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Independent component analysis (ICA) has been widely used for blind
source separation in many fields, such as brain imaging analysis, signal
processing and telecommunication. Many statistical techniques based on M-
estimates have been proposed for estimating the mixing matrix. Recently,
several nonparametric methods have been developed, but in-depth analysis
of asymptotic efficiency has not been available. We analyze ICA using semi-
parametric theories and propose a straightforward estimate based on the ef-
ficient score function by using B-spline approximations. The estimate is as-
ymptotically efficient under moderate conditions and exhibits better perfor-
mance than standard ICA methods in a variety of simulations.

1. Introduction. Independent component analysis (ICA) aims to separate in-
dependent blind sources from their observed linear mixtures without any prior
knowledge. This technique has been widely used in the past decade to extract use-
ful features from observed data in many fields, such as brain imaging analysis,
signal processing and telecommunication. Hyvirinen, Karhunen and Oja [16] de-
scribed a variety of applications of ICA. For example, Vigario, Jousmaki, Himal&i-
nen, Hari and Oja [25] used ICA to separate artifacts from magnetoencephalogra-
phy (MEG) data, without the burden of modeling the process that generated the
artifacts.

Standard ICA represents an m x 1 random vector X (e.g., an instantaneous
MEG image) as linear mixtures of m mutually independent random variables
(S1,...,8n) (e.g., artifacts and other brain activities), where the distribution of
each S; is totally unknown. That is, for S = (S, ..., S»)T and some m x m non-
singular matrix W,

1.1) X=wls.

Here, W~ is called the mixing matrix. Given n i.i.d. observations, X Lo xn

from the distribution of X, the aim is to estimate W and, thus, to separate each
component of S = WX such that the components are maximally mutually inde-
pendent. W is called the unmixing matrix. This can be seen as a projection pursuit
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problem [14] in which m directions are sought such that the corresponding projec-
tions are maximally mutually independent.

It was shown by Comon [9] that W is identifiable up to scaling and permutation
of its rows if at most one §; is Gaussian [18]. Model (1.1) can be viewed as a

semiparametric model with parameters (W, rq, ..., ry), where r; is the probability
density function (PDF) of §;. Our interest centers on W (r1, ..., ry) are nuisance
parameters.

ICA was motivated by neurophysiological problems in the early 1980’s
(see [16]), and two classes of methods have been proposed to estimate W. One
class involves specifying a particular parametric model for each r; and then opti-
mizing contrast functions that involve (W, rq, ..., r;). Primary examples of this
approach are maximum likelihood (ML) (e.g., [21, 19]) or, equivalently, minimum
mutual information (e.g., [9]), minimizing high-order correlation between compo-
nents of WX (e.g., [7]) and maximizing the non-Gaussianity of WX (e.g., [15]).
A second class of methods views ICA as a semiparametric model and assumes
nothing about the distributions of the components S;. Thus, two distinct goals
can be formulated: (i) to ﬁnd estimates W of W that are consistent or, even bet-
ter, /n-consistent—that is, W=W+0 (n_l/ 2y and (ii) to find procedures that
achieve the information bound—that is, estimates of W which are asymptotically
normal and have smallest variance-covariance matrix among all estimates that are
uniformly asymptotically normal in a suitable sense; see [5]. Amari [1] formally
demonstrated that to achieve the information bound in this situation, a method
must estimate the densities of the sources. In fact, it can even be shown [6] that
for any fixed estimating equation corresponding to maximizing an objective func-
tion, there is a possible distribution of sources for which the global maximizer is
inconsistent, despite the consistency of a local solution near the truth.

Recently, some nonparametric methods to estimate W have appeared. For ex-
ample, Bach and Jordan [3] proposed: (i) To reduce the dimension of the data by
using a kernel representation and (ii) to choose W so as to minimize the empirical
generalized variance among the components of W X. Hastie and Tibshirani [13]
proposed maximizing the penalized likelihood as a function of (W, rq, ..., r,) and
Vlassis and Motomura [26] proposed maximizing the likelihood by using Gaussian
kernel density estimation. Various performance analyses have been carried out us-
ing simulations. The Vlassis—Motomura and Hastie-Tibshirani methods are of the
same type as ours, but these papers do not provide a method for tuning the proce-
dures and nothing has been proven about their asymptotic properties. Samarov and
Tsybakov [22] proposed and analyzed a /n-consistent estimate of W under mild
conditions. Chen and Bickel [8] analyzed the method of Eriksson and Koivunen
[12] based on characteristic functions and showed it to be consistent under mini-
mal identifiability conditions and /n-consistent under additional mild conditions.
This paper concerns the construction of efficient estimates. We develop an effi-
cient estimator by using efficient score functions after starting the algorithm at a
consistent point based on the PCFICA algorithm of Chen and Bickel [8].
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The outline of the paper is as follows. In Section 2 we analyze ICA as a semi-
parametric model and propose a new method to estimate W using the efficient
score function. The main theorem is given in Section 3. Numerical studies are
given in Section 4. Technical details are provided in Sections 5 and 6.

Notation. In this paper, W denotes an m x m matrix and W; and W;; denote
the ith row and the (i, j)th element of W, respectively. AT denotes the transpose
of a matrix A and A~T denotes the transpose of A~!. For any matrix A with col-
umn vectors {a; : 1 <i <k}, |Allr = Vtr(AT A) and vec(A) = (al ,al, ... al)7,
a column vector created from A. Define the sup-norm as | f |oc = sup,crlf()]. X i
denotes the ith random sample from the distribution of X. The population (empir-
ical) law of X is denoted by P (P,). X; and S; denote the ith element of X and S,
respectively. Denote the vector of density functions (71, ..., r,) by r1.,,. A vector
or matrix of functions is denoted in boldface. For a vector of functions B, BB” (x)
will be used as an abbreviation of B(x)[B(x)]”.

2. Semiparametric inference. In this section, we first briefly review the
salient features of estimation in semiparametric models and then show how to
solve an approximate efficient score equation for estimating W in the ICA model.

2.1. Eﬁ‘icient estimates for semiparametric models. Given a semiparametric
model, X!,..., X" iid. {P(@ mn 0 €QC R?, n € €}, where € is a subset of a
function space, estimates 6, of 6 are called regular if N (6, —6) converges in law
uniformly in P, »,), where (6, ,) converges to (6p, no) in a smooth way. Then
if there is a regular estimate that is uniformly best (call it 6,"), it must have the form

2.1 0F =04 — Zl(xl 6,1) +o0,(n"1/?)
i=1

under P . The function 1 is called the efficient influence function in [5].
When n = (1, ...,n4) is a Euclidean parameter, 1 is, under regularity con_di—
tions the inﬂuence function of the ML estimator (MLE) of 6. That is, if 1 =

( QT, Bm . Bn )T where [ is the log-likelihood function of a single observa-
tion and I(0, ) = EllT (X,0,n)i1s the_ Fisher information matrix, then 1is the first
d coordinates of the vector I"!(#, n)l. An alternative formulation is to begin by

defining the efficient score function I* = (I, ..., l;;)T with
I = FTR Za,k(Q 77)—

where ajx(6,n) minimizes E (5 (X.0,m) — Y_; a8, n) g (X, 0, )%
That is, I* is the projection of %(X,@,n) onto the orthocomplement of
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span{%(X, 6,n):1<j<d'}. Then
1= (ENTrTx,o,nn .
When 7 is infinite-dimensional, the generalization of span{%(X ,0,m):1 <
J

