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Abstract

We give a review of various aspects of boosting, clarifying issues through a few simple results,
and relate our work and that of others to the minimax paradifrstatistics. We consider the
population version of the boosting algorithm and prove @swergence to the Bayes classifier
as a corollary of a general result about Gauss-Southwaelinigattion in Hilbert space. We then
investigate the algorithmic convergence of the sampleimerand give bounds to the time until
perfect separation of the sample. We conclude by some sezulthe statistical optimality of the
L, boosting.

Keywords: classification, Gauss-Southwell algorithm, AdaBoostssraalidation, non-parametric
convergence rate

1. Introduction

We consider a standard classification problem: R&etY), (Xi,Y1),..., (Xn,Yn) be an i.i.d. sample,
whereY; € {—1,1} andX € x. The goal is to find a good classification rule,— {—1,1}.

The AdaBoost algorithm was originally defined, Schapire (1990), er€0995), and Freund
and Schapire (1996) as an algorithm to construct a good classifienkgighted majority vote” of
simple classifiers. To be more exact, #6tbe a set of simple classifiers. The AdaBoost classifier
is given by sgiiyM_; Amhm(X)), whereAm € R, hyy € 2, are found sequentially by the following
algorithm:

0. Letci=cp=---=c,=1, and semm=1.

1. Findhy, = argmin,.,, Si;ch(X)Y:. Set

1|og(Zi”—1Ci +Zi”—1cihm(>ﬁ)Yi) 1 (th(m=vi Ci>.

Am =
2 Yit1Gi — ¥ita Ghm(X)Y
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2. Setci — ciexp(—Amhm(X)Y;), andm«— m+1, If m< M, return to step 1.

M is unspecified and can be arbitrarily large.

The success of these methods on many data sets and their “resistancditiingve-the test
set error continues to decrease even after all the training set otisesvavere classified correctly,
has led to intensive investigation to which this paper contributes.

Let 7 be the linear span of . That s,

o k
Foo = | J Fx, Wheresy = {ZAjhj t N ER hjes, 1< j<k}.
k=1 i=
A number of workers have noted, Breiman (1998,1999), Friedman, Hastidibshirani (2000),
Mason, Bartlett, Baxter and Frean (2000), and Schapire and Sir@@9) that the AdaBoost clas-
sifier can be viewed as s¢fi(X)), whereF is found by a greedy algorithm minimizing

n

-1
n exp(—YiF (X)
2N X)
over Fo.

¢ From this point of view, the algorithm appeared to be justifiable, sincesnetad in Breiman
(1999) and Friedman, Hastie, and Tibshirani (2000), the correspgespressioik exp(—Y F(X)),
obtained by replacing the sum by expectation, is minimized by

F(X) = %Iog(P(Y = 1jX)/P(Y = ~1X)),

provided the linear spafi. is dense in the space of all functions in a suitable way. However, it
was also noted that the empirical optimization problem necessarily led to ruiels wbuld classify
every training set observation correctly and hence not approachatresBule whatever bg except
in very special cases. Jiang (2003) established that, for observatibered stumps, the algorithm
converged to nearest neighbor classification, a good but rarely optifeal

In another direction, the class of objective functiéd§ ) that can be considered was extended
by Friedman, Hastie, and Tibshirani (2000) to otWérin particularW(t) = log(1+ e %), whose
empirical version they identified with logistic regression in statistics, &) = —2t + t2, which
they referred to asl!> Boosting” and has been studied, under the name “matching pursuit”, in
the signal processing community. For all these objective functions, thdaiam optimization of
EW(YF(X)) over # leads to a solution such that $g(X) is the Bayes rule. Friedman et al. also
introduced consideration of other algorithms for the empirical optimizationl@noblLugosi and
Vayatis (2004) added regularization, changing the function whosetatm (both empirically and
in the population) is to be minimized froW (Y F(X)) to Wh (Y F(X)) whereW, — W asn — co.
Buhlmann and Yu (2003) consideréd boosting starting from very smooth functions. We shall
elaborate on this later.

We consider the behavior of the algorithm as applied to the saf¥pl¥;), ..., (Y, Xn), as well
to the “population”, that is when means are replaced by expectations arscbguprobabilities. The
structure of, and the differences between, the population and samplenspf the optimization
problem has been explored in various ways by Jiang (2003), Zhahgr@ar{2003), Bihimann
(2003), Bartlett, Jordan, and McAuliffe (2003), Bickel and Ritov (200

Our goal in this paper is
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1. To clarify the issues through a few simple results.

2. To relate our work and that oftBilmann (2003), Bhimann and Yu (2003), Lugosi and Vay-
atis (2004), Zhang (2004), Zhang and Yu (2003) and Bartlett, JoesmhMcAuliffe (2003) to
the minimax results of Mammen and Tsybakov (1999), Baraud (2001) ayizhksv (2001).

In Section 2 we will discuss the population version of the basic boostingitdger and show
how their convergence and that of more general greedy algorithmsecderlved from a general-
ization of Theorem 3 of Mallat and Zhang (1993) with a simple proof. Thheltecan, we believe,
also be derived from the even more general theorem of Zhang and0@8), but our method is
simpler and the results are transparent.

In Section 3 we show how Bayes consistency of various sample algorithras aiitably
stopped or of sample algorithms based on minimization of a regulavizédllow readily from
population convergence of the algorithms and indicate how test bed validatiobe used to do
this in a way leading to optimal rates (in Section 4).

In Section 5 we address the issue of bounding the time to perfect sepashtiom different
boosting algorithm (including the standard AdaBoost).

Finally in Section 6 we show how minimax rate results for estimali(g|X) may be attained
for a “sieve” version of thd., boosting algorithm, and relate these to results of Baraud (2001),
Lugosi and Vayatis (2004), iiimann and Yu (2003), Barron, Bigg Massart(1999) and Bartlett,
Jordan and McAuliffe (2003). We also discuss the relation of thesdtsdeiclassification theory.

2. Boosting “Population” Theorem

We begin with a general theorem on Gauss-Southwell optimization in vedoespt is, in part,
a generalization of Theorem 1 of Mallat and Zhang (1993) with a simplerfprdcecond part
relates to procedures in which the step size is regularized cf. Zhangua(2D¥3) and Bartlett et
al. (2003). We make the boosting connection after its statement.

Let w be a real, bounded from below, convex function on a vector sfaceet # = %' U
(—#"), wheres’ is a subset ofl whose members are linearly independent, with linear spas
{sK_1Amhm: A\j €R, hj € #, 1< j <k, 1< k< w}. We assume that., is dense irH, at least in
the sense thgiw(f) : f € %} is dense in the image of. We define two relaxed Gauss-Southwell
“algorithms”.

