(·) = F ′(·) as the density function of F (·), whenever possible. E.g., fs,r(·|y) is the

density function of Fs,r(·|y). For succinctness, we will use fs,r instead of fs,r(·|y) without confusion.
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for the stochastic filter, and

ν(G, F ; fd(x|y)) = lim
r→0+

fd,r(x|y) − fd,0(x|y)

r
=

∂

∂r
fd,r(x|y)

∣

∣

∣

∣

r=0

(9)

for the deterministic filter. In our contaminated Gaussian model, the ideal distribution is

F = N(0, I) and G = N(t,S) is the contamination distribution. Recall again that fs,0 =

fd,0 = fo,0, then equations (8) and (9) are comparing fs,r(x|y) and fs,r(x|y) with fo,0(x|y)

respectively.

However, the quantities in (8) and (9) involve not only x but also y, the random obser-

vation. In order to take all x as well as the randomness of y into account, we integrate the

square of the Gâteaux derivatives and take expectation over y under its marginal distribu-

tion when r = 0, which is N(0, I + R). Finally, the quantities indicating the robustness of

the EnKFs are

Ey

(∫

ν2(G, F ; fs(x|y))

)

dx = Ey

[

∫ (

∂

∂r
fs,r(x|y)

∣

∣

∣

∣

r=0

)2

dx

]

(10)

for the stochastic filter, and

Ey

(
∫

ν2(G, F ; fd(x|y))

)

dx = Ey

[

∫
(

∂

∂r
fd,r(x|y)

∣

∣

∣

∣

r=0

)2

dx

]

(11)

for the deterministic filter.

On the other hand, note that

∂

∂r

[
∫

(fs,r(x|y) − fs,0(x|y))2dx

]

= 2

∫

(fs,r(x|y) − fs,0(x|y))
∂

∂r
fs,r(x|y)dx,

and

∂2

∂r2

[
∫

(fs,r(x|y) − fs,0(x|y))2dx

]

= 2

∫
(

∂

∂r
fs,r(x|y)

)2

dx + 2

∫

(fs,r(x|y) − fs,0(x|y))
∂2

∂r2
fs,r(x|y)dx.
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Evaluate the above derivatives at r = 0, we have

∂

∂r

[

Ey

∫

(fs,r(x|y) − fs,0(x|y))2 dx

]∣

∣

∣

∣

r=0

= 0.

and

∂2

∂r2

[
∫

(fs,r(x|y) − fs,0(x|y))2dx

]∣

∣

∣

∣

r=0

= 2

∫
(

∂

∂r
fs,r(x|y)

∣

∣

∣

∣

r=0

)2

dx.

Taking expectation over y,

Ey

[

∫
(

∂

∂r
fs,r(x|y)

∣

∣

∣

∣

r=0

)2

dx

]

=
1

2

∂2

∂r2

[

Ey

∫

(fs,r(x|y) − fs,0(x|y))2 dx

]∣

∣

∣

∣

r=0

,

As a result, the quantity defined in (10) has a straightforward interpretation: It is the

second derivative of the expected square of L2 distance between fs,r and fs,0. The same

argument also holds for the deterministic filter. So a smaller value in (10) (or (11)) indicates

a slower change in the updated distribution when r changes from zero to non-zero.

Our main theoretical results are summarized in the following theorems:

Theorem 2. In model (5), we have

(i) For all R,S

lim
||t||2→∞

Ey

∫

ν2(G, F ; fs(x|y))dx = ∞, and 0 < lim
||t||2→∞

Ey

∫

ν2(G, F ; fs(x|y))dx

Ey

∫

ν2(G, F ; fd(x|y))dx
< 1;

(12)

(ii) For all R, t,

lim
||S||2→∞

Ey

∫

ν2(G, F ; fs(x|y))dx = ∞, and 0 < lim
||S||2→∞

Ey

∫

ν2(G, F ; fs(x|y))dx

Ey

∫

ν2(G, F ; fd(x|y))dx
< 1;

(13)
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(iii) For all t,S,

lim
||R||2→0

Ey

∫

ν2(G, F ; fs(x|y))dx = ∞, and lim
||R||2→0

Ey

∫

ν2(G, F ; fs(x|y))dx

Ey

∫

ν2(G, F ; fd(x|y))dx
= 0.

(14)

Proof. The proof is included in Appendix B.