J < d'} is the tangent space. That is defined to be the closed linear span of
{%(X, 0,1n(A))|r=0:1n(0) = n and L — n(A) defines a smooth one-dimensional
submodel {Pg ) : IA| < 1}} in oCZ(P(g,,,)). Now, 1* is again obtained by projec-
tion onto the orthocomplement of this span. An extensive discussion of tangent
spaces and the geometric interpretation of formulas such as the one above is given
in [5], Chapters 2 and 3. For many canonical semiparametric models including
ICA, I* can be computed; we sketch the argument in the Appendix. Suppose that
for each 6, an estimate 7(9) is available and is at least consistent. Then the usual
Taylor expansions suggest that the solution of the generalized estimating equa-
tion

(2.2) Y 1H(X',0,7(6)) =0

i=1

will have an influence function 1 and, hence, be efficient. These heuristics and oth-
ers are discussed in Chapter 7 of [5]. Of course, more than consistency is needed
and after calculating I* in our case, validating that (2.2) leads to (2.1) for a suit-
able 7(0) is the subject of Sections 3, 5, 6 and the Appendix. Note that if 7(0)
maximizes ) i [(X .6, n), then (2.2) simply gives the profile maximum likeli-
hood estimate discussed in [20]. In that case, (2.2) simplifies, becoming equivalent
to

anﬂ(xf 6,7(0))=0

=199 o o

Unfortunately, such 7(6) do not exist in the ICA model. Using 1* instead of %
in the estimating equation (2.2) permits a less demanding choice of 7(6). These
issues are discussed in detail in [5], Chapter 7. In this paper, we simply show
that a @ solving (2.2) for a particular 7(0) does indeed satisfy (2.1) in a suffi-
ciently uniform sense. Optimality of 6 then follows from the general theory given
in Chapter 3 of [5].

This technique is different from the quasi-ML method, which belongs to the
first class of methods in the ICA literature reviewed in Section 1. This approach is
to guess some shape 1o for n and then use ordinary ML. Of course, if 7 is true,
then the resulting estimate is asymptotically Gaussian and has smaller variance
than the d we discuss. But, if g is false, then the estimate can be inconsistent.
The ICA algorithms used for comparison in Section 4 such as FastICA [15] and
extended infomax [19] are of this type. Closest to ours in spirit among these is the
method of Pham and Garat [21]. They use parametric models such as logsplines
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(see Section 2.3) for the nuisance parameters. However, they propose solving the
score equations rather than (2.2). More importantly, they do not suggest increasing
the model dimension with n, do not give a method for selecting the number of
knots of the splines and, hence, are subject to the inconsistency we have discussed.

The remainder of Section 2 shows how to implement the idea given in (2.2) for
the ICA model. Technical analysis is carried out in Section 3.

2.2. Further notation and assumptions. Let Wp be a nonsingular unmixing
matrix such that S = Wp X has m mutually independent components. Without loss
of generality, assume that det(Wp) > 0. For any row vector w € R™, let f,, denote
the PDF of wX and ¢,, denote the density score function defined by ¢,,(¢) =
—% log fu ()1 (fy(t) > 0), where I(.) is an indicator function.

In model (1.1), the order and scaling of rows of W or components of § must be
constrained for W to be identifiable. For scaling, we take each S; to have absolute
median 1, thatis, P(|S;| <1) = % or, equivalently,

2.3) 2/1 ri(s)ds = 1.
-1

Even after this choice, the correct unmixing matrix requires 2" m! choices due to
sign changes and row permutations. This ambiguity can be resolved in various
ways, but we avoid being specific by assuming that a consistent starting value is
available for Wp, say PCFICA of Chen and Bickel [8]. Let k (s) =21 (|s| < 1) — 1.
Then (2.3) is equivalent to

/K(S,')dp —0.

Equation (2.2), for our case, can be written

n
S W, dy) =0,
i=1
where @ is the parameter defined by (2.9) and dADW is an estimate of it. We

give pseudo code in Table 1 for iteratively solving this equation. The expressions
appearing in the pseudo code are developed in the rest of this section.

2.3. Efficient score function of W. The likelihood function of X under (1.1)
can be expressed as

m
px (X, W, ri.m) = [detW)| | [ ri (Wix).
i=1

The parameter of interest is W, while ry . ,,, are nuisance parameters. For simplicity,
assume E[S;]=0.
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TABLE 1
Algorithm EFFICA

1. Inputdata {X 1, ..., X}, an initial estimate WO and B-spline basis
functions B®) = (Bl(k), e B,(li))T fork=1,...,m;

2. For j=0,1,... until convergence:
DSet 8 = (WX :i=1,...,nyfork=1,....,m
2)Setfork=1,....,m
~(j NT
¢l§./) _ J/k(./) B,
where yk(]) = (EA},?)[B(]()BU‘)T])f1 I;"]EJ)[D(k)], D®) is the derivative function
of B®) and £ IEJ ) is the empirical expectation w.r.t. § ,Ej );
3) Set <f>W at W=wu:
by (s) = <¢(”m) R ONLE
4) Setfork =1, .
i) E(”w(”m o E“)[w] where ¥/ (s) = 251 (|s| < 1).
(A(/))2 E(/)[q)] where o(s) =52,
&(j) _ ((l u(j))A(’)
(" /))2 (ﬁ(’))Z
2() _ (=@ )?
ﬂ - A(/))z (A(j))z ’
5) Set M) (s), an m x m function matrix with elements
M = =8 o, kK
—a s+ BV CIAsk 1) = 1), k=K
6) Set
i*(j)(x) — Vec(M(j)(W(j)x)[W(j)]_T),*
where vec(M) vectorizes M
7) Set

) = | i O,
s =Llyn BT (X7,
8) Update WU+D = W) 4 2 1e{/).

*Here, I*() (x) = I*(x, W, CiDW) at W= W), where CiDW can be identified as an estimate
of the “nuisance parameter” ®yy.

Let ¢;(s;) = —ilogri (si)I (ri(s;j) > 0) be the density score function as-
sociated with r; and define ® by ®(s) = (¢1(s1), . ¢m(sm)) , wWhere s =

(s1,...,8m) . Then the score function of W, lW(X) = 3vec(W) log(px(x, W,r1.m)),
is equal to

I (%) = vec| (Lyxm — @(s)sT )W T},

where s = Wx and [, x,, is an m x m identity matrix. Thus, minimal regularity
conditions for efficient estimation are that each r; should be absolutely continuous,
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W nonsingular and
E[¢i(S)%]<oo and E[S?] < oo.

Using the devices of tangent space and projection mentioned in Section 2.1 (see
calculation details in the Appendix), the efficient score can be expressed as

(2.4) I*(x, W, ®) = vec(M(Wx)WT),

where M(s) is an m x m function matrix with elements

(2.5) Mij(s) = —¢i(si)s;, forl <i#j<m,

(2.6) M;;(s) = a;s; + Bik(s;), fori=1,....,m

and
(1 —u;)v; (1 —u;)o?

Q7 ai=—g— A=t o =EIS]L
o —v; o —v;

(2.8) vi = E[28;1(]Si| < D], ui = E[28;¢: 1(]Si| < D].

Most of these formulas were derived in [2], but in a different context. We repeat
these in our own notation for completeness. By the convolution theorem on semi-
parametric models (see [5]), the information bound for regular estimators of W
is (E[I*T (X, W, ®)])~L. It is obvious that the efficient score function depends
on ry ., only through the density score functions (¢, ..., ¢, ). Next, we describe
how to perform the estimation by using the efficient score function.

2.4. The ICA estimate. Let
2.9) Oy = (Dw,, .- dw,) "

and assume that a starting estimate W© is available which is consistent for Wp.
We shall show how to construct an estimate &y of @y for W close to Wp and
then solve

fl*(X, W, bw)dP, =0

to obtain an efficient estimator of Wp. Here, CiDW is a data-dependent function
of W and, thus, I*(X, W, ﬁDW) is an approximation to the efficient score function
given by (2.4).

