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Abstract

We consider non-linear state space models in high-dimensional situations, where

the two common tools for state space models both have difficulties. The Kalman filter

variants are seriously biased due to non-Gaussianity and the particle filter suffers from

the “curse of dimensionality”.

Inspired by a regression perspective on the Kalman filter, a novel approach is de-

veloped by combining the Kalman filter and particle filter, retaining the stability of

the Kalman filter in large systems as well as the accuracy of particle filters in highly

non-linear systems. Its theoretical properties are justified under the Gaussian linear

models as an extension of the Kalman filter. Its performance is tested and compared

with other methods on a simulated chaotic system which is used widely in numerical

weather forecasting.

1 Introduction

A state space model (SSM) typically consists of two time series {Xt : t ≥ 1} and {Yt : t ≥ 1}

defined by the following model:

Xt+1 = ft(Xt, Ut), ft(·, ·) : R
p × [0, 1] 7→ R

p,

(Yt|Xt = x) ∼ g(·; x), g(·; ·) : R
q × R

p 7→ R
+.

(1)

where Ut is a random variable independent of everything else with uniform distribution on

[0, 1] and g(·; x) is a density function for each x. The state variable Xt evolves according to

the dynamics ft(·, Ut) is usually of interest but never directly observed. Instead it can only

1



be learned indirectly through the observations Yt. SSM has been widely used in sciences and

engineering including signal processing, public health, ecology, economics and geophysics.

For a comprehensive summary, please see [12, 17]. A central problem in SSM is the filtering

problem: assume that f(·, ·) and g(·; ·) are known, how can one approximate the distribution

of Xt given the observations Y t
1 := (Y1, . . . , Yt) and the initial distribution of X0, for every

t ≥ 1? A related problem of much practical interest is the tracking problem: for a realization

of the SSM, how can one locate the current hidden state Xt based on the past observations

Y t
1 ? Usually the filtered expectation X̂t = E(Xt|Y

t
1 , X0) can be used to approximate Xt.

A closed form solution to the filtering problem is available only for few special cases

such as the Gaussian linear model (Kalman filter). The Kalman filter variants for non-linear

dynamics includes the extended Kalman filter (EKF), the unscented Kalman filter (UKF,

[16]) and the Ensemble Kalman filter (EnKF, [10]). The ensemble Kalman filter (EnKF), a

combination of the sequential Monte Carlo (SMC, see below) and the Kalman filter, mostly

used in geophysical data assimilation, has performed successfully in high dimensional models

[11].

Despite the ease of implementation of the Kalman filter variants, they might still be

seriously biased because the accuracy of the Kalman filter update requires the linearity of

the observation function and the Gaussianity of the distribution of Xt given Y t−1
1 , both of

which might fail in reality. Another class of ensemble filtering technique is the sequential

Monte Carlo (SMC [22]) method, or the particle filter (PF, [14]).

The basic idea of the PF (also the EnKF) is using a discrete set of n weighted particles to

represent the distribution of Xt, where the distribution is updated at each time by changing

the particle weights according to their likelihoods. It can be shown that the PF is consistent

under certain conditions, e.g., when the hidden Markov chain {Xt : t ≥ 1} is ergodic and

the state space is compact [18], whereas the EnKF in general is not [19, 20].

A major challenge arises when p, q are very large in model (1) while n is relatively small.

In typical climate models p can be a few thousands with n being only a few tens or hundreds.

Even Kalman filter variants cannot work on the whole state variable because it is hard to

estimate very large covariance matrices. It is also known that the particle filter suffers from

the “curse of dimensionality” due to its nonparametric nature [3] even for moderately large p.

As a result, dimension reduction must be employed in the filtering procedure. For example,

a widely employed technique in geophysics is “localization”: the whole state vector and

observation vector are decomposed into many overlapping local patches according to their

physical location. Filtering is performed on each local patch and the local updates are pieced

back to get the update of the whole state vector. Such a scheme works for the EnKF but
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not for the PF because the former keeps track of each particle whereas the PF involves a

reweighting/resampling step in the update of each local patch and there is no straightforward

way of reconstructing the whole vector since the correlation among the patches is lost in the

local reweighting/resampling step.

To sum up it is desirable to have an non-linear filtering method that is easily localizable

like the EnKF and adaptive to non-linearity and non-Gaussianity like the PF. In this paper

we propose a nonlinear filter that combines the advantages of both the EnKF and the PF.

This is a filter that keeps track of each particle and use direct particle transformation like

the EnKF while using importance sampling as the PF to avoid serious bias. The new filter,

which we call the Non-Linear Ensemble Adjustment Filter (NLEAF), is indeed a further

combination of the EnKF and the PF in that it uses a moment-matching idea to update

the particles while using importance sampling to estimate the posterior moments. It is

conceptually and practically simple and performs competitively in simulations. Single step

consistency can be shown for certain Gaussian linear models.

In Section 2 we describe EnKF and PF with emphasis on the issue of dimension reduction.

The NLEAF method is described and the consistency issue is discussed in Section 3. In

Section 4 we present the simulation results on two chaotic system.

2 Background of ensemble filtering

2.1 Ensemble filtering at a single time step

Since the filtering methods considered in this paper are all recursive, from now on we focus

on a single time step and drop the time index t whenever there is no confusion. Let Xf

denote the variable (Xt|Y
t−1
1 ) where the subindex f stands for “forecast”, and Y denote Yt.