Parts (i) and (ii) of Theorem 2 indicate that neither of the two filters has bounded

Gâteaux derivative over all possible contaminations. However, when the contamination is

wild, the stochastic filter is more stable than the deterministic filter. Loosely speaking,

when there are outliers in the forecast ensemble, the Kalman filter will suffer from its non-

robustness due to the use of the sample mean and sample covariance matrix. The determin-

istic filter is affected more because its rigid shifting and re-scaling (in order to make the exact

covariance) leaves no chance to correct the outliers, while the stochastic filter uses a “softer”

method to adjust the ensemble mean and covariance by using random perturbations. It is

thus more resilient to outliers because there is some chance that the outliers are partially

corrected by the random perturbations. This effect can also be seen in the top right plot of

Figure 2. Moreover, it also implies that, in the multivariate case, when the contamination

is wild, the deviation in the updated density is largely determined by the magnitude, not

the orientation, of t and/or S. As shown later in Section 4, the asymptotic result also holds

even for moderately large choices of ||t||2 and ||S||2.

Part (iii) indicates that stochastic filter is more stable when the observation is accurate.

This result nicely supports the intuitive argument in Lawson and Hansen (2004): the con-

volution with a Gaussian random perturbation in the stochastic filter makes the updated

ensemble closer to Gaussian while the deterministic might push the edge-members in the
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ensemble to be far-outliers and have the major component in the mixture overly tight.

The case that ||R||2 → ∞ is particularly interesting. Intuitively, a very large ||R||2

indicates a very non-informative observation. Thus the conditional distribution should be

close to the forecast distribution. As a result, one should do little change on the forecast

ensemble when ||R||2 is large. This intuition suggests choosing the orthogonal matrix U = I

in the deterministic filter, the benefit of which can be seen through Theorem 3:

Theorem 3. If in (3) we choose U = I, then for all t,S,

0 < lim
||R||2→∞

Ey

∫

ν2(G, F ; fs(x|y))dx < ∞, and lim
||R||2→∞

Ey

∫

ν2(G, F ; fs(x|y))dx

Ey

∫

ν2(G, F ; fd(x|y))dx
= 1.

(15)

Otherwise, we have

lim
||t||2→∞

lim
||R||2→∞

Ey

∫

ν2(G, F ; fs(x|y))dx

Ey

∫

ν2(G, F ; fd(x|y))dx
= 0, (16)

and

lim
||S||2→∞

lim
||R||2→∞

Ey

∫

ν2(G, F ; fs(x|y))dx

Ey

∫

ν2(G, F ; fd(x|y))dx
= 0. (17)

Proof. See Appendix B.

Theorem 3 is easy to understand. Intuitively, when R is large, we have µa ≈ µf and

Pa ≈ Pf in the Kalman filter. Here U = I implies A ≈ I, which means making little change

on the forecast ensemble. In Section 4 we will see that the choice of U = I does beat other

choices even for moderately large R, S and t. The issue of choosing the orthogonal matrix

in the square root filter has been discussed in Sakov and Oke (2007), which mainly focuses

on the right-multiplication case. Theorem 3 suggests a stable choice of the left-multiplying
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orthogonal matrix which means the corresponding right-multiplying orthogonal matrix is

stable due to the correspondence between the left and right-multiplication in unbiased square

root filters (Livings et al. 2008) if p < n.

Remark 4. Theorems 2 and 3 concern the effects caused by a large t, S and R separately, by

means of sending one quantity to infinity while keeping others fixed. In fact, these quantities

do interact in the optimal and EnKF updates, which will affect the comparison in a much

more complicated manner. Although in this more interesting case analytical results seem

hard to derive, we do think these theorems provide some qualitative view of the comparison

as we will see in the numerical experiments.

d. Connection to bias comparison

The robustness tells us about the stability of the filters when the data distribution is

nearly ideal. However, as mentioned earlier, a more direct comparison would be to just look

at the bias, that is, the difference between the limiting distribution of the updated ensemble

(fs,r and fd,r), and the optimal conditional distribution (fo,r). A first observation is that

when r is small, then fo,r ≈ fo,0, i.e., fo,r would mostly be as if there is no contamination

at all, as long as y is not too far from 0 or not too close to t, which is often the case when

||t||2 ≫ 0 and yo is randomly drawn from fr. This can be seen from the fact that

Fo,r = (1 − π(r))N(µa
o,1,P

a
o,1) + π(r)N(µa

o,2,P
a
o,2), (18)

where, letting φ(x; µ,P) be the density of N(µ,P) at x,

π(r) =
rφ(y; t,S + R)

rφ(y; t,S + R) + (1 − r)φ(y; 0, I + R)
,
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and, for j = 1, 2, with the convention that µf
1 = 0, Pf

1 = Pf , µf
2 = t, and Pf

2 = S,

Kj = Pf
j(P

f
j + R)−1, µa

j = (I −Kj)µ
f
j + Kjy, Pa

j = (I − Kj)P
f
j.

