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Local polynomial regression on

unknown manifolds

Peter J. Bickel1 and Bo Li2

University of California, Berkeley and Tsinghua University

Abstract: We reveal the phenomenon that “naive” multivariate local polyno-
mial regression can adapt to local smooth lower dimensional structure in the
sense that it achieves the optimal convergence rate for nonparametric estima-
tion of regression functions belonging to a Sobolev space when the predictor
variables live on or close to a lower dimensional manifold.

1. Introduction

It is well known that worst case analysis of multivariate nonparametric regression
procedures shows that performance deteriorates sharply as dimension increases.
This is sometimes refered to as the curse of dimensionality. In particular, as initially
demonstrated by [19, 20], if the regression function, m(x), belongs to a Sobolev
space with smoothness p, there is no nonparametric estimator that can achieve a
faster convergence rate than n− p

2p+D , where D is the dimensionality of the predictor
vector X.

On the other hand, there has recently been a surge in research on identifying
intrinsic low dimensional structure from a seemingly high dimensional source, see
[1, 5, 15, 21] for instance. In these settings, it is assumed that the observed high-
dimensional data are lying on a low dimensional smooth manifold. Examples of
this situation are given in all of these papers — see also [14]. If we can estimate
the manifold, we can expect that we should be able to construct procedures which
perform as well as if we know the structure. Even if the low dimensional structure
obtains only in a neighborhood of a point, estimation at that point should be gov-
erned by actual rather than ostensible dimension. In this paper, we shall study this
situation in the context of nonparametric regression, assuming the predictor vec-
tor has a lower dimensional smooth structure. We shall demonstrate the somewhat
surprising phenomenon, suggested by Bickel in his 2004 Rietz lecture, that the pro-
cedures used with the expectation that the ostensible dimension D is correct will,
with appropriate adaptation not involving manifold estimation, achieve the optimal
rate for manifold dimension d.

Bickel conjectured in his 2004 Rietz lecture that, in predicting Y from X on the
basis of a training sample, one could automatically adapt to the possibility that
the apparently high dimensional X that one observed, in fact, lived on a much
smaller dimensional manifold and that the regression function was smooth on that
manifold. The degree of adaptation here means that the worst case analyses for
prediction are governed by smoothness of the function on the manifold and not on
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the space in which X ostensibly dwells, and that purely data dependent procedures
can be constructed which achieve the lower bounds in all cases.

In this paper, we make this statement precise with local polynomial regression.
Local polynomial regression has been shown to be a useful nonparametric technique
in various local modelling, see [8, 9]. We shall sketch in Section 2 that local linear
regression achieves this phenomenon for local smoothness p = 2, and will also argue
that our procedure attains the global IMSE if global smoothness is assumed. We
shall also sketch how polynomial regression can achieve the appropriate higher rate
if more smoothness is assumed.

A critical issue that needs to be faced is regularization since the correct choice
of bandwidth will depend on the unknown local dimension d(x). Equivalently, we
need to adapt to d(x). We apply local generalized cross validation, with the help of
an estimate of d(x) due to [14]. We discuss this issue in Section 3. Finally we give
some simulations in Section 4.

A closely related technical report, [2] came to our attention while this paper was
in preparation. Binev et al consider in a very general way, the construction of non-
parametric estimation of regression where the predictor variables are distributed
according to a fixed completely unknown distribution. In particular, although they
did not consider this possibility, their method covers the case where the distribution
of the predictor variables is concentrated on a manifold. However, their method is,
for the moment, restricted to smoothness p ≤ 1 and their criterion of performance
is the integral of pointwise mean square error with respect to the underlying dis-
tribution of the variables. Their approach is based on a tree construction which
implicitly estimates the underlying measure as well as the regression. Our discus-
sion is considerably more restrictive by applying only to predictors taking values
in a low dimensional manifold but more general in discussing estimation of the
regression function at a point. Binev et al promise a further paper where functions
of general Lipschitz order are considered.

Our point in this paper is mainly a philosophical one. We can unwittingly take
advantage of low dimensional structure without knowing it. We do not give careful
minimax arguments, but rather, partly out of laziness, employ the semi heuristic
calculations present in much of the smoothing literature.