Let Xu denote the conditional random variable (Xt|Y
t
1 ).

Suppose the forecast ensemble {x
(i)
f }n

i=1 is a random sample from Xf , and the observation

Y = y is also available. There are two inference tasks in the filtering/tracking procedure:

(a) Estimate E(Xu) to locate the current state.

(b) Generate the updated ensemble {x
(i)
u }n

i=1 , i.e., a random sample from Xu, which will

be used to generate the forecast ensemble at next time.
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2.2 The ensemble Kalman filter [9, 10, 11]

We first introduce the Kalman filter. Assuming a Gaussian forecast distribution: , and a

linear observation model

Xf ∼ N(µf , Σf ),

Y = HXf + ǫ, ǫ ∼ N(0, R),
(2)

then Xu = (Xf |Y ) is still Gaussian:

Xu ∼ N(µu, Σu),

where

µu = µf + K(y − Hµf), Σu = (I − KH)Σf , (3)

and

K = ΣfH
T (HΣfH

T + R)−1 (4)

is the Kalman gain.

The EnKF approximates the forecast distribution by a Gaussian with the empirical mean

and covariance, then updates the parameters using the Kalman filter formula. Recall the

two inference tasks listed in Section 2.1. The estimation of E(Xu) is straightforward using

the Kalman filter formula. To generate the updated ensemble, a näıve (and necessary if in

the Gaussian case) idea is to sample directly from the updated Gaussian distribution. This

will, as verified widely in practice, lose much information in the forecast ensemble, such

as skewness, kurtosis, clustering, etc. Instead, in the EnKF update, the updated ensemble

is obtained by shifting and re-scaling the forecast ensemble. A brief EnKF algorithm is

described as below:

The EnKF procedure

1. Estimate µ̂f , Σ̂f .

2. Let K̂ = Σ̂fH
T (HΣ̂fH

T + R)−1.

3. µ̂u = (I − K̂H)µ̂f + K̂y.

4. x
(i)
u = x

(i)
f + K̂(y − Hx

(i)
f − ǫ(i)), with ǫ(i) iid

∼ N(0, R).1

1In step 4 there is another update scheme which does not use the random perturbations ǫ
(i). This

deterministic update, also known as the Kalman square-root filter, is usually used to avoid sampling error

when the ensemble size is very small [1, 5, 29, 27, 20].
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5. The next forecast ensemble is obtained by plugging each particle into the dynamics:

x
(i)
t+1,f = ft(x

(i)
u , ui), i = 1, . . . , n.

Under model (2) the updated ensemble is approximately a random sample from Xu and

that µ̂u → µu as n → ∞. The method would be biased if the model (2) does not hold [13].

Large sample asymptotic results can be found in [19], where the first two moments of the

EnKF are shown to be consistent under the Gaussian linear model, see also [20].

2.3 The particle filter

The particle filter [14, 22] also approximates the distribution of Xf by a set of particles. It

differs from the EnKF in that instead of assuming a Gaussian and linear model, it reweights

the particles according to their likelihood. Formally, one simple version of the PF acts as

the following:

A simple version of the particle filter

1. Compute weight Wi =
g(y;x

(i)
f

)
∑n

j=1 g(y;x
(i)
f

)
for i = 1, . . . , n.

2. The updated mean µ̂u =
∑n

i=1 x
(i)
f

g(y;x
(i)
f

)
∑n

i=1 g(y;x
(i)
f

)
.

3. Generate n random samples x
(1)
u , . . . , x

(n)
u i.i.d from {x

(i)
f }n

i=1 with probability P (X
(1)
u =

x
(i)
f ) = Wi for i = 1, . . . , n.

It can be shown [18] that under strong conditions such as compactness of the state space

and mixing conditions of the dynamics, the particle approximation of the forecast distribution

is consistent in L1 norm uniformly for all 1 ≤ t ≤ Tn, for Tn → ∞ subexponentially in n.

However, it is well-known that the PF has a tendency to collapse (also known as sample

degeneracy) especially in high-dimensional situations, see [21], and rigorous results in [3]. It

is suggested that the ensemble size n needs to be at least exponential in p to avoid collapse.

Another fundamental difference between the PF and the EnKF is that in the PF, x
(i)
u is

generally not directly related to the x
(i)
f because of reweighting/resampling. Recall that in

the EnKF update, each particle is updated explicitly and x
(i)
u does correspond to x

(i)
f . This

difference materializes in the dimension reduction as discussed below.

2.4 Dimension reduction via localization

Dimension reduction becomes necessary for both EnKF and PF when X and Y are high

dimensional, e.g., in numerical weather forecasting X and Y represents the underlying and
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observed weather condition. It is usually the case that the coordinates of the state vector X

and observation Y are physical quantities measured at different grid points in the physical

space. Therefore it is reasonable to assume that two points far away in the physical space have

little correlation, and the corresponding coordinates of the state vector can be updated inde-

pendently using only the “relevant” data [15, 4, 25, 2]. Formally, let X = (X(1), ..., X(p))T .

One can decompose the index set {1, . . . , p} into L (possibly overlapping) local windows

N1, . . . , NL such that |Nl| ≪ p and
⋃

l Nl = {1, . . . , p}, and correspondingly decompse

{1, . . . , q} into {N ′
1, . . . , N

′
L} such that |N ′

l | ≪ q and
⋃

l N
′
l = {1, . . . , q}. Let Xf(Nl) denote

the subvector of Xf consisting of the coordinates in Nl, and similarly define Y (N ′
l ). Y (N ′

l )

is usually chosen as the local observation of local state vector Xf(Nl).