For each k € {1, ..., m}, choose a sieve for ‘ISWk as follows. Let [b ;. bl CR
be a subset of supp(rx) containing most of the mass of r¢. For an integer ny, set
ni + 4 equally spaced points {b,; + (i — 1)k :1 <i < ny + 4} as knots, where
Snk depends on ny through

Snk = (buk — b i)/ (nk +3),
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and then construct nj cubic B-spline basis functions, as in the Appendix. Here, nj
is chosen by cross-validation as described in Section 2.5 below. Write the basis
functions as B(k) = (B,EI? , .. B,Snk)T where the superscript (k) denotes the as-
sociation with S and the subscrlpt n denotes the dependence on the sample size.
Given the random sample {W;X':1 <i < n} from the density function fw,, the

density score function ¢w, can be estimated by
(2.10) w, = [yn (W)l B,

where yn(Wk) is glven in Table 5 (see Section 2.5 for details). Then define
<I>W(s) (qul (s1), . q)Wm (sm)T. To avoid further complications, it is assumed
that both [b,,;., bk ] and ny are fixed using W@ . That is, the ny 4 4 knot locations
are fixed.

Now, replace the efficient score function I*(X, W, ®) defined in (2.4)—(2.8) by
its profile form I* (X, W, @W), where «;, B; and ol-z defined in (2.7) and (2.8) are
replaced with plug-in estimates

. (1 —;)b; » (1 —i)67 .
(2.11) ai=—r})2!, /3i=Tlﬁzl, Uz‘z:/(WiX)zdPn,

i i i i

where i1; :fY:WiX2Y(13Wi(Y)I(|Y| <1)dP,and v; = fY:W,-XZYI(|Y| <1)dPp,.
Define

(2.12) en(W)=/l*(X, W, dw)dP, and e(W):/l*(X, W, dw)dP

and let W be a solution of

(2.13) e,(W)=0

if it exists. Let l*(x W)y=Ir*x, W, QDW) and ¢, (W) = avec(W) e, (W). Note that if
W — Wp, then —en(W) and fl*l*T(X, W) d P,, have the same limit,

oe(W)

——— 7 | = EMIrTx, wp, op)],
dvec(W) [ ( P, ®p)]

Wp

with probability converging to 1, as demonstrated later in Section 5. The final
estimator W is defined as the limiting value of the approximate Newton—Raphson
iteration

(2.14) W(j+1):W(j)+[fi*i*T(X, W(j))dPn} e, (WD), j=0,1,....

We shall show that this limit exists with probability tending to 1. Note that this
method does not require the calculation of the Hessian matrix €,(W). The con-
vergence and asymptotic properties of (2.14) are developed in Section 3. Call
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W = W defined by (2.14) the EFFICA estimate. This is summarized in Table 1
and will be used for the simulation in Section 4. The density score estimation, as
well as how to choose the number of knots by cross-validation (mentioned above),
is provided in the next subsection.

2.5. Estimating a density score function by B-spline approximations. Let ¢ =
—r'/r be the density score associated with a univariate PDF r. Let 4 be a linear
space with differentiable basis functions B = (Bj, ..., By)T such that each B;r
vanishes at infinity. An estimator of ¢ in § can then be obtained by minimizing
with respect to y € R" the mean square error

cr)= [ 66 -y B o) ds.
Using integration by parts, we obtain
c(v)=y"E,[BBly —2y"E,[B'1 + E,[¢°],

where B’ is the derivative of B and E, indicates expectation under r. Thus, the
optimal y is yy = (E, [BBT])_IE, [B’] and the best approximation of ¢ in 4, in
the sense of mean square error, is ¢g = y¢T B. This method was proposed by Jin
[17] as a variant of Cox’s [10] penalized estimators. Given a random sample of size
n from the density function r, y, can be estimated by combinations of empirical
moments. So, a natural estimator of ¢ is given by

(2.15) $g=7,B,  wherep] = (E,[BB"])"'E,[B'],

where E, is the empirical expectation corresponding to E,.

B-spline basis functions are popular choices for §. In general, the support of r is
unknown and we need to choose a working interval [b,,, b, ] in which knots are dis-
tributed for the construction of the basis functions. The basic rule for adaptation is
that [b,,, b,] — supp(r) very slowly as n — oo. Here, b, and b, are selected as a,
and 1 — o, empirical quantiles where «;,, — 0. The number of basis functions, say
N, is an additional empirical smoothing parameter. One can use cross-validation
to choose N as follows:

1. Split the sample randomly into two halves, say 41 and {>.

2.For N =1,2,..., use {; to estimate y, € RN by (2.15), say Pg(41), and
use Jo to evaluate c¢(Py(41)) empirically, but omitting the last term E, [¢>2], say
Ci1,14, (N). Similarly calculate ¢g,|g,(N).

3. Select N as the largest value such that %{612\11 (N) + ¢y,14,(N)} strictly de-
creases until N.

Jin [17] used a similar method in the i.i.d. case we have discussed, proved its
validity and showed that N = O (n%) under weak smoothness assumptions, where
8 € (0, 1/6) depends on tail properties of r.
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3. Asymptotic properties. We are given wO (e.g., the PCFICA estimate)
such that for some ¢, > 0,

(3.1) P(IW© —Wpllp <en)— 1
as n — 0o, where ¢, satisfies ¢, — 0 and \/ne, — oco. Let
(3.2) Qu={WeR™": W —Wplr < e}

Define ¢w, »(x) = ¢w, (x)I (x € [b 4, b,«1) and consider the following conditions
for1 <k,i, j <m:

C1: Wp is nonsingular.

C2: E[S]1=0, E[S?] < 0o, med(|Sk]) = 1 and E (¢x (S5k))? < oco.

C3: |riloo < 00, |1 loo < 00, SUP,c ¢ 177 (1)] < 00.

C4: The uniform law of large numbers (ULLN) holds for {¢w, (Wi X)X;: W €
Qb Ay, Wi X) X7 : W € Q,} and for {¢y, (WiX)WiXX;: W € Q,}.

C5: For some positive ¢y, ¢, ri(t) > c18,% if t € [an,Enk], otherwise ry (1) <
c28nk-

Ceo: SUPweq, oW, .nloodnk = O(1) and SUPwegq, |¢%,n|005nk =o(1).

11

C7: €,8,;.° (buk — b)) = o(1).

(Note: ULLN holds for §,, iff SUP,eq, | [g(X)d(P,— P)| = op(1);see, e.g., [24].)

Conditions C1-C3 are simplified regularity conditions. C1 and the finite mo-
ments in C2 are among the minimal regularity conditions for considering effi-
ciency, as mentioned in Section 2.3. Setting the absolute median to unity in C2 is a
simple and minimal condition to make the scales of the unmixing matrix identifi-
able [9]. It should be clear that the zero mean assumption in C2 is in no way crucial
to the general argument as the mean can be estimated adaptively, but it serves to
keep algebraic complication to a minimum. C3 assumes some smoothness on the
density score function ¢y for each hidden component, which is needed if it is to be
well approximated by B-splines.

Conditions C4—C7 are technical conditions that we believe are far from nec-
essary, but they are reasonably easy to check and enable construction of a more
compact proof. As an easy example, if x| < 00 and |1} /ri|oo < 00 for k =
1,...,m, then by (A.1) in the Appendix, supy cq |dw,lcc < 00 and by (A.2),
supq, |¢’Wk loo < 00. Thus C4 holds. C5 and C6 require that the tail of r; be not
too wiggly. C6 also implies that §,, — 0. C7 requires that the initial value be
reasonably close to the truth and that the domain and the number of knots of the
B-splines [i.e., ny = bk — an)én_k1 — 3] do not grow so quickly that we lose
control of the approximation to @y .