Here is our setup. Let (Xi, Yi), (i = 1, 2, . . . , n) be i.i.d �D+1 valued random vec-
tors, where X is a D-dimensional predictor vector, Y is the corresponding univariate
response variable. We aim to estimate the conditional mean m0(x) = E(Y |X = x)
nonparametrically. Our crucial assumption is the existence of a local chart, i.e.,
each small patch of X (a neighborhood around x) is isomorphic to a ball in a d-
dimensional Euclidean space, where d = d(x) ≤ D may vary with x. Since we fix
our working point x, we will use d for the sake of simplicity. The same rule applies
to other notations which may also depend on x.) More precisely, let Bd

z,r denote
the ball in �d, centered at z with radius r. A similar definition applies to BD

x,R. For
small R > 0, we consider the neighborhood of x, Xx := BD

x,R ∩ X within X . We
suppose there is a continuously differentiable bijective map φ : Bd

0,r �→ Xx. Under
this assumption with d < D, the distribution of X degenerates in the sense that it
does not have positive density around x with respect to Lebesgue measure on �D.
However, the induced measure Q on Bd

0,r defined below, can have a non-degenerate
density with respect to Lebesgue measure on �d. Let S be an open subset of Xx,
and φ−1(S) be its preimage in Bd(x)

0,r . Then Q(Z ∈ φ−1(S)) = P(X ∈ S). We assume
throughout that Q admits a continuous positive density function f(·). We proceed
to our main result whose proof is given in the Appendix.
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2. Local linear regression

[17] develop the general theory for multivariate local polynomial regression in the
usual context, i.e., the predictor vector has a D dimensional compact support in
�D. We shall modify their proof to show the ”naive” (brute-force) multivariate local
linear regression achieves the ”oracle” convergence rate for the function m(φ(z)) on
Bd

0,r.
Local linear regression estimates the population regression function by α̂, where

(α̂, β̂) minimize
n∑

i=1

(
Yi − α − βT (Xi − x)

)2
Kh(Xi − x).

Here Kh(·) is a D−variate kernel function. For the sake of simplicity, we choose the
same bandwidth h for each coordinate. Let

Xx =

[1 (X1 − x)T

...
...

1 (Xn − x)T

]

and Wx = diag{Kh(X1−x), . . . , Kh(Xn−x)}. Then the estimator of the regression
function can be written as

m̂(x, h) = eT
1 (XT

x WxXx)−1XT
x WxY

where e1 is the (D + 1) × 1 vector having 1 in the first entry and 0 elsewhere.

2.1. Decomposition of the conditional MSE

We enumerate the assumptions we need for establishing the main result. Let M be
a canonical finite positive constant,

(i) The kernel function K(·) is continuous and radially symmetric, hence bound-
ed.

(ii) There exists an ε(0 < ε < 1) such that the following asymptotic irrelevance
conditions hold.

E
[
Kγ(

X − x

h
)w(X)1

(
X ∈

(
BD

x,h1−ε ∩ X
)c)] = o(hd+2)

for γ = 1, 2 and |w(x)| ≤ M(1 + |x|2).
(iii) v(x) = V ar(Y |X = x) ≤ M .
(iv) The regression function m(x) is twice differentiable, and ‖ ∂2m

∂xaxb
‖∞ ≤ M for

all 1 ≤ a ≤ b ≤ D if x = (x1, . . . , xD).
(v) The density f(·) is continuously differentiable and strictly positive at 0 in

Bd
0,r.

Condition (ii) is satisfied if K has exponential tails since if V = X−x
h , the conditions

can be written as

E
[
Kγ(V )w(x + hV )1(V ∈ (BD

0,h1−ε)c
]

= o(hd+2).
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Theorem 2.1. Let x be an interior point in X . Then under assumptions (i)-(v),
there exist some J1(x) and J2(x) such that

E{m̂(x, h) − m(x)|X1, . . . , Xn} = h2J1(x)(1 + oP (1)),

V ar{m̂(x, h) − m(x)|X1, . . . , Xn} = n−1h−dJ2(x)(1 + oP (1)).

Remark 1. The predictor vector doesn’t need to lie on a perfect smooth manifold.
The same conclusion still holds as long as the predictor vector is “close” to a
smooth manifold. Here “close” means the noise will not affect the first order of our
asymptotics. That is, we think of X1, . . . , Xn as being drawn from a probability
distribution P on �D concentrated on the set

X = {y : |φ(u) − y| ≤ εn for some u ∈ Bd
0,r}

and εn → 0 with n. It is easy to see from our arguments below that if εn = o(h),
then our results still hold.