Algorithm I: Fora € (0,1], and givenf; € H, find inductivelyfy, f3,...,... by, fmi1 = fmn+Amhm,
A€ R, hye # and

W(fm+Amhm) <a  min w(fn+Ah) + (1—oa)w(fy) . (1)
AeR, hex

Generalize Algorithm | to :

Algorithm II: Like Algorithm I, but replace (1) by

W(fn+Amh) +YAL <o min (W(fm+Ah) 4+ yA?) + (1 — o)w( fry) .
AER, hex

There are not algorithms in the usual sense since they do not specifgwewequence of iter-
ations but our theorems will apply to any sequence generated in this watynically, this scheme
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is used in the proof of Theorem 3. The standard boosting algorithms thoatisecorrespond to

a = 1, although in practice, since numerical minimization is ugedpay equal 1 only approxi-
mately. Our generalization makes for a simple proof and covers the possibdityh minimum

of w(fm-+Ah) over 77 andR is not assumed, or multiply assumed. laf= infrcy, W(f) >

—oo. Letw/(f;h) the linear operator of the Gataux derivativefat 7., in the directionh € #.:

w (f;h) =ow(f +)\h)/a)\|A:0, and letw’(f; h) be the second derivative ofat f in the directiorh:

W' (f,h) = 0?w(f +Ah)/0A?|, _, (both derivative are assumed to exist). We consider the following
conditions.

GS1. For any; andc; such thatw < ¢ < € < o,

O< inf {W'(f,h):c; <w(f)<cp, hes}
< sup{wW'(f,h):w(f) <cy, he #} < .

GS2. For any; < o,
sup{w’(f,h): w(f) <cy,he #} <.

Theorem 1 Under AssumptiolsS1 any sequence of functions generated according to Algorithm
| satisfies:

W(fm) <o+ Cm

and if g > O:
W(fm) —W(fmi1) > E(W(fm)) >0

where the sequencg,e~ 0 and the functiorg(-) depend only o, the initial points of the iterates,
and# . The same conclusion holds under Conditi@&2for any sequencexfgenerated according
to algorithm II.

The proof can be found in Appendix A.
Remark:

1. Condition GS2 of Theorem 1 guarantees tﬁml)\,?n < oo, It can be replaced by any other
condition that guarantees the same, for example, limiting the step size, replaeipgnalty
by other penalties, etc.

2. It will be clear from the proof in Appendix A that i’ is bounded away from 0 and then
Cm IS of order(logm)‘% so that we, in fact, have an approximation rate — but it is so slow as
to be essentially useless. On the other hand, with strong conditions such@soomality of
the elements off , and# a classical approximation class such as trigonometric functions we
expect, withL, boosting, to obtain rates such @s /2 or better.

Let(X,Y)~P,Xex,Ye{-11}. Let# C {h:x — [—1,1]} be a symmetric set of functions.
In particular,#/ can, but need not, be a set of classifiers such as trees with

H o= )
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Given a loss functiolV : R — R, we consider a greedy sequential procedure for finding a function
F that minimizesEW(Y F(X)). That is, giverf € # fixed, we define fom> 0:

Am(h) = arg minEW(Y(Fm(X) +7\h(x)))
AeR
i = arg MIEW (¥ (Frn(X) + Am(W)N(X)))

hex
I:m+1 = I:m + }\m(hm)hm-

Assume, wlog (without loss of generality), by shifting and rescaling, W) = —W’'(0) = 1.
Note that by Bartlett et al. (2003)y’(0) < 0 is necessary and sufficient for population consistency
defined below. We can suppose again wlog in view of (2), Myat 0. Define 7y and 7., as in
Section 1 and lef¥ = 7. be the closure of. in convergence in probability:

F = {F:3Fm€ Fm Fu(X) F (X))
Fo = argminEW(YF(X))
Fer

If sgnF, is the Bayes rule for 0-1 loss, we say tikatis population consistent for classification,
“calibrated” in the Bartlett et al. terminology. Let

pX) = P(Y=1)X)
Wiod) = pOoW(d) + (1 o)W (—d).

W(F) = W(X,F(X))

By the assumptions belol is the unique function such trlﬁt’(Fm) = 0 with probability 1, where
W/ (F) =W'(X,F (X)) andW’(x,d) = 0W(x,d)/dd. DefineW” similarly.
Here are some conditions.

P1. P[p(X)=0o0r1 =0.
P2. W is twice differentiable and convex dh
P3. 7 is closed and compact in the weak topologyis the set of all measurable functions.on

P4. W”(F) is bounded above and below ¢k : ¢; < W(F) < ¢} for all ¢1, ¢, such that

inf EW(F) < ¢1 < ¢, < EW(F).
Fey

P5. Fw € Lo(P).

Note that P1 and P2 imply thal¥(x,d) — « as|d| — o, which ensures th&, is finite almost
anywhere. Condition P1, which says that no point can be classified wsthiab certainty, is only
needed technically to ensure that{x,d) — c as|d| — o, even ifW itself is monotone. It is not
needed fok, boosting.

Conditions P2 and P4 ensure that along the optimizing Yathehaves locally liké\p(t) =
—2t+t2 corresponding th, boosting. They are more stringent than we would like and, in particular,
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rule outW such as the “hinge” appearing in SVM. More elaborate arguments sucbsesahZhang
and Yu (2003) and Bartlett et al. (2003) can give somewhat betteitsesu

The functions commonly appearing in boosting suchagt) = e, Wa(t) = —2t +t2, Wa(t) =
—log(1+ e 2) satisfy condition P4 if P1 also holds. This is obviousWdr. ForW, andWs, it is
clear that P4 holds, if P1 does, since othervEsté(Y Fm(X)) — 00, The conclusions of Theorem

2 continue to hold ith € # = |h| > & > 0 since then belowv’(F;h) = ERP(X)W (F (X)) >
S?EW(F (X)) and P4 follows. Note that ifh| # 1 the\ optimization step requires multiplyink?
by ER?(x).

We have,

Theorem 2 If # is a set of classifiergh? = 1) and AssumptionB2— P5hold, then

Fin(X) — F(X) ,

and the misclassification error, (¥ Fin(X) < 0) — P[Y Fo(X) < 0], the Bayes risk.
Proof Identify w(F) = EW(Y F(X)) = EW(F(X)). Then,
w'(F,h) = ERF(X)W" (F (X)) = EW" (F(X))
and (P4) can be identified with condition GS1 of Theorem 1. Thus,
EW (Fm(X)) — EW(Fw(X)) .

Since,
EW (Fn(X)) — EW(Fo(X)) =E ((Foo — Fm)2/01v~v”((1— A (X)Foo (X) +)\Fm(X)))\d)\> -0,

the conclusion of Theorem 2 follows from (P4). The second assertiomigdiate. |

3. Consistency of the Boosting Algorithm

In this section we study the Bayes consistency properties of the sampiengeoé the boosting
algorithms we considered in Section 2. In particular, we shall

() Show that under mild additional conditions, there will exist a random eecgm, — o such

thatFp,, -2 F.,, whereF, is defined below as theth sample iterate, and moreover, that such
a sequence can be determined using the data.

(i) Comment on the relationship of this result to optimization for penalized vessidW. The
difference is that the penalty forcas< « to be optimal while with us, cross-validation (or a
test bed sample) determines the stopping point. We shall see that the santerdichpplies
later, when we “boost” using the method of sieves for nonparametricssigrestudied by
Barron, Birge and Massart (1999) and Baraud (2001).
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3.1 The Golden Chain Argument

Here is a very general framework. This section is largely based on [BiokkeRitov (2003).

Let®; C @, C ... be a sequence of sets contained in a separable metric §pace@, where
" denotes closure. Lél,, : ©, — 271 be a sequence of point to set mappings. K éte a target
function, andd., = argmin,_oK(9). Finally, letK, be a sample based approximationkaf We
assume:

G1. K: © — R is strictly convex, with a uniqgue minimizex..