The localization of the EnKF is straightforward: For each local window Nl and its corre-

sponding local observation window N ′
l , one can apply the EnKF on {x

(i)
f (Nl)}

n
i=1 and y(N ′

l )

with local observation matrix H(N ′
l , Nl), which is the corresponding submatrix of H . In the

L local EnKF updates, each coordinate of X might be updated in multiple local windows.

The final update is a convex combination of these multiple updates. Such a localized EnKF

has been successfully implemented in the Lorenz 96 system (a 40 dimensional chaotic system,

see Section 4) with the sample (ensemble) size being only 10 [25]. The localization idea will

be further explained in Section 3.1. To be clear, we summarize the localized EnKF as simply

L parallel runs of EnKF plus a piecing step:

The localized EnKF

1. For l = 1, . . . , L, run the EnKF on {x
(i)
f (Nl)}

n
i=1 and y(N ′

l), with local observation

matrix H(N ′
l , Nl). Store the results: µ̂u(Nl) and {x

(i)
u (Nl)}

n
i=1.

2. For each j = 1, . . . , p, let µ̂u(j) =
∑

l:j∈Nl
wj,lµ̂u(Nl; j), and x

(i)
u (j) =

∑

l:j∈Nl
wj,lx

(i)
u (Nl; j),

where X(Nl; j) is the coordinate of X(Nl) that corresponds to X(j), and wj,l ≥ 0,
∑

l:j∈Nl
wj,l = 1.

The choices of local windows Nl, N ′
l and combination coefficients wj,l can be pre-determined

since in many applications there are simple and natural choices. They can also be chosen in

a data-driven fashion. For example, as we will explain later, the Kalman filter is essentially a

linear regression of X on Y . Therefore for each coordinate of X one can use sparse regression

techniques to select the most relevant coordinates in Y . Similarly the choice of wj,l in the

algorithm can be viewed as a problem of combining the predictions from multiple regression

models and can be calculated from the data [6, 30, 7]. We will return to this issue in Section

3.1.
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Table 1: A quick comparison of the EnKF and the PF.

consistent stable localizable

EnKF ✕ X X

PF X ✕ ✕

On the other hand, such a dimension reduction scheme is not applicable to the PF because

each particle is reweighted differently in different local windows. In words, the reweighting

breaks the strong connection of a single particle update in different local windows and it is

not clear how to combine the updated particle across the local windows. This can be viewed

as a form of sample degeneracy: in high dimension situations, a particle might be plausible

in some coordinates but absurd in other coordinates.

So far, the properties of the EnKF and the PF can be summarized as in Table 1, where

the only check mark for the PF is higher accuracy. A natural idea to reduce the bias of

EnKF is to update the mean of X using importance sampling as in the PF. Meanwhile, a

possible improvement of the PF is avoiding the reweighting/resampling step. One possibility

is generating an ensemble using direct transformations on each particle as in the EnKF. In the

next section we present what we call the “nonlinear ensemble adjustment filter” (NLEAF)

as a combination of the EnKF and the PF. Some relevant works [4, 8] also have the flavor

of combining the EnKF and the PF, but both involve some form of resampling, which is

typically undesirable in high-dimensional situations.

3 The NonLinear Ensemble Adjustment Filter (NLEAF)

3.1 A regression perspective of the EnKF

In equation (4), the Kalman gain KT is simply the linear regression coefficient of Xf on Y .

In fact, from Model (2) we have Cov(X, Y ) = ΣfH
T and Var(Y ) = HΣfH

T + R, therefore

KT = Var(Y )−1Cov(Y, Xf). The conditional expectation of Xf given y is

µf + K(y − Hµf) := m1(y).

Let y(i) = Hx
(i)
f + ǫ(i) be an observation given Xf = x

(i)
f then (x

(i)
f , y(i)) is a random

sample from the joint distribution of (Xf , Y ). m̂1(·) = µ̂f + K̂(· − Hµ̂f) is an estimator of
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m1(·). The update step of the EnKF can be written as

x(i)
u = m̂1(y) + x

(i)
f − m̂1(y

(i)). (5)

Under Model (2) we have that (Xf − m1(y)|Y = y) ∼ N(0, Σu) where Σu does not depend on

y. Note further that
(

x
(i)
f , y(i)

)

∼ (Xf , Y ), so x
(i)
f −m1(y

(i)) is a random draw from N(0, Σu).

Therefore x
(i)
u = m1(y) + x

(i)
f − m1(y

(i)) is a random draw from N(µu, Σu) by noting that

m1(y) = µu, which validates the update formula (5).

The procedure described above is an abstraction of the EnKF which can be viewed as a

solution to the sampling problem of generating a random sample of (Xf |Y = y) given a sam-

ple of Xf . Classical approaches to this problem includes rejective sampling and importance

sampling (with possibly a resampling step). However, the approach described above uses

direct transformations on the particles x
(i)
f , with randomness involved only in generating y(i).

This procedure is effective in the sense that each particle in the forecast ensemble correspond

to exactly one particle in the updated ensemble, without sample degeneracy.