Remark 2. When the point of interest x is on the boundary of the support X , we
can show that the bias and variance have similar asymptotic expansions, following
the Theorem 2.2 in [17]. But, given the extra complication of the embedding, the
proof would be messier, and would not, we believe, add any insight. So we omit it.

2.2. Extensions

It’s somewhat surprising but not hard to show that if we assume the regression
function m to be p times differentiable with all partial derivatives of order p bounded
(p ≥ 2, an integer), we can construct estimates m̂ such that,

E{m̂(x, h) − m(x)|X1, . . . , Xn} = hpJ1(x)(1 + oP (1)),

V ar{m̂(x, h) − m(x)|X1, . . . , Xn} = n−1h−dJ2(x)(1 + oP (1))

yielding the usual rate of n− 2p
2p+d for the conditional MSE of m̂(x, h) if h is chosen

optimal, h = λn− 1
2p+d . This requires replacing local linear regression with local

polynomial regression with a polynomial of order p−1. We do not need to estimate
the manifold as we might expect since the rate at which the bias term goes to 0
is derived by first applying Taylor expansion with respect to the original predictor
components, then obtaining the same rate in the lower dimensional space by a first
order approximation of the manifold map. Essentially all we need is that, locally,
the geodesic distance is roughly proportionate to the Euclidean distance.

3. Bandwidth selection

As usual this tells us, for p = 2, that we should use bandwidth λn− 1
4+d to achieve

the best rate of n− 2
4+d . This requires knowledge of the local dimension as well as

the usual difficult choice of λ. More generally, dropping the requirement that the
bandwidth for all components be the same we need to estimate d and choose the
constants corresponding to each component in a simple data determined way.

There is an enormous literature on bandwidth selection. There are three main
approaches: plug-in ([7, 16, 18], etc); the bootstrap ([3, 11, 12], etc) and cross
validation ([6, 10, 22], etc). The first has always seemed logically inconsistent to
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us since it requires higher order smoothness of m than is assumed and if this
higher order smoothness holds we would not use linear regression but a higher
order polynomial. See also the discussion of [23].

We propose to use a blockwise cross-validation procedure defined as follows. Let
the data be (Xi, Yi), 1 ≤ i ≤ n. We consider a block of data points {(Xj , Yj) : j ∈
J }, with |J | = n1. Assuming the covariates have been standardized, we choose the
same bandwidth h for all the points and all coordinates within the block. A leave-
one-out cross validation with respect to the block while using the whole data set
is defined as following. For each j ∈ J , let m̂−j,h(Xj) be the estimated regression
function (evaluated at Xj) via local linear regression with the whole data set except
Xj . In contrast to the usual leave-one-out cross-validation procedure, our modified
leave-one-out cross-validation criterion is defined as mCV (h) = 1

n1

∑
j∈J (Yj −

m̂−j,h(Xj))2. Using a result from [23], it can be shown that

mCV (h) =
1
n1

∑
j∈J

(Yj − m̂h(Xj))2

(1 − Sh(j, j))2

where Sh(j, j) is the diagonal element of the smoothing matrix Sh. We adopt the
GCV idea proposed by [4] and replace the Sh(j, j) by their average atrJ (Sh) =
1

n1

∑
j∈J Sh(j, j). Thereby our modified generalized cross-validation criterion is,

mGCV (h) =
1
n1

∑
j∈J

(Yj − m̂h(Xj))2

(1 − atrJ (Sh))2
.

The bandwidth h is chosen to minimize this criterion function.
We give some heuristics for the justifying the (blockwise homoscedastic) mGCV.

In a manner analogous to [23], we can show

Sh(j, j) = eT
1 (XT

x WxXx)−1e1Kh(0)|x=Xj .

In view of (A.2) in the Appendix, we see Sh(j, j) = n−1h−dK(0)(A1(Xj) + op(1)).
Thus as n−1h−d → 0,

atrJ (Sh) = n−1h−dK(0)(n−1
1

∑
j∈J

A1(Xj) + op(1))

= Op(n−1h−d) = op(1).