Here is the main theorem:

THEOREM 3.1.  In the ICA model (1.1), if (3.1) and C1-C7 hold for i, j, k =
1,...,m, i #k and j # k, then with probability converging to 1, the algorithm
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(2.14) has a limit W and
(33)  Javec(W® — Wp) = Igf;ﬁfl*(x, Wp, ®p)d Py +op(l),

where Iegg = [11*T (X, Wp, ®p)dP. That is, W js Fisher efficient. Further,
Vnvee(WOOWE — L) —a N (0,15,

where Lo = [ vec(M) vecM)T dP does not depend on Wp and M is given
by (2.5)—(2.8), with s replaced by S.

The proof of Theorem 3.1 is given in later sections and the Appendix.

4. Numerical studies and some computational issues. Two groups of ex-
periments are implemented to test the empirical performance of EFFICA. Data
are generated from known source distributions listed in Table 2 with a known
mixing matrix W;l. The boundaries for B-spline approximation of the den-
sity score functions are taken as b,;, = max(g,(0),¢,(0.01) — A,) and bok =
min(g, (1), g,(0.99) + A,), where g, (-) denotes the empirical quantile and A, =
c - 4/loglogn. We used ¢ = 5 in the simulation. The number of knots is key for
EFFICA and is chosen by the cross-validation method described in Section 2.5.

In the first group of experiments, two hidden components are used and Wp =
(2,1;2,3). The two components in the first twelve experiments are i.i.d from one
of the distributions [1]-[12] of Table 2, and the two components in experiments
13-15 are from different distributions as specified in cases [13]-[15] of Table 2.
Each experiment has been replicated 400 times with n = 1000.

In the second group of experiments, the number of hidden components is in-
creased to m =4, 8 and 12, m hidden components are chosen with distributions of
[0],[1],...,[m — 1] in Table 2 and Wp = I,,x;;. The experiments are replicated
100, 100 and 50 times for m =4, 8 and 12, respectively, with n = 4000.

Comparisons are made with five existing ICA algorithms: the FastICA algo-
rithm with the options of “symmetric” and “tanh” [15], which is equivalent to

TABLE 2
Source distributions used in the simulations

[0] N(O,1) [8] exp(1)4+U(O,1)

[1] exp(1) [9] mixture exp.

[2] t(3) [10] mixture of exp. and normal

[3] lognormal(l, 1) [11] mixture Gaussians: multimodal
4] t(5) [12] mixture Gaussians: unimodal
[5] logistic(0, 1) [13] exp(1) vs. normal(0,1)

[6] Weibull(3, 1) [14] lognormal(1, 1) vs. normal(0, 1)

[71 exp(10) + normal(0, 1) [15] Weibull(3, 1) vs. exp(1)
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quasi-ML by using a tanh distribution for each hidden source (note: the FastICA
code uses logistic for tanh), the JadeICA algorithm [7], the extended infomax algo-
rithm [19], the KernellCA-Kgv algorithm [3] and the PCFICA algorithm. The PC-
FICA’s estimate is used as the initial value for both EFFICA and KernellCA-Kgv.
Due to the existence of multiple local solutions, PCFICA uses three starting values,
one from FastICA and the others random. The performance of each algorithm is
measured by both the Frobenius error, that is, dF(W, Wp) = WW;I — Lnxmll F
after suitable rescaling and permutation on rows of both W and Wp, and the so-
called Amari error dg(W, Wp) (e.g., [3]),

1 Z " ai 1 m m g
dA(V,W):_Z(M_1>+ (Lw_l>’
1

2m =1 max |a,-j| 2m j= max; |aij|
where V, W are rescaled into V, W such that each row of V and W has norm 1 and
ajj = (17 w-! )ij- The Amari error lies in [0, m — 1], is invariant under permutation
and scaling of the rows of V and W and is equal to zero if and only if V and W
represent the same row components.

For each experiment in the first group of simulations with 7 = 400 replications,
Table 3 reports the average Amari error and square root of the mean square error

MSE with
L&)
MSE = — S (d'))?,
Ti:ZI( )

where dl(p’) denotes the Frobenius error for the ith replication. For the second group
of simulations, Figure 1 shows the boxplots of the Amari errors and Table 4 reports

MSE.

From the simulation results, in some cases some parametric ICA algorithms
work very well and even outperform EFFICA. For example, FastICA works best in
case [5] where hidden sources have logistic distributions. This is not surprising as
we have pointed out in Section 2.1 that a simple quasi-MLE can outperform an ef-
ficient estimator when the value of the nuisance parameter used by the quasi-MLE
is close to the truth. But, in most experiments the parametric methods (FastICA,
Jade, Extlmax) behave worse than the nonparametric methods (PCFICA, Kgv, EF-
FICA) and EFFICA has both the smallest Amari errors and smallest Frobenius
errors, while Kgv, which we conjecture can be efficient after appropriate regu-
larization, is the best in the cases of mixture Gaussians. The three nonparametric
ICA algorithms require heavier computation, but their performance is better than
the parametric methods.

All of the ICA algorithms used in the simulation except EFFICA are based on
contrast functions which empirically measure the dependence or nongaussianity
among {W1X, ..., W, X} and, thus, they are invariant with respect to the choice of
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TABLE 3
1000 x mean Amari errors (and 1000 x ~/MSE in brackets) for six ICA methods using m =2
sources and sample size n = 1000. Source distributions for row k are given by [k] in Table 1. The
bold numbers represent the best performance according to each experiment

pdf Fast Jade ExtImax PCF Kgv EFFICA
1 37 39 34 18 14 7
(89) (66) (57) €2y} (24) an
2 36 36 24 35 33 29
(231) (68) 61) 61) (55) (52)
3 33 31 19 16 14 5
(243) (69) (33) 27 24 )
4 39 50 41 60 61 60
99) (86) (112) (100) (102) (110)
5 71 85 87 109 99 128
(194) (153) (232) (192) (170) (253)
6 42 43 32 18 15 7
(188) (83) 7 30) 24) an
7 43 41 35 18 15 9
(205) (72) (96) (€2))] (25) 16)
8 36 44 35 21 19 17
99) (96) (64) (35) (3D (28)
9 35 37 24 16 14 4
(212) (83) 4D (28) 24 @
10 46 59 39 44 30 47
(209) (103) (66) 74) 49) (105)
11 28 33 27 29 25 25
47 (54) (45) (43) (41) (42)
12 50 49 44 44 39 78
(184) (82) (78) 74 (66) (264)
13 65 52 185 24 19 16
(164) (89) (355) (42) (35) @31
14 35 45 91 20 14 11
(109) (89) (188) 35) 24) (20)
15 69 72 57 32 27 11
(192) (184) (136) (69) (58) (25)

Wp for both error metrics d F(W, Wp) and d A(W, Wp). We note that prewhiten-
ing, which is used for data preprocessing by these algorithms, can reduce such
invariance, although it does not cause inconsistency [8]. Theorem 3.1 implies that
EFFICA is asymptotically invariant with respect to Wp. Figure 2 compares m = 8§
with two different unmixing matrices, Wp = I, x;, and Wp = I, + V, where
Vik = j/m*+ (k—1)/m for 1 < j, k < m. We performed many other simulations
with different Wp and obtained similar results. We observe that the Frobenius error
boxplots do change somewhat with different Wp, but EFFICA is more robust than
other ICA algorithms. We believe that the main reasons are (i) none of the ICA
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and the right panel is for W = Iyxm + V, with Vi = j/m2 + (k — 1)/m. Each experiment is
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TABLE 4
10 x ~/MSE for ICA algorithms with the same simulations as in Figure 1

Case Fast Jade ExtImax PCF Kgv EFFICA
m=4 0.82 1.31 2.71 0.60 0.51 0.45
m=38 7.0 8.3 11.2 54 43 3.6
m=12 9.1 11.2 13.1 7.5 8.0 8.7

algorithms is convex and, thus, may suffer from local solutions and (ii) EFFICA
does not use prewhitening for preprocessing, while others do.