Our result is applicable to loosely defined algorithms. In particular we walné: table to con-
sider the result of the algorithm applied to the data as if it were generatedandam algorithm
applied to the population. We need therefore, the following definitions.s[£%,a) be the set of
all sequence8, € O, m=0,1,... with 39 = 9¢ and satisfying:

'S_mil 6 nm(am) B
K@mp1) <a inf_ K@)+ (1—a)K(Em).
BEMm(Pm)

The resemblance to Gauss-Southwell Algorithm | and the boosting prazedunot accidental.
Suppose the following uniform convergence criterion is satisifed:

G2. If {9m} € 5(90,a) with any initial Fo, thenK (8m) — K(Sms1) > &(K(Om) — K(9w)), for
&(-) > O strictly increasing, anl{ (3 m) — K(8) < cm Wherecy, — 0 uniformly overs (8¢,a).

In boosting, giverP, ©® = {F(X),F € f} with a metric of convergence in probabilit@, =
{1 Ajhj,hj € o}, Ni(F) =N(F) = {F+ A, A e R,h € 7 }, andK (F) = EW(YF(X)). Con-
dition G2, follows from the conclusion of Theorem 1.

Now supposd%n(-) is a sequence of random functions@nempirical entities that resemble the
populationK. Letsy(9o,0’) be the set of all sequencégp, 91 y.. ., such thaon =99, and

"§m+1,n S nm(ém,n)
Rn(énH_Ln) S G/mln{Rn(S) ‘B S I-Im('énln)}—'_ (1— a/)Kn(émJ]).

We assume

G3. Ky is convex, and for all integem, sup{|Kn(8) —K(8)]: 9 € An} 22 0 asn — o, for a
sequencé\y C Oy such thaP(dmn € Am) — 1.

In boostingKn(F) = n~1 31 W(YiF(X)), K(F) = Ep(YF(X))

The sequencégdn} is the golden chain we try to follow using the obscure information in the
sample.

We now state and prove,

Theorem 3 If assumption&1-G3hold, anda’ € (0, 1], then for any sequend®mn} € 5 (So,a’),
there exists a subsequenfiy,} such that K9, n) 2, K(9e).

711



BICKEL, RITOV AND ZAKAI

Proof
Fix 99 anda, a < a’. LetM, — o be some sequence, and hat = arg Miny<m. K(Sm,n). We

need to prove tha{(émmn) LN K(8s). We will prove this by contradiction. Suppose otherwise:

m@'&nK(an) K@w)>€1>0, nexn (3)

wherea( is unbounded with positive probability. Letn = suyca,, IK(3) — Kn({))]. For any fixed
M, €mn — 0 by G3. Let

m, = arg ma>{rrf <Mp:Vm<m, €m_1n+2&mn < (@' —a)&(c1) & Smn € M}
p : :
Clearly,m, — oo, and for anym < my,, assuming (3):

~ ~

K(ﬁ n) < K ('9m,n)+€m,n
<o inf. Ka(®)+(1—a")Kn(Sm 1n) +Emn

19€|-|m—1’§m—1
S (X/ Ian K(8)+(1—a/)K(ém_l7n)+€m_l’n+2€m,n
deMm-19m-1
—a inf. K@)+ (1-a)K@Em-1n)
deMm-19m-1
- (G,—G)(K(émfln) - Ian K('S)) +Sm717n+2€m7n
YeMm_19m-1
<a inf. K@)+ (1-o)K@m 1n)
9eMm-19m-1

(o' —a)E (K(ém,n) - K(Sm)) +Em 10+ 26mn

<a inf. K@) +(1—a)K@Bm 1n)
JeMm_19m-1

(o' —a)¢ c>+sm 1n+2€mn

<a inf, K@)+ (1- )K(Sm,m) forallm<m,.
deMm- 13m 1

Thus, there is asequen{:&1 , 2 , ..} €. 5(90,0), such thag(rﬁ') :ém_n, m < m,. Hence, by
Assumption G2K(dm,n) < K(Jw )+cmn, where{cy} is independent af,, andcy,, — 0. Therefore,
sincem, — o, K(9m, n) — K(9«), contradicting (3). [ |

In fact we have proved that sequenogscan be chosen in the following way involvitg

Corollary 4 Let M, be any sequence tending ®. Letm, = arg min{K(ém,n) 1< m< Mg}
Then, undeG1—G3, §5 —— Se.

To find f)mmn which are totally determingd by the data determirfiagwe need to add some in-
formation about the speed of convergenc&gfo K on the “sample” iterates. Specifically, suppose
we can determine, in advandd, — o, g, — 0 such that,

Plsup{|Kn(Smn) = K@mn)|: 1<m< M} >en] <&n.
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Thenm, = arg min{Kn(ém,n) : 1< m< M} yields an appropriatéﬁrh sequence. We consider this
in Section 4. Before that we return to the application of the result of this seitiboosting.

3.2 Back to Boosting

We return to boosting, where we consi@# = {31 Ajh;j : Aj € R, hj € 7 }, and thereforély, =

M, N(3) = {3 +Ah,A € R,h € 7 }. To simplify notation, for any functioa(X,Y), letPha(X,Y) =

n1yl,a(X,Y) andPa(X,Y) = Ea(X,Y). Finally, we identifydmn = $71 Ajhj = $™5 Ajnhj .
We assume further

GALl. W(.) is of bounded variation on finite intervals.
GA2. # has finiteL1 bracketing entropy.

GA3. There are finit@y, ap, ... such that squ’j“:l \5\1-_“| < am With probability 1.

Theorem 5 Suppose the conclusion of Theorem 1 and ConditeA4—GA3 are satisfied, then
conditionsG2, G3 are satisfied.

Proof Condition G2 follows from Theorem 1. It remains to prove the uniform eogence in
Condition G3. However, GA2 and GA3 imply that= {F : F = 3L Ajhj, hj € 7, [\j| <M} has
finite L, bracketing entropy. Sindd&/ can be written as the difference of two monotone functions
{W(YF) : F € # } inherits this property. The result follows from Bickel and Millar (1991no50-
sition 2.1. |

4. Test Bed Stopping

Again we face the issue of data dependent and in some way optimal seleictign dVe claim
that this can be achieved over a wide range of possible rates of cemnercgafEW(lfﬁh (YX)) to
EW(F»(Y X)) by using a test bed sample to pick the estimator. The following general résysta
key role.

Let B= B, — o, and let(X,Y),(X1,Y1),..., Xn+8,YntB) be ii.d. P, X € x, |Y| < 1. Let
§m:x =R, 1< m<m, be data dependent functions which depend onlyXnYi),..., (Xn, Yn)
which are predictors of. Forg,g1,02: x x R — R, givenP, define

1 B
(9102 = 5= 3 G1(Xoin,Yoin)G2(Xo+n: Yoin)
N ph=1
(91,02)p = P(01(X,Y)32(X,Y)) = / g1(X,Y)92(x,y)dP(x,y)
||9||§ = (01,02)«

lglE = (91.0)p

Let,
T=argminf{|[Y —9m(X)[|?: 1<m< My}
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and$, be the selected predictor. Similarly, let
o =argmin{|[Y —9m(X)[|3: 1<m< My}

and$, be the corresponding predictor.