Then, as is discussed in [22], using the approximation (1− x)−2 ≈ 1 + 2x for small
x, we can rewrite mGCV (h) as

mGCV (h) =
1
n1

∑
j∈J

(Yj − m̂h(Xj))2 +
2
n1

trJ (Sh)
1
n1

∑
j∈J

(Yj − m̂h(Xj))2.

Now regarding 1
n1

∑
j∈J (Yj − m̂h(Xj))2 in the second term as an estimator of the

constant variance for the focused block, the mGCV is approximately the same as
the Cp criterion, which is an estimator of the prediction error up to a constant.

In practice, we first use [14]’s approach to estimate the local dimension d, which
yields a consistent estimate d̂ of d. Based on the estimated intrinsic dimensionality
d̂, a set of candidate bandwidths CB = {λ1n

− 1
d̂+4 , . . . , λBn

− 1
d̂+4 } (λ1 < · · · < λB)

are chosen . We pick the one minimizing the mGCV (h) function.
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4. Numerical experiments

The data generating process is as following. The predictor vector X = (X(1), X(2),
X(3)), where X(1) will be sampled from a standard normal distribution, X(2) =
X3

(1) + sin(X(1)) − 1, and X(3) = log(X2
(1) + 1) − X(1). The regression function

m(x) = m(x(1), x(2), x(3)) = cos(x(1)) + x(2) − x2
(3). The response variable Y is

generated via the mechanism Y = m(X) + ε, where ε has a standard normal
distribution. By definition, the 3-dimensional regression function m(x) is essentially
a 1-dimensional function of x(1). n = 200 samples are drawn. The predictors are
standardized before estimation. We estimate the regression function m(x) by both
the ”oracle” univariate local linear (ull) regression with a single predictor X(1) and
our blind 3-variate local linear regression with all predictors X(1), X(2), X(3).

We focus on the middle block with 100 data points, with the number of neighbor
parameter k, needed for Levina and Bickel’s estimate, set to be 15. The intrinsic
dimension estimator is d̂ = 1.023, which is close to the true dimension, d = 1.
We use the Epanechnikov kernel in our simulation. Our proposed modified GCV
procedure is applied to both the ull and mll procedures. The estimation results are
displayed in Figure 1. The x− axis is the standardized X(1). From the right panel,
we see the blind mll indeed performs almost as well as the “oracle” ull.

Next, we allow the predictor vector to only lie close to a manifold. Specifically,
we sample X(1) = X ′

(1) + ε′1, X(2) = X ′3
(1) +sin(X ′

(1))−1+ ε′2, X(3) = log(X ′2
(1) +1)−

X ′
(1) + ε′3, where X ′

(1) is sampled from a standard normal distribution, and ε′1, ε
′
2

and ε′3 are sampled from N (0, σ′2). The noise scale is hence governed by σ′. In
our experiment, σ′ is set to be 0.02, 0.04, . . . , 0.18, 0.20 respectively. The predictor
vector samples are visualized in the left panel of Figure 2 with σ′ = 0.20. In the
maximum noise scale case, the pattern of the predictor vector is somewhat vague.
Again, a blind “mll” estimation is done with respect to new data generated in the
aforementioned way. We plot the MSEs associated with different noise scales in the
right panel of Figure 2. The moderate noise scales we’ve considered indeed don’t
have a significant influence on the performance of the “mll” estimator in terms of
MSE.

Fig 1. The case with perfect embedding. The left panel shows the complete data and fitting of
the middle block by both univariate local linear (ull) regression and multivariate local linear (mll)
regression with bandwidths chosen via our modified GCV. The focused block is amplified in the
right panel.
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Fig 2. The case with “imperfect” embedding. The left panel shows the predictor vector in a 3-D
fashion with the noise scale σ′ = 0.2. The right panel gives the MSEs with respect to increasing
noise scales.

Appendix

Proof of Theorem 2.1. Using the notation of [17], Hm(x) is the D × D Hessian
matrix of m(x) at x, and

Qm(x) = [(X1 − x)THm(x)(X1 − x), · · · , (Xn − x)THm(x)(Xn − x)]T .

Ruppert and Wand have obtained the bias term.