5. Proof of Theorem 3.1. In this section we prove Theorem 3.1. Note that
solving (2.13) can be viewed as a generalized M -estimator (GM-estimator). The
existence/uniqueness, convergence and asymptotic linearity of GM-estimators
have been studied in [5] (the Iteration Theorem in Appendix A.10.2, page 517).
The idea of our proof is to use the Iteration Theorem.

Suppose that M, (8, P,) is a functional of 6 € Q2 (a subset of a finite Euclidean
space) and P,, but is not necessarily linear in P,. The subscript n in M,, allows the
existence of a possible smoothing or sieve parameter dependent on n. The zero of
M, (0, P,) w.r.t 0 is called a generalized M -estimator. Let M (0, P) = M, (6, P).
We review the conditions for the Iteration Theorem.

[GM1] 6p € 2 is the unique solution of M (6, P) =0 in 2.

[GM2] M, (0p, Py) = [ VYo,(X)d Py + 0,(n~'/?) for some ¥y, € L2(P).

[GM3] M6, P) is differentiable w.r.t 6 in a neighborhood of 8p and % is
nonsingular.

For our efficient score equation M, (6, P,) = e, (W) defined in (2.12), [5], con-
dition [U] becomes

(U] supyegq,l€n(W) —e(Wp)|=op(D).

THEOREM 5.1 [5]. Suppose [GM1], [GM2] and [GM3] hold with
M, (0, P,) = e, (W) and [U] holds. If the starting point satisfies P (| wo Wp| <
&n) — 1, then with probability converging to 1, e,(W) in (2.13) has a unique
root W) which is also the limit of the sequence defined by (2.14), except with
i 1T (x, W) ap, replaced by —e, (WD), and W s asymptotically linear
with the influence function —[é(Wp)]~1*(., Wp, ®p).

Theorem 5.1 is called the Iteration Theorem in [5]. Note that the sequence limit
defined by the Iteration Theorem uses the exact Newton—Raphson, whereas we
use an approximate Newton—Raphson, as in (2.14). To make up the difference, we
need the following condition [V], which is verified by Proposition 6.4 in Section 6:
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[V] supyeq, | /T (X, W)d P, — [VIT (X, Wp, @w,)dP| = op(1).
Theorem 3.1 can now be proved as follows.
PROOF OF THEOREM 3.1. It is obvious that [GM1] holds under the condi-
tions of Theorem 3.1 as it is the efficient score function. [GM2], [GM3] and [U] are
verified by Propositions 6.1, 6.2 and 6.3 below, respectively. Thus, the conclusion

of the above Iteration Theorem applies here. By Proposition 6.4, the condition [V]
holds. Further, by Proposition 6.2,

e(Wp) = —E[I'I*'T (X, Wp, ®p)].

Thus, we have

sup
We,

& (W) + / P17 (x, W) d Pa| = 0p (1),

Then following the contraction arguments of [5] (pages 317-319), the iteration
given in (2.14) has the same limit as that replacing [ 7 (x, W) d P, by
—én(W(j )), with probability converging to 1. Thus, (3.3) holds. The second result
follows from (3.3) directly by using (2.4) and the devices of Kronecker product
and the vec operator. [J

6. Propositions 6.1-6.4. This section verifies conditions [GM2], [GM3], [U]
and [V]. For convenience, we list all the notation used in the following proofs in
Table 5, for k € {1,...,m} and W € 2,,. Note that all of the lemmas used in this
section are given in the Appendix. For simplicity of notation, we will often write
Snk as 6y.

PROPOSITION 6.1. Under the conditions of Theorem 3.1, we have

e (Wp) = [ 1 Wp, ®p)dPy +0p 7).

PROOF. Recall the definition of e, (W) given by (2.12) and that of I* (x, W, ®)
gwen by (2.4)—(2.8). It is sufficient to show thatfor 1 <i # j <m,&; —a; =op(1)
and ,B, Bi = op(1), where (o;, 8;) and (&;, ,8,) are defined in (2.7) and (2.11),
respectively, and

6.1) [ w5085y = [ S (S)S;dPs+ 00717,

where S,‘ = Wp,'X, Sj = ijX
The first two are not hard to verify with the law of large numbers and
Lemma A.7. Here, we will just show (6.1). Observe that
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TABLE 5
List of all notation used in the proof

P, P,

W, Wi, Wij

Wp, Wpk, Wpij

Tk

bk =11/
Op=1.....0m)7
fWk

d)Wk =_f‘/)Vk/fWk
¢k,nv¢Wk,n

Dy = @w. - dw,)]

O e

I*(X, W, ®)

e(W)=[1¥(X, W, Dy)dP
en(W)=[I*(X, W, dy) d Py
B =Y, ... BT
An(W) = [BPBET (W x)d Py
Da(Wy) = [BEY (Wi X)d P,
Yn(Wi) = A (W) ™1 Dy (W)
AW = [BUBPOT (Wi x)ap
DWp) = [BEY (Wi X)d P

y (W) = A(Wp) ~ 1 D(Wy)

9,,(116) = {aTBﬁ,k) ra € R

dw, = (W) TBP

dw, =y W TBY

population, empirical law of X

m X m matrix, kth row, (i, j)th element
unmixing matrix, kth row, (i, j)th entry
PDF of Si

density score function for Sy

function vector

PDF of Wi X (fwp, =71)

score function of Wi X (dw,, = Pk)
truncation of ¢, ¢w, on [b,,x, bk]
function vector

function vector

efficient score function defined by (2.4)
expectation

empirical expectation

B-splines defined on [, by ]

served in coefficients of ‘/;Wk

served in coefficients of ¢?Wk

served as coefficients of qBWk

served in coefficients of ¢?Wk
served in coefficients of ZWk
served as coefficients of gwk
closed linear span of B-splines

estimator of gy, in G defined by (2.10)
estimator of ¢y, in g,flk) defined by (A.3)

‘/éwpxsl-)S,-dPn —/d)wp,.(Si)deP

= ‘ /[éWP[(Si) —;WP,-(Si)]dePn

+ ’ [, (50 = (SIS P,

+ ’/(@(Si)—(bi,n(si))sjdpn
=[1]+[2] + [3].

In the following, we will show that all of [1], [2] and [3] are op (n~!/?).
First, by Lemma A.2(7) and Lemma A.3,

[1]= '/ (v (Wpi) —y (Wp)) B (S)S; d P,

< vnWpi) —y(Wpi)ll2

/Bfl”(si)sj dp,

2
=o0p(1)0p(n~'"?).
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Further, E(12)* = JE@w,,(S) — ¢wpn(5))?E(S]). By Lemma A.6,
|wp; — BWpinloo < 8210, ,loo- Thus, by C6,
[21=n""282 1}, wlocOp (1) = 0p(n~"/?).

For [3], since P(S; ¢ [b,,;, bni]) = 0, we have

ni»

1 — 1
E3D} = [ E@i ()18 ¢ b, Bl ESH =of ).

So[3l=o0p(m~Y%. O

PROPOSITION 6.2. Under conditions C1, C2 and C4 of Theorem 3.1, e(W)
is differentiable w.r.t. W in a neighborhood of Wp and

é(Wp) = —E{I'T (X, Wp, ©p))
is nonsingular.