That is,SO(X,Y) is the predictor an “oracle” knowing and(X;,Y;), 1 <i < nwould pick from
81,...,9u, to minimize squared error loss. L&t (X) = Ep(Y|X), the Bayes predictor. Let be a
set of probabilities ant, = sup{Ep||9, —9,|2: Pe 2}.

The following result is due to Gyfi et al. (2002) (Theorem 7.1), although there it is stated in
the form of an oracle inequality. We need the following condition:

C. Bnrn/logMn — 00,
Theorem 6 (Gyorfi et al.) Suppose conditio@ is satisfied, andY| < 1, || < 1. Then,
sup{|Ep(Y —$1)2 —Ep(Y - 8,)?| :Pc 2} = o(ry).

Condition C very simply asks that the test sample sBgbe large only: (i) In terms of,, the
minimax rate of convergence; (ii) In terms of the logarithm of the number ofqufores being
studied. If|Y| < 1, there is no loss in requiringi |l < 1, since we could also replada, by
its truncation at:1, minimizing thel, cross validated test set risk. Along similar lines, using
sgr(S ) is equivalent to cross validating the probability of misclassification for theles rsince if
SmY e {—1,1}, E(Y =82 =4PBm #Y).

As we shall see in Section 6, typically = n-1% andM, is at most polynomial im. If n/B,
is slowly varying, we can check that the conditions hold. Essentially we ohnnot deal withry,
of ordern~tlogn.

5. Algorithmic Speed of Convergence

We consider now the time it takes the sample algorithm to convergence. Thiedathe algorithm
converges follows from Theorem 1. We show in this section that in factlterithm perfectly
separates the datadrfect separations achieved wher;Fy(X) > 0 for all i = 1,...,n) after no
more tharcin? steps. Perfect separation is equivalent to empirical misclassificatiarOerro

The randomness considered in this section comes only fror tianile the design points are
considered fixed. We denote them, therefore, by lower ggse.,x,. We consider the following
assumptions:

O1. W has regular growth in the sense tht < k(W + 1) for somek < . Assume, wlog, that
W(0) = —W'(0) =1.

02. Supposey,...,X, are all different Then the points can be finitely isolated#byn the sense
that there ik and positiveny, ..., 0k such that for every there areh,, ..., hg € # such that
ZJ 10;hj(xs) =1 if s=1i, and O otherwise. Assume further, as usual thétdf 7 then
h?=1and—he 4.

Condition O1 is satisfied by all the loss functions mentioned in the introductiondiGan O2
is satisfied, for example by stumps, trees, andﬂnwhose span includes indicators of small sets
with arbitrary location. In particular, i € R, X3 < Xp < -+- < X, and# = {sgr( —X),x€ R}, we
can then take; = az = 1, hi(-) =sgn(- — (x—1+x)/2), andhy(-) = —sgn(- — (X +Xi+1)/2)
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Theorem 7 Suppose assumptio@sl andO2 are satisfied and the algorithm starts with(B) = 0.
If YiFm(Xi) < Ofor at least one i, then

1

12 12
&V OFn00) =5 3 Wm0 2 sk a7

Hence, the boosting algorithm perfectly separates the data after atimds;g'j‘:l |aj|)? steps.
Proof Let, fori such thatv;Fy(x) < O,
n
i) =05 W (Y (Fn) + Ah(xs)) ).
S:

andf/(0;h) =d fm()\;h)/dA|)\:0. Considerhy, ..., h¢ as in assumption O2. Replabgby —h; if
necessary to ensure thatz'j‘zlo(jhj (Xs) = &sj. Then

k k n

z aj fr’n(O; Z Z W (Y Fm(xs)>Yi hj(Xs)

= ==

71W/(Y|Fm( )
Hence
1 w -1

inf f,(0;h) < ——=——minW'(Y{Fin(x)) < ©__ K o (4)
hes Ny 10, ngf 10 nyia

sinceY;Fm(x;) < O for at least oné. B B

Let h be the minimizer off,(0,h). Note that in particulaf;,(0;h) < 0. The functionfm(-;h) is
convex, hence it is decreasing in some neighborhood of 0. Dendtateyninimizer. Consider the
Taylor expansion:

- _ )\2 n
fin(As) = fin(031) + Ao (O3h) + - le"( (Fin(Xs) +A(A)h(x )))

_ fm(O;ﬁ)+ir£f{)\f (0;h) +— ZWN( (Fin(xs) + A(A)h(x )))}
whereX()\) lies between 0 ani. By condition 01,
_ 2 n ~ _
ir;f{)\fr’n(o;h) n % S;w” (Yi (Fin(s) +)\()\)h(xs))) }
< inf{Afr(0;h) + ﬁ iw( Fm(xs)+)\()\)ﬁ(xs))) +)‘2K} (5)
)\2

< iQf{Af (0; h)+—}
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becausel 733 W(¥i(Fn(xs) + AM)h(x)) < £ 55, W(YiFn(x)) < W(0) = 1 sinceX minimizes

fm(A;h) on [0,A], A is an intermediate point, aneh = 0. Combining (4) and (5) and the mini-
mizing property ofh,

2k(nyk_y ;)2

The second statement of the theorem follows because the initial valre! gfﬂ:lW(Yi Fo(xi)) is
1, and the value would fall below 0 after at most= 2K(nz‘j<:1aj)2 steps in which at least one
observation is not classified correctly. Since the value is necessaritwppwe conclude that all
observations would be classified correctly beforerttie step.

[ |

6. Achieving Rates with Sieve Boosting

We propose a regularization &b boosting which we view as being in the spirit of the original
proposal, but, unlike it, can be shown for, suitable to achieve minimax rates for estimation
of E(Y|X) under quadratic loss fap for which E(Y|X) is assumed to belong to a compact set
of functions such as a ball in Besov spaceXite R or to appropriate such subsets of spaces of
smooth functions iX € R%—see, for example, the classgsof Gyorfi et al. (2003). In fact,
they are adaptive in the sense of Donoho et al (1995) for scalescbf spaces. We note that
Buhlmann and Yu (2003) have introduced a versiohpboosting which achieves minimax rates
for Sobolev classes oR adaptively already. However, their construction is in a different spirit
than that of most boosting papers. They start out witltonsisting of one extremely smooth and
complex function and show that boosting reduces bias (roughnessfafitteon) while necessarily
increasing variance. Early stopping is still necessary and they show #ataeve minimax rates.