E(m̂(x, h) − m(x)|X1, · · · , Xn)
(A.1)

=
1
2
eT
1 (XT

x WxXx)−1XT
x Wx{Qm(x) + Rm(x)}

where if | · | denotes Euclidean norm, |Rm(x)| is of lower order than |Qm(x)|. Also
we have

n−1XT
x WxXx

=
[

n−1
∑n

i=1 Kh(Xi − x) n−1
∑n

i=1 Kh(Xi − x)(Xi − x)T

n−1
∑n

i=1 Kh(Xi − x)(Xi − x) n−1
∑n

i=1 Kh(Xi − x)(Xi − x)(Xi − x)T

]
.

The difference in our context lies in the following asymptotics.

EKh(Xi − x) = E
[
Kh(Xi − x)1

(
Xi ∈ BD

x,h1−ε ∩ X
)]

+E
[
Kh(Xi − x)1

(
Xi ∈

(
BD

x,h1−ε ∩ X
)c)]

(ii)
= h−D

( ∫
Nd

0,h1−ε

K
(φ(z′) − φ(0)

h

)
f(z′)dz′ + oP (hd)

)

= hd−D
(
f(0)

∫
�d

K(∇φ(0)u)du + oP (1)
)

= hd−D
(
A1(x) + oP (1)

)
.

Thus, by the LLN, we have

n−1
n∑

i=1

Kh(Xi − x) = hd−D
(
A1(x) + oP (1)

)
.
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Similarly, there exist some A2(x) and A3(x) such that

n−1
n∑

i=1

Kh(Xi − x)(Xi − x) = h2+d−D
(
A2(x) + oP (1)

)
and

n−1
n∑

i=1

Kh(Xi − x)(Xi − x)(Xi − x)T = h2+d−D
(
A3(x) + oP (1)

)
where we used assumption (i) to remove the term of order h1+d−D in deriving
the asymptotic behavior of n−1

∑n
i=1 Kh(Xi − x)(Xi − x). Invoking Woodbury’s

formula, as in the proof of Lemma 5.1 in [13], leads us to

(A.2)
(
n−1XT

x WxXx

)−1 = hD−d
[
A1(x)−1 + oP (1) OP (1)

OP (1) h−2Op(1)

]
On the other hand,

n−1XxWxQm(x)

=
[ n−1

∑n
i=1 Kh(Xi − x)(Xi − x)THm(x)(Xi − x)

n−1
∑n

i=1{Kh(Xi − x)(Xi − x)THm(x)(Xi − x)}(Xi − x)

]
.

In a similar fashion, we can deduce that for some B1(x), B2(x),

n−1
n∑

i=1

Kh(Xi − x)(Xi − x)THm(x)(Xi − x) = h2+d−D
(
B1(x) + oP (1)

)
and

n−1
n∑

i=1

{Kh(Xi − x)(Xi − x)THm(x)(Xi − x)}(Xi − x) = h3+d−D
(
B2(x) + oP (1)

)
.

We have

(A.3) n−1XxWxQm(x) = hd−D
[h2

(
B1(x) + oP (1)

)
h3

(
B2(x) + oP (1)

)]
.

It follows from (A.1),(A.2) and (A.3) that the bias admits the following approxi-
mation.

(A.4) E(m̂(x, h) − m(x)|X1, . . . , Xn) = h2A1(x)−1B1(x) + oP (h2).

Next, we move to the variance term.

V ar{m̂(x, h)|X1, . . . , Xn}(A.5)
= eT

1 (XT
x WxXx)−1XT

x WxV WxXx(XT
x WxXx)−1e1.

The upper-left entry of n−1XT
x WxV WxXx is

n−1
n∑

i=1

Kh(Xi − x)2v(Xi) = hd−2DC1(x)(1 + oP (1)).

The upper-right block is

n−1
n∑

i=1

Kh(Xi − x)2(Xi − x)T v(Xi) = h1+d−2DC2(x)(1 + oP (1))
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and the lower-right block is

n−1
n∑

i=1

Kh(Xi − x)2(Xi − x)(Xi − x)T v(Xi) = h2+d−2DC3(x)(1 + oP (1)).

In light of (A.2), we arrive at

(A.6) V ar{m̂(x, h)|X1, . . . , Xn} = n−1h−dA1(x)−2C1(x)(1 + oP (1)).

The proof is complete.
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