3.2 A general NLEAF framework

Based on the discussion above, an effective way of updating the ensemble is directly trans-

forming each particle so that the transformed particles have the desired distribution. In a

Gaussian linear model, it suffices to adjust the mean by a simple shift as in equation (5) and

the posterior variance is implicitly obtained by generating the random number x
(i)
f −m̂1(y

(i)).

For general models where the likelihood function g(y; x) and the forecast distribution are

not Gaussian, it is too much to ask for the transformation to achieve the exact posterior

distribution. Instead, it is more practical to achieve only the correct posterior moments.

This simple idea leads to the NonLinear Ensemble Adjustment Filter (NLEAF).

NLEAF of order S

1. For s = 1, . . . , S, where S is a pre-chosen positive integer, estimate the conditional sth

moment ms(y) := E(Xs
f |y). Denote the estimates by m̂s, s = 1, . . . , S.

2. For i = 1, . . . , n, find ξi(·) such that

E(ξs
i (Xf )|y

(i)) ≈ m̂s(y), s = 1, . . . , S,

where the function ξi(·) might depend on y, y(i), {x
(i)
f }n

i=1 and m̂s, s = 1, . . . , S.

3. The updated particle is x
(i)
u = ξi(x

(i)
f ). The updated mean is simply µ̂u = m̂1(y).
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The conditional moments can be estimated using importance sampling as in Step 1-3 of

the particle filter. For example, the conditional mean and covariance can be estimated as

following:

m̂1(y) =

∑n

i=1 g(y; x
(i)
f )x

(i)
f

∑n

i=1 g(y; x
(i)
f )

, (6)

m̂2(y) =

∑n

i=1 g(y|x
(i)
f )(x

(i)
f − m̂1(y))(x

(i)
f − m̂1(y))T

∑n

i=1 g(y; x
(i)
f )

. (7)

If the likelihood g(·; ·) is not known explicitly (eg, y is generated by a black-box function),

one may use regression methods to estimate the conditional moments. For example, the

EnKF uses a linear regression of Xf on Y to find m̂1(y). However, under general models,

one might need more general methods, such as polynomial regressions, to avoid serious bias.

This idea is further explained in Section 4.2.

When s > 2, estimating the higher order conditional moments will require a large en-

semble and the estimates are very sensitive to outliers. Moreover, there is no clear choice of

ξ when s ≥ 3. For the rest of this paper we focus on the simple cases S = 1 and S = 2.

3.2.1 The first order NLEAF (S = 1)

The first order NLEAF algorithm is a direct generalization of the EnKF:

1. Generate y(i) ∼ g(·; x
(i)
f ), for i = 1, . . . , n.

2. Estimate m1(·) by m̂1(·) =
∑n

i=1 x
(i)
f

g(·;x
(i)
f

)
∑n

i=1 g(·;x
(i)
f

)
.

3. Updated mean µ̂u = m̂1(y). Updated particle x
(i)
u = m̂1(y) + x

(i)
f − m̂1(y

(i)).

This approach is valid if L
(

Xf − m1(y
(i))|y(i)

)

≈ L (Xf − m1(y)|y), where L(X) denotes

the distribution of the random variable X. That is, L(Xf |y) depends on y mostly in terms

of the mean. A simple example is the Gaussian linear model, where only the posterior mean

depends on y. One can also expect such a situation when the likelihood g(y; x) has a lighter

tail than the forecast distribution Xf . To formalize, let

η = sup
y′,y

TV (L(Xf − m1(y
′)|y′),L(Xf − m1(y)|y)) ,

where TV(L1,L2) = supA |PL1(A) − PL2(A)| denotes the total variation distance between

two distributions L1 and L2. Then the smaller η is, the better is the approximation given by

the first order NLEAF. To state a rigorous result, we need the following technical conditions

on the likelihood function g(x; y) which make the argument simple.
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(A0) Xf has density function f(·) > 0.

(A1) 0 < g(x; y) ≤ M < ∞ for all (x, y), supx∈Rp,y∈K |xg(x; y)| ≤ MK < ∞ for all compact

K ⊂ R
q.

(A2) For any compact set K ⊆ R
q, there exists a measurable function vK(x), such that

E(v2
K(X)) < ∞ and for any y1, y2 ∈ K,

max (|xg(x; y1) − xg(x; y2)|, |g(x; y1) − g(x; y2)|) ≤ vK(x)|y1 − y2|.

The conditions A1 and A2 are standard conditions for the maximal inequalities in empirical

processes. They implies that the likelihood function x 7→ g(x; y) (x 7→ xg(x; y)) depends

on y continuously, which controls the complexity of the class of functions x 7→ g(x; y) (x 7→

xg(x; y)) indexed by y and enables the use of the classical results of empirical processes. They

also implies that the observation Y provides information for the whole vector of X, which

precludes the degenerate situations such as X = (X1, X2)
T and Y = h(X1). These conditions

are reasonably general, including models like g(x; y) ∝ φ(|x − y|) with φ(·) decaying fast

enough, e.g., for the Gaussian density function one can find the vK(x) is bounded by a

constant. We have the following theorem whose proof is in Appendix A:

Theorem 1. Suppose
(

x(i), y(i)
)

, i = 1, . . . , n is an i.i.d sample from the joint distribution

of (Xf , Y ). Let x
(i)
u , i = 1, . . . , n, be the updated particles given by the first order NLEAF

algorithm. For any y, consider the empirical distribution

F̂u(A|y) =
1

n
δ
x
(i)
u

(A), ∀A,

where

x(i)
u = m̂1(y) + x

(i)
f − m̂1(y

(i)).