It follows, using a result of Yang (1999) that our rule is adaptive mininmacfassification loss
for some of the classes we have mentioned as well. Unfortunately, as pointdxy Tsybakov
(2001), the setgx: |Fg(x)| < €} can behave very badly &s| 0, no matter how smoothg, the
misclassification Bayes rule, is, so that these results are not as indicative @would like them
to be. In a recent paper, Bartlett, Jordan, and McAuliffe (2003) idensd minimization of the
W empirical riskn=t$, W(Y,F (X)), for fairly general convexV, over sets of the forn¥ =
{F =3Liajhj, hje #, 370 |aj| < an, (for some representation &f)}. They obtained oracle
inequalities relatingeW(YF (X)) for F; the empirical minimizer over; to the empiricaW risk
minimum. They then proceeded to show using conditions related to Tsybgkdy'sbove how to
relate the misclassification regretf, given by(P[YF;j(X) < 0] — P[Y Fs(X) < 0]) to (E;W(YF;) —
EpW(YF:)), theW regret wherd3 is the Bayes rule fow. Using these results (Theorems 3 and
10) they were able to establish oracle inequalities?qannder misclassification loss. Manor, Meir,
and Zhang (2004) considered the same problem, but focused theisignalginly onlL, boosting.
They obtained an oracle inequality similar to that of Bartlett et al. regularizingelomitting step
sizes which are only a fractiopi < 1 of the step size declared optimal by Gauss-Southwell. They
went further by obtaining near minimax results on suitable sets.
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We also limit our results th, boosting, although we believe this limitation is primarily due to
the lack of minimax theorems for prediction when other losseslthame considered. We use yet a
different regularization method in what follows. We show in Theorem 8vauant ofL, boosting
achieves minimax rates for estimatiBgY |X) in a wide class of situations. Boosting up to a simple
data-determined cutoff in each sieve level of a model, and then crosstuadjdo choose between
sieve levels, we can obtain results equivalent to those in which full optimizasimg penalties are
used, such as Theorem 2.1 of Baraud (2000) and results of Bang&, Blassart (1999). Then,
in Theorem 9, we show, using inequalities related to ones of Tsybak@i)2B@hang (2004) and
Bartlett et al. (2003), that the rules we propose are also minimax for Osiricsiitable spaces.

6.1 The Rule

Our regularization requires that = # () = U124 (M where # (™ are finite sets with certain
properties. For instance,4f consists of the stumps [0, 1], # = {Fy(-) : Fy(X) =sgnx—y), X,y €
[0,1]} we can takex (™ = {F,(-) : ya dyadic number of ordds, y = 4, 0< j < 2¢}. Essentially,
we construct a sieve approximatirg. Let # (™ be the linear span aoff (™. Evidently ¥ =
Um=1F (M. Let|# (M| = Dp,. Then, dinf (M) = D,,. We now describe our proposed regularization
of L, boosting.

We use the following notation of Section 4, and begin with a glossary anditmored Let

(X, Y1), -+, (%, Ya), (X, Y) i.i.d. with

(X)Y) ~ P<<p Peer, X=(X,...,%), Y=(Y1,...,Yn).

Y € {-11}
2 _ 2
Iz = [ aw
1 n
I3 = =% F204.Y)

[flle = sup[f(xy)|

Fe(X)

Fn(X) = argmin{[t(X)=Y|2: te ™}

Fn(X) = argmin{[[t(X) - Y|3: te # ™}

Ex = Conditional expectation giveX,...,X,

Note that we will often suppress,Y in v(X,Y,X,Y) and drop subscript tB.
Let Fm, thekth iterate in7r,, be defined as follows

Fio Fo
Fnt10 ﬁmﬁ(m)
FAm,k—&-l 'fm7k + S\m,kﬁm,km
where
(Amk: Pmi) argmin {—2APy(Y — Fink)h+A%P(h?)}
AeR hesr (M
k(m) Firstk such thah2, < Amp,
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whereAmp, are constants. Let

Fm = H( m,R(m)>
where
X if x| <1
H(x) = T < ©)
sgnx) if [x]>1

Note that we have suppressed dependenaehmre, indicating it only by the “hats”. Let,

m=argmin{||Y — Fn(X)|s : m< My}

where
) 1 n+B 2( ) d ’ n
Iflls=< f(X,Y;), and we takdB =B, = —— .
Bi:;H ' " logn

The rule we propose i = sgr(lé), where

e

H(Fakom) - (7)

Note: We show at the end of the Appendix (Proof of Lemma 10) that foeleaw we take at most
Cnlogn steps total in this algorithm.

6.2 Conditions and Results

We useC as a generic constant throughout, possibly changing from line to linedbutepending
onm, n, or P. Lemma 6.3 and the condition we give are essentially due to Baraud (20&4) bk
a sigma finite measure o and|| f ||, be theL,(p) norm.

R1. If #™ = {hm1,...,hmp,} and fmj = hm;j/||hmjllw then{fm;},j > 1 is an orthonormal
basis of# (M in Ly(u) such that:

1
(1) [[fmjlle <CwuDinforall j, where| f||e = sup|f(x)] .
X

(i) There exists a such that for allm, j, j’,
fmjfmy=01if [j—j|>L.

R2. There exists = ¢(P) > 0 such thatg < g—ﬁ <glforallPece.

R3. SUp., ||Fp — Fml|2 < CDyf forallm, g > 1.

R4. M, <Dy, < W for somep > 1.
Condition R1 is needed to conclude that we can bound the behavior bf, therm on# (™ by
that of theL, norm forp. Condition R2 simply ensures that we can do soHar # as well. The
membersfy, ; of the basis ofr (M must have compact support. It is well known thatsif, consists
of scaled wavelets (in any dimension) then R1 holds. Clearly, ifisi@yl.ebesgue measure on an
hypercube then to satisfy R2 can consist only of densities bounded from above and away from
0. Condition R3 gives the minimum approximation error incurred by using ama&e F based
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on # (M and thus limits our choice of . Finally, R4 links the oracle error for these sequences of
procedures to the number of candidate procedures.
Let .
rn(P) = inf{Ep||Fm—Fpll3: 1<m< My}, = guprn(P).
cP
Thus,ry, is the minimax regret for an oracle knowifgbut restricted tdF,. We use the notation
an =< by, for a shortcut fora, = O(b,) andb, = O(a,), We have

Theorem 8 Suppose thar and 7 satisfyR1-R4 and thats is a VC class. fdmn = O(Dm/n),
then,

supEP\Iﬁ( ) —Fp(X)[[3=rn. (8)
Thus,lé given by (7) is rate minimax.

Theorem 9 Suppose the assumptions of Theorem 8 holdmnrd » N{P: P( |Fp(X)| <t) < ct®},
a > 0. LetAy(F,P) be the Bayes classification regret for P,

An(F,P) =P(YF(X) <0) —P(YFp(X) <0) . 9)

Then,
supAn(F,P) =< rg? (10)

Po

The conditionP[|Fp(x)| <t] < ct?, somea > 0, sufficiently small appears in Proposition 1 of
Tsybakov (2001) as sufficient for his condition (A1) which is studiedbth Bartlett et al. (2003)
and Mammen and Tsybakov (1999).

The proof of Theorem 9 uses 2 lemmas of interest which we now state. rioeifs are in the
Appendix.

We study the algorithm orry,. For any positive definite matriX define the condition num-
bery(z) = ;mf‘:((z)) whereAmax, Amin are the largest and smallest eigenvalue&.of et G (P) =
|Ep fmi(X) fm j(X)|| be theDm x Dy Gram matrix of the basi§fm, ..., fmp,}-

Lemma 10 UnderR1andR2,
a) Y(Gm(P)) < &2, wheree is as inR2.

b) Let Gn(Pn) be the empirical Gram matri¥m = Y(Gm(Pa)). Then, if in addition toR1 and
R2, # is a VC class, R(Gn) > Ci] < Coexp{—Czn/L?Dy,} for all m < My, for such that
Dm < n/(logn)P for p > 1.

c) If 5 is a VC class, BF i — Fmllk < C52] = 1— O(}) The C and 0 terms are determed

solely by the constants appearing in the R conditions.