PROOF. Let Ty(-) = 52 {¢w (-)} for any nonzero row vector w € R™. By (A.1)

~ w
in the Appendix, after exchanging the order of differentiation and integration, we

have E[T,,(wX)] =0. Then by (2.5), we have fork =1, ..., m,

0 0
Ei—{I*"(X,W,® }:E{—I*X,W,CD }
{BWk{ ( w)twp 8Wk{ ( P)Iwp
Since the left-hand side of the above is €(Wp), by Lemma A.8 the right-hand side
is equal to
(6.2) e(Wp) = —E{I'I (X, Wp, @p)}.

Note that the elements of M in (2.5)—(2.6) are linearly independent, and that this

is also true for the elements of 1*(., Wp, ® p). Thus, é(Wp) must be nonsingular.
O

PROPOSITION 6.3. Under the conditions of Theorem 3.1, for i, j, k =
1,...,m, we have

(6.3) SSI;P /‘]EWi(WiX)Xden(X) _/¢Pi(WPiX)Xde‘ =op(1)
and fori # j,

d A d
[ e wixwxar, - [ o {¢Pi<wp,~x>}ijx51p’

su
QF 0

(6.4)
=op(1).
Thus, condition [U] holds.
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PROOF. We omit the superscript (i) in B,gi) henceforth. By the Cauchy-
Schwarz inequality,

H foP(W,-X)Xk dp,

2 nj
= [1xar, [ Y Bawix)Pap,.
=1
Since Z?;l [B,;(W; X)]? < 1 by property III of B-splines in the Appendix, we have

(6.5) sup
Q2

/Bn(WiX)Xk dP,

— 0p(1)
2
and by Lemma A.2(7), supg, [l (Wi) — ¥ (Wi)l2 = 0p (1), s0

sup
Qll

/ Sw, (Wi X)Xy d Py(X) — f Sy (WiX) X dP,

=sup

n

(Wi — (W) / B, (W: X)Xy d P,

(6.6)

/Bn(WiX)Xk dP,

< sup|[¥a(Wi) — ¥ (Wi) [l2 sup
Qp Qn 2

=op(1)Op(1).

"

Further, by Lemma A.6, supg, |$y, (Wi X) — dw,.nloo < supg, ¢l ,lod2, 50

/ S, (Wi X)Xy d Py (X) — / S, n (Wi X)X d P,

sup
Qp

67) < Supla, 1 |oc8? [ 1XlPy

Qn

=op(l) (by C6).
By C4, ULLN holds for {pw,(W; X)X :W € Q,}, and by Lemma A.I,
supg, P(WiX ¢ [b,;. bnil) = o(1), so

(6.8) sup =op(l).
Qp

/ Sw, (Wi X)X I (WiX & [b,;. bui]) d P

Recall that ¢w, ,(x) = dw, (x)I (x € [b b,i1). From (6.6)—(6.8), we obtain

ni»

69) sup [ dwwioxiar,co - [ ¢wi(WiX)Xden(X>‘ —op(1),
Now, by C4,
(6.10) sup / ¢W,.<Wl~X>Xkd(Pn—P)\=0p<1),
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and by continuity,

611 sup / Sw, (Wi X)Xy dP — / Swp, (Wpi X)X dP| = o(1).

(6.3) then follows from (6.9)-(6.11).
In the following, we prove (6.4). Note that

(6.12) T(Wi)1Bu (Wi X) + @}y, (W X) X

N . 9
IWi Wi
It suffices to show that the following hold:

(4] SUP f&@vi(WiX)XijXdPn(X)—f¢}),~(WPiX)XkWP_/XdP =op(D);

sup

/ U (W) B (Wi XOW, X P, (X)] —op(1),

Similarly to (6.3), the uniform convergence of [4] can be verified using condi-
tions C4, C6, C7 and Lemmas A.1, A.2 and A.6. Further, the left-hand side of [5]
is bounded by

H/B,,(W X)W;XdP,

70 12 1. 1)2
Sup{HaW,ky” }:OP(‘S” PniSendy i)
=op(l),

where the first equality follows from Lemma A.2 and Lemma A.4 and the second
follows from C7. Thus, [5] holds and, hence, (6.4) is proved. [

PROPOSITION 6.4.  Under the conditions of Theorem 3.1, condition [V] holds,
that is,

sup
weQ,

/i*i*T(X, W)dP, —/l*l*T(X, Wp, dw,)dP|=0p(1).

PROOF. By checking the elements of 1*I*7 (x, W), it suffices to show that for
1<i,j,k,k <mandi#j,

sup| [ G, (Wi X)bw, (W, X) X, X d P,
-/ ¢pi<WP,-X)¢p,-(Wp,-X)XkafdP] —op(1),
sup [ dwwxoxixear,co - | ¢p,<wplx>xkxk/dp]_oP(1)
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and

sup /‘lBW,-(WiX)XkK(WjX) dP,(X)— f dpi(Wpi X)Xk (WpiX)dP|=o0p(1).
Qp

Each of these can be verified using Lemmas A.1, A.2, A.6 and conditions C4, C6
and C7 with arguments similar to those used in proving (6.3). U

7. Conclusion. In this paper, we viewed the classical ICA model within the
framework of semiparametric models and obtained an asymptotically efficient esti-
mator for the unmixing matrix by solving an approximate efficient score equation.
The main difference between this new method and popular parametric ICA meth-
ods is that we estimate the density score functions of hidden sources adaptively.
A variety of simulations have illustrated statistical efficiency of this estimator in
comparison with state-of-the-art ICA algorithms.

APPENDIX

A.1. Some useful formulas. Let v = wWPTl. Then wX = vS. If v; # 0 for
some k € {1, ..., m}, then by the classical convolution formula, we have

fw(t):/ii’k(M) l_[r‘j(Sj)dsj :E{irk<M)}
Uk vk j;ék vk Uk

Since f,(t) is a marginal density function of (vS, Sj:1 < j # k <m), by a stan-
dard formula (see, e.g., [4]),

1 ]"/ t — Z ik v;S; 1

A puy = E|E(FEEEEE us =i} =~ Elguslus =1
Uk Tk Uk Uk

and further calculation gives

/" _ . .S
(A2) 83%@) = ¢y (1) — %E{i<%)‘m§=t}.
t v rk

Uk

A.2. Calculation of the efficient score. To formulate the tangent space de-
fined in Section 2.1 for each nuisance parameter r;, by taking the smooth submodel
{ri(: 1) =ri (e :|t| < 1} for some h; € L2(P), we have

.0
lim —{log px (X, W, ri,...,ri(:;t), ..., rm)} = hi (W;X).
t—0 0t

Since r;(-;t) needs to be a probability density function which satisfies the
mean and absolute median assumptions, h; needs to satisfy E[h;(S;)] = O,
E[h;(S;)Si1=0 and E[h;(S;)x(S;)] =0, but is otherwise arbitrary. Thus, the tan-
gent space for r; can be expressed as

TS; = {hi(Wix) € L7(P)|E[h;i(5)] =0, E[h;(5;)Si1=0, E[h; (S (S:)] = 0}.
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Note that the tangent spaces {7'S; : 1 <i < m} are perpendicular to each other since
the S; are mutually independent. Thus, any projection onto the tangent space of
(r1,...,7rpy) is equal to the summation of the partial projection onto each 7S;. The
efficient score of W becomes

m
(W, ®) =ly — ) mdw|TS)),
i=1
where (.|L) denotes the projection operator in CCZ(P(WJl ..... rn)) onto L. Since
each off-diagonal entry of I, — ®(S)S7 is perpendicular to all TS; and each di-

agonal entry of it is perpendicular to all but one 7'S;, I* can be obtained as in (2.4)—
(2.8) of Section 2.3 by using the fact that TSf‘ =span{l, S;, k(S;)}.