Also let Fu(A|y) = P (Xf ∈ A|y) be the true conditional measure. Then, under (A0-A2) for

Borel set A with λ(∂A) = 0, we have

lim sup
n→∞

|F̂u(A|y) − Fu(A|y)| ≤ η, a.s.,

where λ(·) is the Lebesgue measure and ∂A := Ā\A◦ is the boundary of A, with Ā and A◦

being the compact closure and interior of A, respectively.

A by-product of the proof of Theorem 1 is the consistency of mean update:

Corollary 2. Under (A0-A2), we have for any y,

m̂1(y) → m1(y), a.s., n → ∞.
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Under the Gaussian linear model we have η = 0. The above results indicate the consis-

tency of the NLEAF of order one:

Corollary 3. Under Model (2), for any y,

F̂u
d
→ Fu, a.s., n → ∞.

3.2.2 A second order NLEAF (S = 2)

Based on the estimated conditional variance in (7), one can easily develop a second order

NLEAF algorithm. Now the function ξi is naturally chosen as

ξi(x) = m̂1(y) + (m̂2(y))
1
2
(

m̂2

(

y(i)
))−

1
2
(

x − m̂1

(

y(i)
))

. (8)

The update formula is intuitively reasonable: Suppose x, y ∈ R
1, then a large m2(y

(i)) means

that the region where x
(i)
f lies in is highly uncertain which is possibly due to the irregular

behavior of the dynamics in that region. Such a particle x
(i)
f can provide little information

on the true hidden state, therefore it is down-weighted in the transformation ξi, which tends

to drag x
(i)
f towards µ̂u = m̂1(y) in the updated ensemble.

It should be noted that the choice of ξi is apparently not unique. For example, for any

orthogonal matrix U , one can define ξi(x; U) as

ξi(x; U) = m̂1(y) + (m̂2(y))
1
2 U

(

m̂2

(

y(i)
))−

1
2
(

x − m̂1

(

y(i)
))

.

It is easily seen that the choice of U does not change the first two moments of L
(

ξi(Xf ; U)|y(i)
)

.

The choice U = I is natural in the sense that under Model (2) with Σu = σ2I, if U = I

then the second order NLEAF is asymptotically equivalent to the first order NLEAF, which

is proved to be consistent (see also the discussion in [20]). In the rest of this paper, we will

focus on the natural choice U = I.

3.2.3 Localization for the NLEAF algorithm

As seen above, the NLEAF algorithm is similar to the EnKF in that it updates each particle

explicitly instead of resampling. As a result, one may expect a similar localization procedure

as described in Section 2.4 applicable to the NLEAF algorithm. Recall that the EnKF

localization involves three major steps:

a) Decompose the state vector Xf into local windows Xf (Nl), l = 1, . . . , L, find the corre-

sponding local observation vector Y (N ′
l ), and the local likelihood function gl(y(N ′

l); xf (Nl));
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b) Update each localized ensemble;

c) Construct the whole updated ensemble by combining the local updated ensembles.

In step a), one can usually construct a local window for each coordinate of Xf , where Xf(Nj)

is the subset of coordinates most relevant to Xf(j), j = 1, . . . , p. One can either choose these

coordinates by subject knowledge. For example, in geophysics each coordinate corresponds

to a physical location, then one can choose the coordinates in a neighborhood of the physical

location of Xf (j). Or one can use data-driven variable selection procedures to determine

the relevant neighborhood Xf(Nj). The choice of N ′
j is similar. In many cases the special

structure of the observation model (the second equation in (1)) enables natural and simple

solutions. For example, under the linear model Y = HXf + ǫ, if H is sparse or banded, it is

possible to find a submatrix Hj = H(N ′
j, Nj) such that Y (N ′

j) ≈ HjXf(Nj) + ǫ(N ′
j), where

N ′
j is a subset of 1, . . . , q such that yN ′

j
is the local observation corresponding to Xf(Nj).

Once step a) is done, in step b) one only needs to apply the NLEAF algorithm as de-

scribed above on each of the localized ensemble. The major issue is step c). Recall that the

local windows overlap with each other, therefore each coordinate might be updated simul-

taneously in multiple local patches. To be concrete, for any local window Nj ⊆ {1, . . . , p},

let N ′
j ⊆ {1, . . . , q} be the corresponding local observation window, and gj(xNj

; yN ′

j
) be the

local likelihood function. Define Nk, N ′
k and gk(·; ·) similarly for another local window Nk.

Suppose r ∈ Nj ∩Nk, then Xf(r) is updated in both of these two local windows. From now

on we consider the first order and second order NLEAF separately.

In the first order NLEAF, we write the update formula for the mean in both local windows

as in equation (5):

µ̂u(Nj) = m̂1,j(y(N ′

j)),

µ̂u(Nk) = m̂1,k(y(N ′

k)),

where m̂1,j(·) denotes the local estimation of m1,j(·) := E(Xf(Nj)|y(N ′
j)). Recall that we

denote (Nj ; r) the position of the index r in the vector Nj. Then µ̂u(Nj ; r) and µ̂u(Nk; r)

can be viewed as predictions of Xf (r) given different sets of predictors, namely Y (N ′
j) and

Y (N ′
k), respectively. A natural method of combining the predictions of the same variable

from different models is convex combination, which is chosen either conventionally or in a

data-driven manner [6, 30, 7]. In our numerical experiment we follow the conventional choice

described in [25] where the combination is simply averaging the updates in a few spatially

coherent local windows. It is clear that this combination procedure is also applicable to the

update of each single particle for exactly the same reason.
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However, the above method of combining local updates does not apply directly to

the second order NLEAF because in equation (8) the left-multiplication of the matrix

(m̂2(y))
1
2
(

m̂2(y
(i))

)−
1
2 mixes the coordinates in the local window, which makes coordinates

in the left hand side no longer an estimate of the corresponding coordinate of the state

variable, which invalidates the convex combination.