For the proof of (18), we refer the reader to Bengtsson et al. (2003) and references therein.

As a result, when ||t||2 ≫ 0, and y not far from 0, we have π(r)/r ≈ 0.

As a result, although it might be difficult to compare fs,r (fd,r) with fo,r, comparing

fs,r (fd,r) with fo,0 can give some rough idea for the hard comparison. Note further that

fs,0 = fd,0 = fo,0, which means that fs,r − fo,r ≈ fs,r − fo,0 = fs,r − fs,0. That is, robustness

actually indicates small bias. In Section 4 we present simulation results to verify this idea.

A limitation of our analysis to this point is that the L2 distance provides only partial

information about the deviation of the analysis distribution from the optimal (Bayes) update.

In fact, data assimilation is best evaluated by 1) the distance between the analysis center and

the true posterior center and 2) the size of the analysis covariance which needs to be large

enough to have the analysis ensemble cover a substantial proportion of the true posterior

distribution including its center. These two criteria are labeled in Sacher and Bartello

(2009) as “accuracy” and “stability” respectively (recall that in this paper the notion of

“stability” is different). In the context of large ensemble behavior, the analysis center is

almost the same for the stochastic filter and the deterministic filter. Therefore they should

perform similarly in this aspect given they are starting from the same forecast ensemble.

On the other hand, although both filters have the same second order statistics, the updated

ensemble is distributed differently for a non-Gaussian prior. This difference will affect the

future forecast ensemble and hence the filter performance in sequential applications, which

needs to be explored further.
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Another class of criteria are higher order moments since in a non-Gaussian distribution

the higher moments contains much information about the error distribution. In the next

subsection we consider the third moment as another measure of performance to support our

previous results.

e. The third moment

The third moment is an indication of the skewness of the distribution. Therefore it seems

a natural criterion beyond the first two moments to evaluate the updated ensemble. Lawson

and Hansen (2004) also considered the ensemble skewness in their experiments. Here for

presentation simplicity we consider the one dimensional model given by (5).

Assuming model (5), let Ms(y) =
∫

x3fs(x|y)dx be the third moment of the limiting

updated distribution given by the stochastic filter and similarly define Md(y) for the deter-

ministic filter. Then we have the following theorem:

Theorem 5. Under model (5), if both Xf ∈ R
1 and Y ∈ R

1, then

(i) For all S and y

lim
|t|→∞

|ν(G, F ; Ms(y))| = ∞, and lim
|t|→∞

|ν(G, F ; Ms(y))|

|ν(G, F ; Md(y))|
< 1. (19)

(ii) For all t and y,

lim
|S|→∞

|ν(G, F ; Ms(y))| = ∞, and lim
|S|→∞

|ν(G, F ; Ms(y))|

|ν(G, F ; Md(y))|
< 1. (20)

Proof. See Appendix B.
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These results are similar to those in the previous theorems, except that the third moment

is a scalar which allows us to derive results for each value of y. The intuition behind Theorem

5 can be seen from Figure 2, where the deterministic filter tends to produce two components

which are less spread and further away from each other than in the stochastic filter. As

a result, the deterministic filter puts a little more density in the region which are likely

outliers (the bump near =7 on the bottom right plot). Despite maintaining the right mean

and covariance, these outliers will have a substantial impact on the higher moments as shown

in Theorem 5. The empirical comparison of the bias of the third moments is provided in

Section 4.

4. Simulation results

In this section we present simulation results comparing the performance of the two ver-

sions of ensemble Kalman filters. As we will see later, the simulations do support the

analytical results and intuitive discussion in Section 3c and 3d.

a. The 1-dimensional case

In the 1-dimensional case, n random samples are drawn from Fr = (1 − r)F + rG as

described in model (5), under different combinations of model parameters (r,R, t,S) as

defined in Section 3a. Both versions of EnKF are applied to the same random sample and

observation from which the optimal conditional distribution is calculated. We first check the

expected square of L2 distance as a measure of bias as a direct verification of Theorem 2
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and 3, then we look at the third moment to further confirm our results.