Lemma 11 Supposdl, R2, andR4 hold. Then,
. D . A
Ep(Fm— Fp)? < C{Ep(Fn — Fp)? + = " + Ep(Fm— Fn)*}.
This “oracle inequality” is key for what follows.
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Proof of Theorem 9

P(YF(x) < 0) = %Ep(l(F(X) >0)(1-Fp(X) ) + %Ep(l(F(X) <O)(1+Fp(X))).

Hence for alle > 0,
An(F,P) = Ep (1(F(X) <0,Fp(X) > o) Fp(X) — 1(F(X) > 0,Fp(X) < 0) Fp(X))
Ep (IFp(X)| L(FP(X)F (X) < 0))
< Ep(\F(X) — Fp(X)|1(FoF (X) < 0, [Fp(X)| > s)) +eP(|Fp(X)| <€)
LB (F(X) — Fp(X))° 40

by assumption. The theorem follows. |

6.3 Discussion

1) If X e R and# (™ consists of stumps with the discontinuity at a dyadic ratigrial", then
# (M s the linear space of Haar wavelets of order This is also true if#, is the space
of differences of two such dyadic stumps. More generallyy itonsists of suitably scaled
wavelets, so thath| < 1, based on the dyadic rationals of oraderthem 7 M is the linear
space spanned by the first 2lements of the wavelet series. A slight extension of results
of Baraud (2001) yields that if we run the algorithm to the litkit= o for eachm rather
than stopping as we indicate, the resultigobey the oracle inequality of Lemma 11 with
Amn=0.

Suppose thaX € R andF, ranges over a ball in an approximation space such as Sobolev
or, more generally, Besov. Then,4f(™ has the appropriate approximation properties, e.g.,
wavelets as smooth as the functions in the specified space, it follows fraamd@é001) that

we can use penalties not dependent on the data toFpiskich that,

A 2 . A 2
mngp( a(X) — Ep(Y|X)) = mjnmax{Ep(F(X) —Ep(Y|X))?: Ep(Y|X) € T}
F F
=n"1tQ(n)

whereQ(n) is slowly varying and < € < 1. HereF ranges over all estimators based only
on the data and not dA. The same type of result has been established for more specialized
models withX € RY by Baron, Birge, Massart (1999), and others, see@iet al. (2003).

The resulting minimax risk,
minmax{Ep (F (X) — Ep(Y|X)) : Ep(Y|X) € 7}
F

is always of orden—1*£Q(n) whereQ(n) is typically constant and @ € < 1.

What we show in Theorem 8 is that if, rather than optimizing all the way fon eaeve stop
in a natural fashion and cross validate as we have indicated, then weltameathe optimal
order as well.

720



SOME THEORY FORGENERALIZED BOOSTINGALGORITHMS

2) “Stumps” unfortunately do not satisfy condition R1 wjitLebesgue measure. Their Gram
matrices are too close to being singular. But differences of stumps work.

3) It follows from the results of Yang (1999) that the rate of Theorenoruf= 0, that is, if
Py = P, is best possible for Sobolev balls and the other spaces we have mentioned

Tsybakov implicitly defines a class Bf for which he is able to specify classification minimax
rates. Specifically leX € [0,1]9 and letb(xy,...,X4_1) be a function having continuous
partial derivatives up to ordet. Let ppx(-) be the Taylor polynomial or ordet obtained
from expandingb at x. Then, he define&(l,L) to be the class of all such for which,
Ib(y) — pox(y)| < Lly—x|* for all x,y € [0,1]9-1. Evidently ifb has bounded partial derivatives
of order/+1,be 2(¢,L), for someL. Now let

EP[: {P:FP(X):Xdib(Xlw"de*l)a
P[|Fp(x)| <t] <Ct, forall 0<t<1,be 3(,L)}

Tsybakov following Mammen and Tsybakov (1999) shows that the claific minimax
regret fore (Theorem 2 of Tsybakov (2001) fét = 2) is ﬁ. On the other hand, if we

assume that = Fp(X) + € wheree is independent oK, bounded andE(g) = O, then thel,
minimax regret rate isf2(2¢+ (d — 1)) — see Birg¢ and Massart (1999) Sections 4.1.1 and
Theorem 9. Our theorem 9 now yields a classification minimax regret rate of

2 20 2
3 20+(d—1) 3¢+3(d-1)

which is slightly worse than what can be achieved using Tsybakov'ssretzalily computable
procedures. However, note that s+ « so thatF and the boundary become arbitrarily
smooth,L, boosting approaches the best possible raterjoof % Similar remarks can be
made about &z a < 1.

7. Conclusions

In this paper we presented different mathematical aspects of boostingconégder the obser-
vations as an i.i.d. sample from a population (i.e., a distribution). The boostiogithlg is a
Gauss-Southwell minimization of a classification loss function (which typicaligidates the 0-1
misclassification loss). We show that the output of the boosting algorithm ®litbes theoretical
path as if it were applied to the true distribution of the population. Since earypisto is possible
as argued, the algorithm, supplied with an appropriate stopping rule, istons

However, there are no simple rate results other than thoséildi&ann and Yu (2003), which
we discuss, for the convergence of the boosting classifier to the Bisssfier. We showed that
rate results can be obtained when the boosting algorithm is modified to a cargigsion, in which
at each step the boosting is done only over a small set of permitted directions.
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Appendix A. Proof of Theorem 1:

Letwo =infcqs, W(T). Let ff =3 m0kmhkm hm € H, S m|Qkm| <0, k=0,1,2,... be any member
of 7. such that (i)f5 = fo; (i) w(fy) \, wo is strictly decreasing sequence; (iii) The following
condition is satisfied:

W(E) > o+ (1= c)W( ) + (1 — ) (Vie 1 — Vi), (11)

wherevy N\, 0 is a strictly decreasing real sequence. The construction of the sEnigr is
possible since, by assumptiosi, is dense in the image af(-). That is, we can start with the
sequencgw(f;)}, and then look for suitabl¢f; }. Here is a possible construction. Leandn
be suitable small number. Lgt= (1—a)(1+2n)/(1—n), vk = cny/(1—y). Select nowf; such
Wo+c(1— )Y < w(f) <wo+c(1+n)y¥. (n should be small enough such tlyat 1 andc should
selected such that(f;) < w(fp).) Our argument rests on the following,

Lemma 12 There is a sequencexm> o such that Wfm) < w(fy) +vcform>m, k=1,2,...,
and nx < {k(mk_1) < o, wherel(-) is a monotone non-decreasing functions which depends only
on the sequencegwy} and{f}.

Proof of Lemma 12:

We will use the following notation. Fof € #, let || f||. =inf{3 |y|, f =Y yihi, hj € 7 }.