A.3. Some properties of cubic B-splines. Let & < & < --- < &y be fixed
points. The first order B-spline basis functions based on these knots can be ex-
pressed as Bi1 x)=Ixe€lé,&+1)),i=1,..., N —1,and the kth order B-spline
basis functions can be obtained recursively (k > 2) by

=& BF () + Eitk—Xx
Eivk—1—& Eivk —&iv1
fori=1,..., N —k.Each Bi" (x) is differentiable w.r.t. x up to order k — 2 and its
first order derivative can be expressed as

N S BV
—D:(X) = . X)) ———
! Eivk—1—& ' Eitk —&it1

B (),

k
B; (x) = i+1

k—1
- B ).

We use the 4th order, so-called cubic, B-splines {B;‘:l <i < N — 4} with
equally spaced knots, thatis, &1 —& =8 (i =1,..., N — 1) for some algorithm-
determined §. For simplicity, the superscript in B;1 is omitted below. The following
properties of cubic B-splines will be frequently used in proving the lemmas below
(see [11, 23] for details):

(D 0<Bi(x) <1, Bi(x)Bj(x)=0if |i — j| > 3.
(D | L B;(x)| <871, |4 B;(x)] <2572,
am YN B < 1, YN 145 B ()] <657,

A.4. Supporting lemmas for Propositions 6.1-6.4. In this subsection, we
prove all of the lemmas used in the proofs of Propositions 6.1-6.4. Recall
that for each ¢ (k =1,...,m), we have an interval [an,Enk] and nj; cubic
B-spline basis functions defined thereupon using equally spaced knots on it, say
B =BY, ..,

nl>

of sieves 9,,(11() using B,(f) as basis functions. For any W € ,, we have a class

of estimates </3Wk € %k) for ¢w,, as defined in Section 2.4. For convenience, the

B,(l]f,)k)T, as in Section 2.4. Thus, we have constructed a sequence

superscript of B,(lk) is often omitted below.
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Let Q,(ik) ={W;: We Q,} fork=1,...,m. We also need an intermediate ap-

proximation function ‘;SW/( € g,(j”, defined as follows. For w e Q;,k),
(A3) $u=r)TBY,

where y(w) = A(w)~' D(w) with Aw) = [BEPBET (wX)dP and D(w) =
i [B,(lk) I'(wX)dP. Note that the subscript w of qAbw should always be associated
with Qﬁ,k) for some k € {1, ..., m}, similarly for ([A)w.

In the following, ¢ denotes a constant (dependent only on the population law P),
but its exact value may vary in different places (even in a single line) without clar-
ification. For a column vector x € R”, ||x|| = +/x”x. For an m x m real ma-
trix A, [[All1 = maxi<i<m [Aill2, |All2 = maxyerm |x,=1 |Ax|2 and [[Al|F =

Vir(AT A); thus, [ All2 < [|A]l1.

The following Lemmas A.1-A.8 hold under the conditions of Theorem 3.1.
Jin [17] has obtained results similar to Lemma A.2 and Lemmas A.5-A.7 con-
cerning the B-spline approximation, but in generally different settings.

LEMMA A.1.  For sufficiently large n, sup Q(k)|fw|oo <00, sup Q(zolf,j)loo
< 00, SUp, k) min, telb k] fw(@) = cé, and SUP, o) PwX ¢ [b,,, bil) =

o(1).

PROOF. The first two inequalities follow easily from C3. The remaining
two are proved as follows. For any w € Qﬁ,k), lw — Wpill2 < e,. If we let
v_wW;,then [vj| > 0for 1 <j#k<mandvg— 1asn— oo. Since

fu@)=E (- rk(w)] we can consider the right-hand side as a function

Vk
(say h) of v. By first order Taylor expansion,
m
} 5 an,
where by direct calculation and using C3, | da h(v)| is uniformly bounded with

If@O)—ruﬂlfanV;”h{E: sup

j=lwe

Eh(v)

w e QY and r € R. Recall that ry(t) > ¢, for 1 € [b,;, bux] and &, < 8,; thus

sup min  fy,(t) > cé,.
WEQEIk) te[bnkvbnk]

Finally,

P@Xemmamzf i
[an ,bnk]

fode= [ (e - ce)dr

[énkabnk]

=P(Skelb nk> nk]) Cep (Enk - an)
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Since &, (b — b)) =o01)and P(Sk € [b . bui]) — 1, wehave 1nf cq® PwXe
b, b)) — 1. O

ni»

Recall the definitions of (ﬁwk, Vn (Wi), A (Wy) and D, (W) in Section 2.4 and
that of y(w) = [A(w)]"'D(w) in (A.3). The lemmas below give their uniform
convergence rates.

LEMMA A.2. The following hold for k,i =1,...,m

(1) D)2 < cuny'*; 82 < eig(A(w)) < c8, for w € QF;

(2) sup, ot [ Dn(w) — D(w)ll> = Op (nx Togn) 2 (18,) 1 /2);
(3) sup, o | Da(w)ll2 = 0p(Buny);

@) sup, o [14n(w) = A(w)|l2 = Op (8, logn)/>n~1/2);

(5) sup,, qw Ay W)ll2 = 0p(6,);

(6) sup,, . llva (W)l = Op(m8,1);

(7) supg llya(w) =y (w)ll2 =op(l);
8) sup Il 7 {An(w)Hl2 = Op (8, 2
9) supg® ll 3y (Dn(w)}ll2 = Op(8,);
(10) sup Il (v ()Hl2 = 0p (87 20y

);

).

PROOF. The procedure is as follows. First, (3) is implied by (1) and (2). Sec-
ond, (6) is implied by (3) and (5). Third, since

(w)} =

(w)+ A"

ow;

(10) is implied by (5), (6), (8) and (9). Hence, it suffices to prove (1), 2), 4), (5),
(7), (8) and (9). Further, the proofs of (2) and (4) are similar and the proofs of (8)
and (9) are similar. Thus the proofs of (4) and (9) are omitted.

PROOF OF (1). By taking the derivatives of the cubic B-splines, B, (1) =
8, l(B,fl. (t) — Bs’i +1()), where B,fi are the third order B-splines defined on the
same knots, i =1, ..., ni, we have

|D;(w)| =36,

/ (By (1) = By ;1 (1)) fu (D) dt‘

() = fult + 8 ))dr‘

s/B,?,,-(z)dz|f;,|oo ST
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So the first result holds due to Lemma A.l. The second result follows from
Lemma 5.1 of [17]. O

PROOF OF (2). Note that
P( sup [Dy(w) = D(w)2 > 1)

weQ,(lk)
=P< sup /B;(wX)d(Pn—P) zt)
weQ,(lk) 2
ng "
< P( sup /B’ (wX)d(P, —P)‘ Z—>.
L7 ] Buae0 4B = P02 G

For a fixed pair (i, k), let ¥, = {gn(X) = B,’U- (wx):w € Qf,k)}, a class of functions
indexed by 2. Then for w, v € ", llgu(®) — go®) |2 < 28, 2[lw — vll2[|xI|2

by property Il of cubic B-splines. Now, the index set 52,2") can be covered by
N = ce;'u™ balls of radius u, and for any w, v in the same ball, E[||g, (X) —
gv(X) 2] <8, 2u. Further, by property I of cubic B-splines, SUP, e, 18wloo =

8,1_,{1. Then for ¢ max (s, !, 8,18,,_2) <a<cyn,

P( sup /n

wey!

_/B;;,i(wx)d(Pn - P)‘ > a) <exp(—ca’®sy).