The expected square of L2 distance

Once all the parameters in Model (5) is specified, for any value of y, the functions fs,r(x),

fd,r(x) and fo,r(x) can be calculated analytically. The expected square of L2 distances

Ey

∫

(fs,r(x) − fo,r(x))2 dx, and Ey

∫

(fd,r(x) − fo,r(x))2 dx (21)

are calculated numerically. That is, y is simulated many times, and for each simulated value

of y the above integrals are calculated numerically and averaged. In Table 1, we set t = 8,

S = 1, the same setup as in Figure 2. Actually the simulation is quantifying the difference

between the density curves shown in Figure 2, except that it takes further expectation over

all possible values of y. Three different values of R are chosen according to its relative size

with Pf
r = var(x|Fr). This result supports the analysis in Section 3c and the intuition in

Section 3d: when r is small, fs,r is closer to fo,r. Moreover, it seems that the asymptotic

statement can be extended to much larger value of r, e.g., r = 0.5 as shown in Table 1. The

expectation over y is approximated by averaging over 1000 simulated values of y (standard

deviations are shown in the parentheses).

The third moment

The EnKF forces the updated ensemble to have the correct first and second moment,

therefore the third moment becomes a natural criterion of comparison. The empirical third

moments of the two updated ensembles are compared with the optimal third moment which
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is calculated analytically.

Here, instead of taking expectation over y, we investigate the impact of the value y on the

comparison. That is, we look at all y ∈
[

−2(1 + R)
1
2 , 2(1 + R)

1
2

]

, which covers a majority of

probability mass in Fr. In the experiment, (R,S) ∈ {1/4, 1, 4}2, and t ∈ {1, 10, 30, 50, 100}.

We choose (n, r) = (500, 0.05). Several representative pictures are displayed in Figure 3. We

see that for small t, both filters give very small bias for almost the whole range of y, and

when t gets bigger, the stochastic filter gives smaller bias for a wide range of y, which covers

the majority of probability mass of its distribution. Moreover, the difference is enhanced by

larger values of R and S.

b. 2-dimensional case

In the 2-dimensional case, our theory claims that it is the magnitude of the matrices

that determine the amount of deviation. However, in the finite sample simulation, it seems

necessary to consider not only the magnitude, but also different orientations of the matrices.

We consider two instances:

• Orientation 1 : P = I2, R = c1R0 and S = c2S0, where (c1, c2) ∈ {1/4, 1, 4}2 tunes the

magnitude of R and S, where R0 = diag(1.5, 1), and S0 is a simulated 2 by 2 Wishart

matrix:

S0 =









1.15 0.14

0.14 0.70









.

• Orientation 2 : In this case we consider a contamination distribution G with very

different shape from F , i.e., S0 that has very different orientation from P = covF (x).
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Here we choose P to be, up to a scaling constant, the covariance matrix of the stationary

distribution of the first two coordinates in the Lorenz 63 system, and S0 is obtained

by switching the eigenvalues of P .

P =









1.06 1.05

1.05 1.35









, S0 =









1.35 −1.05

−1.05 1.06









.

Here S0 has the same eigenvectors as Σ, but with the eigenvalues switched. That is,

P = Q









d1 0

0 d2









QT, S0 = Q









d2 0

0 d1









QT,

where Q is a orthogonal matrix and d1 = 0.15, d2 = 2.27 are eigenvalues of P and S0.

The other settings are the same as above expect that R0 = I2.

The contour of the two Gaussian densities are plotted in Figure 4.

In the deterministic algorithm we try two choices of U in (3). The first is simply to

choose U = I. The second choice is based on the “ensemble adjustment Kalman filter”

(EAKF) proposed by Anderson (2001). Similar to the 1-dimensional case, the expectation

over y is approximated by averaging over 120 simulated y. Standard deviations are shown

in the parentheses. Some representative results are summarized in Table 2, where r = 0.05,

c2 = 1, and t = (10, 10) (other values make no qualitative difference).