4 Numerical experiments

We present numerical experiments on two dynamical systems, both proposed by E. Lorenz

in studying the predictability of chaotic systems. These systems have been widely used as

test beds for atmospheric data assimilation methods [4, 25, 2].

4.1 Experiments on L63

The L63 system is first introduced by [23], as one of the earliest study of chaos. This three

dimensional system is determined by an ordinary differential equation

dx(τ)

dτ
= −σx + σy, (9)

dy(τ)

dτ
= −xz + rx − y, (10)

dz(τ)

dτ
= xy − bz, (11)

where τ denotes the time, (x(τ), y(τ), z(τ))T is the state vector and (b, σ, r) are parameters

of the system. When b = 8/3, r = 28 and σ = 10, the system is chaotic and its orbit is the

well-known Butterfly Attractor.

In the simulation the system is discretized using the fourth order Runge-Kutta method.

It is clear that the linearity of the evolution of the state vector between two successive time

points depends on the length of the time interval ∆τ between t and t + 1 which we call the

step size: The smaller is ∆τ , the more linear is the evolution between t and t + 1.

In the simulation, there is a hidden true orbit {xt, t ≥ 0}. The starting point, x0, of the

true orbit is randomly chosen from the attractor. At the starting time, an ensemble of state

vectors {x
(i)
0 }n

i=1, surrounding x0 is available (e.g., perturbations of x0 with random noise or

a random sample from a small neighborhood of x0 in the attractor). For all t > 0 a noisy

observation yt = xt + ǫt is available with

ǫt
iid
∼ N(0, σ2I3). (12)
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Figure 1: Average RMSE over 2000 cycles.

At each time t ≥ 1, The updated ensemble average is used as the best single estimate of

xtTherefore, the data assimilation performance is evaluated by the root mean squared error

(RMSE):

RMSE =

√

1

p
||µ̂u,t − xt||22. (13)

We consider two time steps: 0.05 and 0.2, corresponding to the nearly linear case and the

non-linear case respectively. In each case the system is propagated 2000 steps and at each

time the data assimilation is performed using four different methods: the EnKF, the PF,

the first order NLEAF (NLEAF1) and the second order NLEAF (NLEAF2), each with an

ensemble of size 400. Also we consider three values of σ2 in (12): 0.25, 1 and 4, corresponding

to different levels of the observation accuracy. In Figure (1) we see that the EnKF gives the

largest RMSE because of the non-linear dynamics. The NLEAF2 performs the best under

all circumstances considered here. When step size is small, the system is nearly linear so

that the NLEAF1 performs better than the PF. When the step size is large, the PF shows

some advantage against the NLEAF1 which ignores the higher order moments.

4.2 Experiments on L96

The L96 system is introduced in [24] in the study of predictability of high dimensional chaotic

systems. The state vector is 40 dimensional, and the dynamics is given by an ODE as follows:

dxj(t)

dt
= (xj+1 − xj−2)xj−1 − xj + 8, for j = 1, . . . , 40, (14)
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where x0 = x40, x−1 = x39 and x41 = x1. This system mimics the evolution of some

meteorological quantity at 40 equally spaced grid points along a latitude circle. The system

is discretized with a time step of ∆τ = 0.05, which is analogous to a 6 hour in the real world.

Although the dimensionality of the L96 system is still far from the reality, it has been

challenging for many standard data assimilation methods including the Kalman filter vari-

ants. Among the vast literature, we mention only two previous works: [25] considered the

localized ensemble Kalman filter in an approximately linear case (δτ = 0.05) and a complete

observation, that is

Yt = Xt + ǫt, ǫt
iid
∼ N(0, I40). (15)

We call this set-up the easy case. On the other hand, [4] studied a localized Gaussian mixture

filter in a highly non-linear case (δτ = 0.4) and an incomplete observation: for j = 1, . . . , 20,

Yt(j) = Xt(2j − 1) + ǫt(j), ǫt
iid
∼ N(0, I20/2). (16)

We call this set-up the hard case.

The major criterion is still the RMSE defined in (13). Moreover, because of its dimen-

sionality and resemblance to real atmospheric data, we do care about the computation, where

the main restriction is the ensemble size.

We consider both the easy case and the hard case. The system is propagated 2000

steps from a random starting point with data assimilation performed at each step. Because

of the localization, we do not use the second order NLEAF. Instead, we use a variant of

NLEAF1, namely NLEAF1q, with the letter “q” for “quadratic”, in which the function

m1(·) = E(Xf |Y = ·) is estimated using a quadratic regression of Xf on Y . To be concrete,

in the NLEAF1q algorithm m̂1(·) is the minimizer over all quadratic functions m(·) of the

square loss:
n

∑

i=1

(

m(y(i)) − x
(i)
f

)2

.