This follows from Theorem 5.11 of van de Geer ([24], page 75), which generalizes
Hoeffding’s inequality and calculates the uniform convergence rate for a class of
functions in terms of its size measure, or so-called bracketing entropy; see [24] for

details. Note that ¢, <« §, by C7, so for t > cni/zn*I/Z(S;l, we have

P( sup || Dy(w) — D(w)ll2 > t) <ny exp(—ctznénnk_l).

weQ,(lk)
Thus,
ny logny
SUPIIDn(w)—D(w)IIz=0p< 7g)- U
Qizk) I’l8n

PROOF OF (5). Since A,'=(A+ A, — A '=A"11 + (A, — A)A~H7L,
by (1) and (4) (omitting the index w), we have

sup [[ Ay — Al2|A™ 2 = 0, (1),
wle,k)
hence,
sup [|A, 2 < sup [[AT 21— ||A, — Al AT 1) ™! = 0p(8,72).

weQ,Sk) wlelk)
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Here we use the inequality of matrix norm ||(/ + A<= |A2)! for any
square matrix A with ||A||2 < 1, where [ is the identity matrix. [

PROOF OF (7). By (1)-(5),

sup [lyn(w) —yw)lla= sup |A~ND, — D) — A (A, — A)AT' D, |l
wea® wea®

_, |nilogny _, |8, logng _
- op<8n2 /T +36, 2,/”75,“/_;1,(3”2
n

=op(l),
where the last equality follows from C7. [

PROOF OF (8). Note that the partial derivative is (omitting (i) from B,(f))
0
G ) = [ BB+ BB wX)Xid Py

By the Cauchy—Schwarz inequality,

2
'/(anB’ o+ Bl By (wX) Xy d Py

Similarly, we can calculate the uniform convergence rate,

sup sup [ (BujB,; + Brlsznj/)z(U)X)d(P” — P)y=op(D).
0<j.j'<ni | j=J'<3 yeq®

Further, from Lemma A.1, sup, _o® | fw] is bounded, so after algebraic expansion
n
we have

sup [ (BujBy; + B} Byj)*(wX)dP <c5, "

weQﬁ,i)

Thus, |72-{A,(w)};j| < b /2 For cubic B-splines, B,j(x)B,;,(x) = 0 for

|j — j’| > 3; thus, each row of %{An (w)} has at most seven nonzero elements.
So

d _1
—f{A (W)} =0, 7). U

0
—{An(w)} Bun

sup Bun

ol

< sup
2 Qo)

1

LEMMA A.3. || /BY(S)S;dPylla = Op(n=/%), where S; = Wp; X, 1 <i %
Jj=<m.
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PROOF. (We omit (i) in BY’, B).)

2 ni
1 4
E(H /Bn(S,-)deP,, ) = —E(ZBnk(Si)zS]2~> <—E(5}). O
2 n\io "
O (W XYW _ 1,172
LEMMA A4, supg | /B (W, X)W;XdP,ll2 = Op(endy'n; ') for 1 <

i#j<m.

PROOF. Similarly to the proof of Lemma A.2(2), we have

5,%71,' logn,-
sup /Bn(WiX)Wde(Pn—P) =0p|,/ /).
Qy 2 n

Further, note that | B,z (x) — Bux (¥)] < Sn_llx —y|, so forany W € Q,,,

2

H /B,AW,‘X)WdePH
2

2

i
=2
k=1

f (Buk (Wi X)W; X — Byt (Wp; X)Wp; X) d P

n;
— 2
<Y (S ENXIGIW: — Weill2lWill2 + ENX 21 W; — Weill2)
k=1
<ce8n;.

i 24,. .
Thus, supg, || [ By (Wi X)W; X dPyll> = Op(y 220%8" 4 ¢ 5-10)%). O

LEMMA A5, E{(¢w, (Wi X) — dw,.n(W; X))?} < 81677 12

PROOF. Let d(¢w; n, $n) = infeg, |¢w; n — hloo- Then by the Jackson-type
theorem [11],

d(Dw, 1 Gn) < Sl DY, 4loo-

Thus, the result follows from

E{($w, (Wi X) — dw, n (Wi X))?} = inf E{(h(WiX) = ¢w,.. (Wi X))’}
heGy

< d(pw,.n> Gn)*- O
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= —/
; . -
LEMMA A.6. Iy, —bwnloo < CO210, 1o 1D, — iy nloc < cldfy, uloodn.

PROOF. By Theorem XII.4 of [11] there exists a quasi-interpolant with some
aeRY,

Su (1) = a "B, (1),

such that ¢§Wi simultaneously approximates ¢, , and its first derivative to optimal
order, that is,

i, — OWinloo =l uloc8? and Gy, — By, uloo = g oot
So
E(w, (Wi X) — g, n(Wi X)) < clobfy, 1268
Combining this with Lemma A.5, we have
E@w, — $w)? < EGw, — dwyn)> + E@y, — $win)* < clofy, 1I288.

Let coef(qAle_) and coef(gwi) be coefficients of B, in ‘lgW,- and ZW,-, respectively.
Then

E(y, — bw,)? = E((coef@y,) — coef(py.)) By)>
> Aull coef(y,) — coef(y, )13,

where A, is the minimum eigenvalue of A(W;) = E [BHBZ (W;X)].By Lemma A.2,
Ap > CS}%. Thus,

B, — bw;loo < Il coef(dyy,) — coef(y)ll2 < cldly, ,locds-
Hence,

-~ " 2
sup|@w, — dw;.nl <supcloy. ,locd,-
Qn

n

Further, by observing that |B,’1 kloo <8, I we have

=/ rY X =
|Bw, — Pw,loo < Il coef(py.) — coef(@w)lI28, " < cloly, ,loodn-

Thus,

-/ Y =/ Y
’ ’ "
|¢Wi - (bw,-,nloo = |¢Wi - (bW,-,nloo + |¢Wi - ¢Wi|oo = C|¢Wi,n|005n' 0
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LEMMA A.7. f(qAbWPk(Sk) — qbk(Sk))zdPn =o0,(1).
PROOF. Observe that

1 n ~ ~
g/(¢wpk(5k)—¢k(5k))2dPn 5f(¢WPk(Sk)—¢w,,k(Sk))2dP
+/($ka(Sk) - ¢k,n(Sk))2dPn

+ / Sk (SO (Sk & b, Bui]) d P

The remainder of the proof is similar to the use of (6.1) in proving Proposition 6.1
by using Lemma A.2 and Lemma A.6. [

LEMMA A.8. Let {p(-,0,n):0 € Q C R4 n € &) be a parametric or semi-
parametric model, where 0 is the parameter of interest. Suppose that moderate
regularity conditions are satisfied and that 1*(-, 0, n) is the efficient score function
of 0, as defined in [5]. Then

9
/ﬁl*(x,e,n)dp(g,n) :—/1*1*T(X,9,n)dp(9,n).

PROOF. We only prove this for the parametric case & C R™. Let 1(6, n) be
the information matrix of (6, ). Then by class1c likelihood theory (e.g., Propo-
sition 2.4.1 of [5]), I*(-,0,n) = 11 — (I1pI 2)(9 17)12 Here, 11 and 12 are the
partial derivatives of I(-,0,n) = log p(-,0,n) w.rt. 8 and 7, respectively. Sim-
ilarly, ll j (i, j = 1,2) are defined as second order derivatives of /(-,0,n) w.rt.
6, ). Thus, £ 1*(X, 0, 7) =11 — @12L5, )0, My — f5{(T1215,) @, M}la. Since
J1(X,6,1)dPg,,;) =0, we have

—l*(X 0,n)d Py —/lndP(e » — T2, 6, 77)/121‘”)(9 n-

Since the information matrix satisfies I;; = —flij(X,G, mdPe.p, i,j =1,2,
the result follows by fl*l*TdP =1 — 11212_21121 (see Proposition 2.4.1 of [5],
page 32). For the semiparametric case, the reader is referred to [5] for a general-
ization of this proof. [
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