Recall that c1 indicates the size of R. We can see that for small c1, the stochastic filter is

remarkably less biased, agreeing with the experiments in Lawson and Hansen (2004). Also

note that in Model (5) both the forecast and the analysis distribution are a mixture of

two Gaussian components, where the major component (i.e., the one with a weight close

to 1) contains mostly “normal” ensemble members whereas the minor component (the one
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whose weight is close to 0) contains mostly ensemble members that are likely outliers. When

the observation is accurate, the optimal filter puts more weight on the major Gaussian

component. On the other hand neither of the two EnKFs adjusts the component weights

in the analysis. The two components in the analysis distribution given by the deterministic

filter are less spread than those given by the stochastic filter. In order to have the same

covariance, the less spread components have to be further away from each other. As a

result, the outliers tends to be even more outlying in the deterministic update. An instance

of this intuition can be seen in the right panel of Figure 2 where the deterministic filter

always produces a small bump in the right tail, especially for small observation errors.

Another interesting observation is the comparison of the choices of the rotation matrix

U. For small observation noise, the difference is negligible. One can imagine that when the

observation is accurate, the optimal analysis distribution tends to be closer to a Gaussian,

whose distribution is determined by the first two moments, therefore the rotation does not

make too much difference. While when c1 gets bigger, the analysis ensemble becomes much

less Gaussian and the choice U = I shows significant advantage as compared with the

EAKF, agreeing with Theorem 3. This basically says that when the observation is very

uninformative, there is no need to change, and hence no need to rotate, the ensemble.

Moreover, the results shown in Table 2 also confirm the theory in that only the magnitude

of the contamination matters since similar behavior is observed for two very different shapes

of contamination distribution.
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5. Conclusion

We have studied the large-ensemble performance of ensemble Kalman filters using the

robustness approach. In the contaminated Gaussian model, the updated distribution is

another mixture with two components, where the stochastic filter is more stable against

small model violation due to the fact that its main component in the updated distribution

is closer to that of the optimal filter. Our theoretical results are supported by intensive

simulation over a wide range of the model parameters, agreeing with the empirical findings

in Lawson and Hansen (2004), where the intuitive argument says that the deterministic

shifting and re-scaling exaggerates the dispersion of some ensemble members.

Although our study focuses on the large-ensemble behavior under a classical model, our

method can be extended in at least two directions. First, the influence function theory

enables one to study other shapes of contamination, rather than Gaussian. Second, in

geophysical studies the model deviation might come from the observation, instead of the

state variable. In other words, the modeling error could come from the mis-specification of

the distribution of the observation error. The approach developed in this paper is applicable

to analysis of situations where the observation error is not exactly Gaussian.

The choice of the orthogonal matrix U in the deterministic filter is an unsettled issue in

data assimilation literature. Our L2-based stability criterion gives an answer to this question

which is intuitively reasonable: you do almost nothing when the observation is uninformative.

In practice, there are many factors determining which filtering method to use, such as

the computational constraints, the modeling error, the particular prediction task, and the

specific shapes of the forecasting distribution and error distribution, etc. But this cannot

25



be done before we fully understand the properties of all the candidates. We hope our study

contributes to that understanding.
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APPENDIX A

Large-ensemble behavior of EnKFs

Following the discussion in Section c, we have:

Proposition 6. As n → ∞, we have

F̂s ⇒ Fs, F̂d ⇒ Fd,

where Fs and Fd are the distribution functions of (I−KH)xf +K(y+ǫ) and µa +A(xf −µf),

respectively.

Our theoretical result on comparing the stochastic and deterministic filters are based on

Fs and Fd.

Proof. We show the weak convergence of F̂s. The proof for F̂d is similar.

Let J be a random index uniformly drawn from {1, . . . , n}. Let Ẑn = (I − K̂H)xf(J) +

K̂(y + ǫ(J)) and Zn = (I − KH)xf(J) + K(y + ǫ(J)). Then Ẑn ∼ F̂s, and Zn ∼ Fs, so it is

enough to show that Ẑn − Zn
P
→ 0.