Recall that by definitionv( fo) = w( f5). Our argument proceeds as follows, We will inductively
definemy satisfying the conclusion of the lemma, and makey i = w( fm) —w(fy),

V5128 w( ) —w
Ekim < Cm = maX{vk, > Uica) =% 1/2},
Be ] B(W(fy ;) ~wo) (12)
Og(1+ 0 Br (Tk+PxMi—1) (M—meq+ l)>
where
Bk = inf {W'(f;h) :wo+vk <w(f) <w(fo), he #}
(13)
B= sup{w'(f;h) :w(f) <w(f,), he #} < co.
and
= 2| fo— f|I?
16 (14)
= ——(W(fo) —Wp).
Pk 0(I3k( (fo) —wo)

Having definedn, we establish (12) as part of our induction hypothesisnfipr; < m < my. We
begin by choosingn = m; = 1 so that (12) holds fom= M — 1 = 1. We do do this by choosing
Vo > 0, sufficiently small. Having established the inductionfo my_1 we definemy as follows.
Write now the RHS of (12) ag(m_1), where

V5128 w(fe 1) —wo
a(v) zmax{vk, > S 1/2},
a“PBx loa (1. BW(fia)—wo) 1
og( + apepy (M—V+ ))
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We can now pick(v) = max{v+ 1,min{m: g(v) < v} }, and definem = {i(Vk-1).

Note that{Bx}, {tx}, {px}, andB depend only the sequencgf’} and{vi}. We now proceed
to establish (12). fom,_1 < m < my. Note first that sincey n as a function ofnis non-increasing,
(12) holds trivially form’ > mif g m < 0. By induction (12) holds fom < my_1, and my hold for
somem > mk— 1. Recall that the definition of the algorithm relates the actual gain atitinéo the
maximal gain achieved in this step given the previous steps, see its definitid@ufipose

ir)sz( fm -+ Ahm) < Wo + V. (15)
Then

(fm+1)<a|nfw(fm+)\hm)+(l a)w(fm), by (1)

o(Wo+ Vi) + (L —a)w(fm), by (15)

o (Wo+ Vi) + (1—a) (w(fg_1) +Vk-1), by the outer induction, sina@ > my_1
o (Wo + Vi) + (W(fg) —awp+ (1—a)vi), by (11)

w( i) + Vi,

VAN VAR VAN

so thatey my1 < Vk. Thereforem is not larger tham+ 1, that isg v < vk for m' > mthen (12)
holds trivially for m > m, and hence, by the second induction assumption fomallWe have
established (12) save fansuch that,

irxlfw( fm—+Ahm) > Wo+ v andggm > 0. (16)

We now deal with this case.
Note first that by convexity,

W (frm; Fn— )] > W( frn) —W() = &1cm. (17)

We obtain from (17) and the linearity of the derivative thatfuif— f; = ZViﬁi € Foos

S < |3 ¥ (1) < SUpIW (i) 5 I

he
Hence
&k,
SUp|W (fi )] = =" (18)
hest ([ fm— flls
1 ~
W( fm+ Amhm) = W( fm) +AmW ( fin; him) + éAﬁqV\/’( fmihm), A €[0,Am). (19)

wherefpn = fm+ S\mhm and 0< Xm < Am- By convexity, for 0< A < Ap,

A

Am” " Am

fine1) < MAX(W(fin) W foni2) } = W Fm) < W(Fo).
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We obtain from Assumption GS1 that (fm; h) € (Bx, B) given in (13). But then we conclude from
(19) that,

. 1
W( fin+Amfim) > W( fn) + inf (AW (fin; i) + SAB)

W (fm; hm) |2
2 '
Note thatw( fm-+Ah) = w( fm) +AW (frm, h) +A2W" (fr+A’h, h) /2 for some\’ € [0,A], and ifw( fy+

Ah) is close to inf ,W(fm+ A, h) then by convexityw( fm+A'h) < w(frn) < w(fo). We obtain from
the upper bound ow” we obtain:

(20)
=W(fm)

W(fmn+Amhm) <a inf  w(fn+Ah) + (1—a)w(fm), by definition,
AeR, hex

- : 1.2
< GAEHI@I:]PEEH(W( fm) + AW (fm; h) + é}‘ B) + (1—a)w(fm) (21)
O SURcy W (Fm;h) 2

2B ’

by minimizing overA. Hence combining (20) and (21) we obtain,

=W(fm) —

‘V\/(fm; hm)| > a SUp|V\/(fm; h)|\/§ (22)

hes

By (21) for the LHS and convexity for the RHS:

. 2
B WU ) W) < AW (i i)

2B
Hence
O SURc sy (W (fm; D)
> .
Aml = 2B
Applying (18) we obtain:
a &m
>
Aml 2 55 e’ (23)

wherelm = || fm— ]+
Let A%, be the minimal point ofv( fr+ Ahy,). Taylor expansion around that point and using the
lower bound on the curvature:

W( fn+Ahm) > W( fn+A%hm) + %Bk()‘ —20)? (24)
Hence
N2 2 (W( ) = W( Frn+A%))
Bk
5 (25)
< abe (W( fm) —wW(fmi1)),
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where the RHS follows (1). Similarly

(Am—A3)% < sz(w( frne1) — W( fn+ A% 0m) )

209 () — W ) (26)
GBk m mH-1
Combining (25) and (26):
A2 < i(w( fm) —w( fm+1)). (27)
™= apk
Sincegxm > 0 by assumption (16), we conclude from (27) that,
m 2 8
> A< 7[3 W( fe_1) —Wo). (28)
i=my_1
However, by definition,
lemitr < lem+ |Am|
m
<+ i
i:%—l (29)

<+ (M+1—me_1) 1/2( § A )1/2
My

1= 1

by Cauchy-Schwarz, where, similarly,

Ik =lkm_y = I fm_y — fcll
<[ fo—fills + | fm_, — foll«

m_1—1
<lfo—fel+ > Al
m=0

. 1/2 me1—1
<lfo—fll+mliy 5 M 0
m=0
. 8my_
< Mol +/ gt V/W(fo) —w(fm ). by (27)

8m_
< o fill -y g Vo) —wo
< /Tk+pxMmk_1, asdefinedin (14)
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Together, (23), (28), and (29) yield:

8 m o,
—W(f ) —wo) = S N
ap i=m_1
GZ m gﬁi
> —— : 31
4Bzi:n2m'lf,i 5D
ot & &

248 2 et B _y) —wo)/aB) 21~ m )V

Further, sinceym are decreasing by construction and positive by assumption (16), waerophfy
the sum on the RHS of (31):

< eﬁ,i
i:%71 (e + (8(w( f|2<,1) _Wo)/C(Bk)l/z(i — rn(_l)l/Z)Z

2 —
Sk,m m—my_y 1

22 2 ErEwi ) —wo)/oBe

(32)

Using the inequality,

mMeg o memerd g 1 b
> _ - Sm_m._
> a+bi_/0 dt = log(1+ > (m-mc1+1))

a+ bt b
on the RHS of (32), we obtain from (31) and (32) that (12) holds, ferctiise (16). This establishes
(16) for allk andm.
[ |

Proof of Theorem 1: Since the lemma established the existence of monofgseit followed
from the definition of these function the fm) < w(fy;, ) wherek(m) = sup(k: {(f5) <m} and
(M = Zxo---0ly is thekth iterate of thels. Sincel ¥ (fg) < o for all k, we have established the
uniform rate of convergence and can define the sequfmge wherecy, = w( fm ) — Wo.