We consider the NLEAF1q algorithm because we believe sometimes g(·, ·) may not be avail-

able explicitly and the y’s are generated by a black-box function of x. We emphasize that

in the NLEAF1q algorithm, the function g(·, ·) is pretended to be unknown and not used.

In both NLEAF1 and NLEAF1q, the localization is as described in Section 2.2, which is

also essentially the same as in [25]: Let l be a pre-chosen window size. For each j = 1, . . . , 40,

let Nj = (j − l, . . . , j, . . . , j + l) be the local window centered at j. The corresponding

local observation window N ′
j is the local observations of X(Nj). For example, if l = 2,

then N1 = (39, 40, 1, 2, 3). In the easy case, N ′
1 = (39, 40, 1, 2, 3) since the observation is

complete (eq. (15)); In the hard case the observation is incomplete (eq. (16)) and we have
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Table 2: The RMSE over 2000 assimilation cycles in the hard case. Ensemble size = 400.

NLEAF NLEAFq EnKF XEnsF

mean med std mean med std mean med std mean med std

0.65 0.63 0.20 0.71 0.67 0.22 0.83 0.75 0.31 0.92 0.85 0.31

N ′
1 = (20, 1, 2).For each j, the coordinate X(j) of the state variable X is updated in 2l + 1

local windows. In the first order NLEAF algorithm, for k ∈ Nj, X(j) is updated in the

local window Nk using the conditional expectation given yN ′

k
(or y

(i)
N ′

k
). Similar to the scheme

proposed in [25], we combine the local updates of Xf(j) from Nj−1, Nj and Nj+1 by simply

averaging them. One can also use a data-driven method at a higher computational cost

([6, 30, 7]).

4.2.1 The hard case

In the hard case we compare four methods: the NLEAF1; the NLEAF1q; the mixture

ensemble filter (XEnsF [4]); the EnKF without localization. Following the set-up in [4], the

ensemble size is fixed to be 400. We compare the performance of NLEAF1 and NLEAF1q

directly with those reported in [4], summarized in Table 2, where we see similar results as

in the L63 experiment: The NLEAF1 gives much smaller RMSE than both the XEnsF and

the EnKF. This is the first time the authors see the average RMSE goes below 0.7 in this

set-up.

4.2.2 The easy case

In the easy case we compare three methods: the NLEAF1, the NLEAF1q and the ensemble

transform Kalman filter (LETKF) proposed in [25], which achieves the best known per-

formance in this set-up, with an average RMSE of about 0.2 using an ensemble as small

as 10. It is reported that enlarging the ensemble size does not improve the accuracy of

EnKF (LETKF) while the NLEAF is expected to work better for larger ensembles. Here

we consider different ensemble sizes ranging from 10 to 400. The result is summarized in

Figure 2 where only the mean of the average RMSE is plotted. The median and the variance

are qualitatively similar to those presented in the hard case and are omitted here. We see

that the LETKF still gives the best performance especially for small ensemble sizes. The

NLEAF1 becomes competitive when the ensemble size is moderately large. From the plot

it is also reasonable to expect even smaller RMSE of NLEAF1 given even larger ensembles.
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Figure 2: Average RMSE over 2000 cycles in the easy case of L96 system, ensemble size =

400.

The performance of NLEAF1q is not as good as the other two methods but we believe it

is of practical interest since it requires much less a priori knowledge on the observation

mechanism.

4.2.3 An intermediate case

So far both the easy and the hard cases are of practical interests: The easy case is analogous

to the 6-hour operational data assimilation; The hard case challenges forecast in the presence

of high nonlinearity and incomplete observation which is often the case in practice. As a

result, it would be interesting to consider an intermediate case where the time step is still

short as in the easy case but the observation is incomplete as in the hard case, with a larger

observation noise:

Yt(j) = Xt(2j − 1) + ǫt(j), ǫt
iid
∼ N(0, 2I20). (17)

Again we let the ensemble size vary from 10 to 400. The results are summarized in Figure

3. Now the NLEAF1 and NLEAF1q gives much better relative results than in the easy

case. The NLEAF1 is competitive for a ensemble as large as 100. Here again we see the

potentiality of improvement for the NLEAF1 when the ensemble gets large. The NLEAF1q

algorithm does a decent job for large ensembles too.

It should be noted that the LETKF tends to lose accuracy when the ensemble size

gets beyond 20. There are two possible reasons for this phenomenon: first, the method of

combining updates in different local windows might not be optimal for this set-up in varying

ensemble sizes; second, the the mis-specification of the linear model assumed by the ensemble
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Figure 3: Average RMSE over 2000 cycles in the intermediate case of L96 system, ensemble

size = 400.

Kalman filter incurs a larger bias when the ensemble size gets large.

5 Conclusion

As the increasing availability of both sophisticated climate models and massive sequential

data, scientific applications such as numerical weather forecasting pose new challenges on

statistical inference on high-dimensional nonlinear state space model. The proposed NLEAF

algorithm is a combination of the traditional ensemble Kalman filter and particle filter which

is adaptive to the nonlinearity of the dynamics and also easily scalable to high-dimensional

situations. In two classical test beds for atmospheric data assimilation, very simple NLEAF

algorithms give reasonably good performances. They outperforms the state-of-art methods

in the nonlinear set-up, while still being competitive even in the linear situation where the

EnKF is expected to be nearly optimal. We also observe that the NLEAF algorithm has the

potential to improve its accuracy for larger ensembles, while the EnKF does not. Further-

more, the NLEAF algorithm is flexible and allows the observation model to be unknown and

estimated from the data, which makes itself more applicable for many real world problems

where the observation error can hardly be specified a priori.