Consider the random variable W = Hxf − y − ǫ. For any ξ > 0, δ > 0, one can find an

M large enough such that P (||W ||2 ≥ Mξ) ≤ δ/2. On the other hand, since K̂ − K
P
→ 0,

one can find Nξ,δ such that P (||K̂ − K||2 ≥ 1/M) ≤ δ/2 whenever n ≥ Nξ,δ. Then for all

27



n ≥ Nξ,δ, we have

P
(

||Ẑn − Zn||2 ≥ ξ
)

= P
(

||(K̂− K)(Hxf(J) − y − ǫ(J))|| ≥ ξ
)

≤ P
(

||K̂−K||2 ≥ 1/M
)

+ P
(

||Hxf(J) − y − ǫ(J)||2 ≥ Mξ
)

= P
(

||K̂− K||2 ≥ 1/M
)

+ P (||Hx− y − ǫ||2 ≥ Mξ)

≤ δ/2 + δ/2

= δ.

Remark 7. In Proposition 6, there is nothing special about Gaussianity, so the result holds

for any random variable xf such that Exf = µf , Var(xf) = Pf .
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APPENDIX B

Proofs of the main theorems

Proof of Theorem 2

We give a sketchy proof for part (i), the argument applies similarly to other parts.

We first consider the simpler case: t = ρt0, where ||t0||2 = 1.

Letting K = (I + R)−1, B = I − K, Γ = ttT + S − I, A = A(0) = B
1
2 U for some

orthogonal U, and Vs = BΓBT − AΓAT, then, in the deterministic filter, we have

∂

∂r
fd,r(x)

∣

∣

∣

∣

r=0

=

[

−
1

2
tr

(

B−1Vs

)

+ (ΓKy + B−1(B − A)t)T(x −Ky)

+
1

2
(x −Ky)TB−1VsB

−1(x −Ky) − 1

]

φ(x;Ky,B) + φ(x;Ky + At,ASAT).

Then it can be shown, via some algebra, that

Ey

∫
(

∂

∂r
fd,r(x)

∣

∣

∣

∣

r=0

)2

dx = C · ad(t0)ρ
4 + Pd(ρ) + e−κdρ2

Qd(ρ), (B1)

where Pd(ρ) and Qd(ρ) are polynomials of degree 3; C > 0 is a constant depending only on

B; κd > 0 is a constant; and

ad(t0) =
1

2
tr(t0t

T
0 Kt0t

T
0 B) +

1

16
E

(

zT
(

B
1
2 t0t

T
0 B

1
2 − Ut0t

T
0 UT

)

z
)2

. (B2)
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On the other hand, in the stochastic filter,

∂

∂r
fs,r(x)

∣

∣

∣

∣

r=0

=
[

(ΓKy)T(x − Ky) − 1
]

φ(x;Ky,B) + φ(x;Ky + Bt,BSBT + KRKT).

Similarly,

Ey

∫
(

∂

∂r
fs,r(x)

∣

∣

∣

∣

r=0

)2

dx = C · as(t0)ρ
4 + Ps(ρ) + e−κdρ2

Qs(ρ), (B3)

where Ps(ρ) and Qs(ρ) are polynomials of degree 3; C is the same constant as in (B1); κs > 0

is a constant; and

as(t0) =
1

2
tr(t0t

T
0 Kt0t

T
0 B). (B4)

Note that ||B
1
2 t0||2 < ||Ut0||2, for all t0 6= 0. Therefore,

lim
ρ→∞

Ey

∫

ν2 (G, F ; fs(x|y)) dx = ∞, and lim
ρ→∞

Ey

∫

ν2 (G, F ; fs(x|y)) dx

Ey

∫

ν2 (G, F ; fd(x|y)) dx
=

as(t0)

ad(t0)
< 1.

The statement of Theorem 2 (i) follows easily via a standard argument using the compactness

of the set {t0 ∈ R
p : ||t0||2 = 1}.

The proofs for part (ii) and (iii) are simply repeating the argument above on S and R,

respectively.

Proof of Theorem 3

The argument is essentially the same as in the proof of Theorem 2. Starting from the

easy facts:

lim
||R||2→∞

K = 0, lim
||R||2→∞

B = I, and lim
||R||2→∞

A = U,
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then

lim
||R||→∞

∂

∂r
fd,r(x)

∣

∣

∣

∣

r=0

=

[

((I −U)t)Tx +
1

2
xT(Γ − UΓUT)x − 1

]

φ(x; 0, I) + φ(x;Ut,USUT),

and

lim
||R||→∞

∂

∂r
fs,r(x)

∣

∣

∣

∣

r=0

= −φ(x; 0, I) + φ(x; t,S).

The rest of the proof is simply repeating the argument for the proof of Theorem 2 (i) and

(ii).