We now prove the uniform step improvement claim of the theorem and idergifytable func-

tion&(-). From (26) and (23) ixm > 0

2
W) W) > S002 > OB (“k’m) , (33)

Boundly m, similarly to (30) by

likm < lkg +mY/2 (i)\?)z <1+ \/sgl(w( fo) —wo). (34)

Letm*(v) = inf{m' : ¢y <v—wp}, which is well defined sincey,, — 0. Thus, any realization of the
algorithm will cross ther line on or before step number*(v). In particular,m < m* (w(fy,)) for

726



SOME THEORY FORGENERALIZED BOOSTINGALGORITHMS

anymand any realization of the algorithm. We obtain therefore by plugging-in (3@3jh using
them* as a bound om and the identitya+ b)? < 2a? + 2b? that:

S 3By W( fm) —w(fg)
~ 16B2 ||3,1 +8m (W( fm) ) (W( fo) —Wo) /B’

W( fm) - W( fm+1)

as long agxm > 0. Taking the maximum of the RHS over the permitted range, yields a candidate
for the& function:

&(w)= sup

kow(fy)<w

{0(3[3k w—w(fy) }
GBI, + v ) (o) w6)aBe )

This proves the theorem under GS1. Under GS2, the only inequality wheateed to replace
is (20) since nowdx = 0 is possible. However the definition of Algorithm 2 ensures that we have a
coefficient of at leasg on A2 in (20). The theorem is proved.
[ |

Appendix B. Proof of Lemmas 10 and 11 and Theorem 8
Proof of Lemma 10Since by (R2)

Amax(Gm(P)) = sup XGm(P)x
Ix[[=1

- Supszin/fm,i fmadP

[Ix[=1

= sup (infm,i)zdP (35)
[Ix|=1

<e!sup (3% fmi)?du=¢1
[Ix]|=1

Amax(Gm(P)) > €, similarly.

Part a) follows.
For any symmetric matris define its operator norm- ||t by Amax(M). For simplicity let
Gm = Gm(P) andGmy = Gy (Py). Recall that for any symmetric matricésand andVi:

|7\maX(A) —)\maX(M)| < HA— MHT
|7\min(A) —Amin(M)| < ||A— MHT-

)
(36)

~ I3 A 1 2
[Gm—Gnllr > 5 ) +P(IGn—Gullr t/(5 + 3))

Now,

}\max(ém) }\max(Gm)
}\min(ém) N )\min(Gm)

<P(

|
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Recall that for a banded matri of with band of width 2.,
IM[|F = sup [[Mx||?

=1
2
= sup 3 (3 Mave)
X1 %
< sup XeM3

[X[=1"& |b—a[<L
< 2LM2 sup ng = 2LM2,
xl=1"a
where||M||o = MaXap|Map|. Since bothGy, andG(P) are banded of width, say,

n

G — Gl < 2Lmax{‘% > (fmafim)(X) - Epfmafms(4))| la-bl <L} (37)

i=
If 7 is a VC class, we can conclude from (35)—(37) that,

P[y(Gm) > C1] < Crexp{—Czn/L?Dp} (38)

since by R1 (i),/| fm||e < CooDr%n. The constants, C;, C, andCz depend on the constants of the R
conditions only. This is a consequence of Theorem 2.14.16 p. 246 ddemawaart and Wellner
(1996). This complete the proof of part b).

By a standard result for the Gauss-Southwell method, Luenberge4 ) i®age 229:

- - 1 ~ -
Finies 2 = Finl3 < (1= 5= ) Pk — ol (39)
YmDm
Hence 1
H'fm.,k - 'fm”ﬁ - H'fm,kJrl - 'fm”ﬁ > A7|||fm,k - 'fm”%
YmDm
Thus, if L
o2 1Pk — Pl — | Frnie 2 — Pl 5
we obtain
HFm,k - FmHZ < Dme/n- (40)
¢, From (40) part (c) follows. |
Note: Since
c

Fk-1— Fmll2 = [Pk — Fml2 >

(39) implies that

<1 1 >R(m) . 1
YmDm - on

k(m) < logn§mDm -

Therefore:

If, for instance, as with waveleB, = 2™, m < log, n we take at mosEnlogn steps total.
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Lemma 13 :
If Ex denotes conditional expectation give p X., X,, underR1and F= Fp,

A D
EX||Fm*FmH%SC(TmJFHFm*FH%) (41)
This is a standard type of result — see Barron, Birylassart (1999). We include the proof for

completeness. Note that,
1

IFm(X) = Y13 = HYT(l -P)Y

whereY = (Y;,...,Y,)T and P is the projection matrix of dimension,@nto the L space spanned
by (hj(X1),...,hj(%n)), 1< j < Dm. Then,(I —P)v=0forall v € L. Hence,

Ex[Fn(X) Y3 = FEx(Y —Fn(X)) "1 —P)(Y ~ Fr(X))

whereFm(X) = (Fn(Xa),. ..,Fm(Xn))T is the projection of F(X3),...,F(X,))" onto L. Note also
that,
IFm—Fmllz = 1Y = Fm(X) 13 = 1Y = Fm(X) 17

whereF(X) = (Fn(X1),...,Fm(X:))T . Hence,
Ex||Fn—FmlZ = #Ex(Y —Fm(X))TP(Y —Fm(X))
= LEx(Y —F(X))TP(Y —F(X)) 4+ 2Ex (Fm—F)TP(Y — F(X))
= fExtracdP(Y —F(X))(Y —F(X))]
+2Ex (Fm— F)TP(Fm— F)(X)
But
Ex racdP(¥ —F(X)))(Y ~F(X)T] = 1 5 Var(¥/)pi(x) < maxvar(y )
since )
i; pi (X) = traceP = Dpy
Also, since P is a projection matrix
(Fm—F)"P(Fm—F)(X) < ||Fm—FII3
and (41) follows.

Proof of Lemma 11:

TakeAmn=0. Letpm= sup{ Hi%“i S te me} . By Proposition 5.2 of Baraud (2001),66 > h; 1,

(ho—pgt)?

ah, Chlogn}

P[Pm > po] < DZ,exp{—
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wherec, = ﬁlogn. Hereho, h; C are generic constants. Baraud gives a proof for the\ag® |X) =
constant, but this is immaterial since only functionsxofire involved ingn,. Therefore,

EP(lfm— FP)zl(pm < po)
< 202Ep{En(Fn— Fm)2+En(Fm—Fp)%}

D
=+ [[Fn—Fol) (42)

IN

On the other hand, A
Ep(Fm— Fp)?1(Pm > Po) < 2P[pm > po]

= CD2 exp{—AC,logn} (43)

Combining (42) and (43) we obtain Lemma 11 &5, = O, Fm = Fm. Putting inFr, we add a term
CEp(Fim— Fm)?. We now apply Lemma 10 c) and the argument we used to obtain (42) and43)

Proof of Theorem 8 Note that we are limited to rates of convergence which are slowerrthan
This comes from the combination of R1(i) and bounding the operator bl,therm of the Gram
matrix. It is not clear how either of these conditions can be relaxed.

We need only check that if thig,,} are the, of Theorem 6 then the conditions of that theorem
are satisfied. By constructiofif||« < 1, By = —-. By Lemma 11 and (R3),

logn*
< ClT +C.D,, (44)
and the right hand side of (44) is boundedry#'1, m
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