There are still issues to be addressed. For example, the localization for NLEAF of order

two or higher will be useful since we observed a substantial improvement of accuracy by

NLEAF2 in the L63 system. A further question is that whether the NLEAF algorithm can

be used in combination with other dimension reduction methods such as manifold learning
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and regularization.

A Proofs

A.1 Proof of Theorem 1

Suppose (x
(i)
f , y(i)), i = 1, . . . , n is an i.i.d sample from the joint distribution of (Xf , Y ), For

any y, consider the empirical distribution

F ∗

u (A|y) =
1

n
δ
x
∗(i)
u

(A), ∀A,

with

x∗(i)
u = m1(y) + x

(i)
f − m1(y

(i)).

Note that the NLEAF update in equation (5) uses m̂1(·) instead of m1(·). The rough

idea is that if m̂1(·) approximates m1(·) well enough, one might expect x
(i)
u ≈ x

∗(i)
u and the

result follows from Hoeffding’s inequality. To show that x
(i)
u does approximates x

∗(i)
u we use

the empirical process theory. The maximal inequality of the empirical process requires the

majority of y(i) lies in a compact set, which is of high probability if the compact set is large

enough.

For any 0 < ǫ < 1, one can find a compact set K(ǫ) such that P (Y ∈ K) ≥ 1− ǫ. Define

the set J as

J = {i : y(i) ∈ K(ǫ)}.

Consider the event

E1 =

{

|J |

n
≥ 1 − 2ǫ

}

,

then we have, by Hoeffding’s inequality,

P (E1) ≥ 1 − exp
(

−2nǫ2
)

. (18)

Let B(ǫ) = infy∈K(ǫ)

∫

g(y; x)f(x)dx > 0. Consider the events

E2 =

{

sup
y∈K(ǫ)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g(y; x
(i)
f ) −

∫

g(y; x)f(x)dx

∣

∣

∣

∣

∣

≤ min

(

B(ǫ)

2
,

B2(ǫ)

8M(ǫ)

)

}

,

where M(ǫ) = MK(ǫ) as defined in Assumption A1, and

E3 =

{

sup
y∈K(ǫ)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

x
(i)
f g(y; x

(i)
f ) −

∫

xg(y; x)f(x)dx

∣

∣

∣

∣

∣

≤
B(ǫ)ǫ

8

}

.
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By assumption A1 and A2 and the maximal inequality of empirical process [28, 26], there

exist functions ci(ǫ), i = 1, 2, such that

P (EC
2 ) ≤ c1(ǫ)n

q−1 exp (−nc2(ǫ)) ,

and

P (EC
3 ) ≤ c1(ǫ)n

q−1 exp (−nc2(ǫ)) .

Note that on E2

⋂

E3, we have |m̂1(y) − m1(y)| ≤ ǫ/2, for all y ∈ K(ǫ). As a result, on

E2

⋂

E3, we have,

|x(i)
u − x∗(i)

u | ≤ ǫ, ∀i ∈ J.

Then we have, on E1

⋂

E2

⋂

E3,

F̂u(A|y) =
1

n

n
∑

i=1

1A(x(i)
u ) ≥

1

n

∑

i∈J

1A(x(i)
u )

≥
1

n

∑

i∈J

1A−

ǫ
(x∗(i)

u )

≥
1

n

n
∑

i=1

1A−

ǫ
(x∗(i)

u ) −
|JC |

n

≥
1

n

n
∑

i=1

1A−

ǫ
(x∗(i)

u ) − 2ǫ,

where the set A−
ǫ is defined as

A−

ǫ = {x ∈ A : D(x, ǫ) ⊆ A},

with D(x, ǫ) being the ǫ-open ball centering at x.

Consider event E4:

E4 =

{

1

n

n
∑

i=1

1A−

ǫ
(x∗(i)

u ) ≥ Fu(A
−

ǫ |y)− η − ǫ

}

.

Again, note that 1A−

ǫ
(x

∗(i)
u ) are independent Bernoulli random variables with probability at

least Fu(A
−
ǫ |y) − η, by Hoeffding’s inequality, we have

P (E4) ≥ 1 − exp(−2nǫ2).

Then on
⋂4

k=1 Ek, we have

F̂u(A|y) − F (A|y) ≥ F (A−

ǫ |y) − F (A|y) − η − 3ǫ

= −η − ρ−(ǫ) − 3ǫ,
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where ρ−(ǫ) = F (A|y)−F (A−
ǫ |y) is a continuous non-decreasing function of ǫ with ρ−(0) = 0

because λ(∂A) = 0. As a result, there exists functions C1(ǫ) > 0, C2(ǫ) > 0 independent of

n, such that

P
(

F̂u(A|y) − Fu(A|y) ≥ −η − ǫ
)

≥ 1 − C1(ǫ)n
q−1 exp (−C2(ǫ)n) .

A similar bound for the other direction can be obtained using the same argument. By the

Borel-Cantelli lemma we have,

∣

∣

∣
F̂u(A|y) − Fu(A|y)

∣

∣

∣
≤ η + ǫ, a.s.

Note that the above convergence is for any ǫ > 0, therefore we have

∣

∣

∣
F̂u(A|y) − Fu(A|y)

∣

∣

∣
≤ η, a.s.
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