Proof of Theorem 5

The result is straight forward if one realizes that Fs,r and Fd,r are both Gaussian mixtures

with two components. One can calculate analytically the parameters of each component.

Then straight calculus gives:

ν(G, F ; Ms(y))

=β3t3 +
(

3α3β + 6αβ2
)

t2 +
(

3α2β + 3β2 + 3β3(S − 1)
)

t + (S− 1)(3α3β + 6αβ2), (B5)

and

ν(G, F ; Md(y))

=β
3
2 t3 +

(

3α3β + 6αβ2
)

t2 +
(

3α2β + 3β2 − 3β
3
2 + 3β

1
2S

)

t + (S− 1)(3α3β + 6αβ2),

(B6)

where

α =
y

1 + R
, β =

R

1 + R
.
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Then the results in Theorem 5 follows immediately because 0 < β < 1 for all R.
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List of Tables

1 Mean square L2 distance to the true conditional distribution in 1-D, with

t = 8, S = 1. 37

2 Mean square L2 distance to the true conditional distribution in 2-D, with

t = (10, 10), r = 0.05, c2 = 1. 38
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Table 1. Mean square L2 distance to the true conditional distribution in 1-D, with t = 8,
S = 1.

R = 0.25Pf
r R = Pf

r R = 4Pf
r

Sto. 0.369(0.195) 0.435(0.105) 0.112(0.037)
r=0.05

Det. 0.409(0.405) 0.586(0.137) 0.150(0.051)
Sto. 0.255(0.112) 0.286(0.094) 0.099(0.029)

r=0.1
Det. 0.356(0.350) 0.464(0.161) 0.150(0.054)
Sto. 0.117(0.034) 0.124(0.006) 0.055(0.005)

r=0.5
Det. 0.240(0.156) 0.199(0.064) 0.050(0.018)
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Table 2. Mean square L2 distance to the true conditional distribution in 2-D, with t =
(10, 10), r = 0.05, c2 = 1.

c1 = 1/4 c1 = 1 c1 = 4 c1 = 16
Sto. .035(.040) .041(.039) .043(.031) .040(.027)

Orient. 1 Det. (U = I) .462(.114) .183(.093) .100(.071) .065(.055)
Det. (EAKF) .454(.111) .183(.094) .105(.075) .086(.058)
Sto. .066(.142) .047(.071) .049(.056) .050(.051)

Orient. 2 Det. (U = I) .492(.224) .204(.119) .114(.098) .077(.079)
Det. (EAKF) .500(.207) .208(.118) .128(.101) .103(.085)
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4 The contour of the densities of the two components in Orientation 2 (up to

shift). Left: N(0,P); right: N(0,S). The levels are (from inner to outer):

0.2, 0.15, 0.1, 0.05. 43
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Fig. 1. The scatter plots of the previous updated ensemble (left) and the forecast ensemble
(right) in the Lorenz 63 system (simulated using fourth order Runge-Kutta method with
step size 0.05, propagated 4 steps).

40



−5 0 5 10
0

0.2

0.4

r=0.5

−5 0 5 10
0

0.5

1
r=0.05

 

 

−5 0 5 10
0

0.2

0.4

−5 0 5 10
0

0.5

1

−5 0 5 10
0

0.2

0.4

−5 0 5 10
0

0.2

0.4

opt.
sto.
det.

b)a)

k=0.25

k=1

k=4

Fig. 2. The density plots for Fo,r (solid); Fs,r (dotted) and Fd,r (dash-dotted). Parameters:
t = 8, S = 1, R = kPf

r. k = 0.25 (top row); k = 1 (middle row); k = 4 (bottom row).
r = 0.5 (left column); r = 0.05 (right column).
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Fig. 3. The conditional third moments. Horizontal coordinate: the observation y; vertical
coordinate: EFo,r

x3 (solid), EF̂s,r
x3 (dotted) and EF̂d,r

x3 (dash-dotted). Parameters: t = 1

(top row), t = 10 (second row), t = 50 (third row), t = 100 (bottom row); R = S = 1 (left
column), R = 1,S = 4 (middle column), R = S = 4 (right column).
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Fig. 4. The contour of the densities of the two components in Orientation 2 (up to shift).
Left: N(0,P); right: N(0,S). The levels are (from inner to outer): 0.2, 0.15, 0.1, 0.05.
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