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Université Paris VI and CREST

We show that, under a sparsity scenario, the Lasso estimator and the
Dantzig selector exhibit similar behavior. For both methods, we derive, in par-
allel, oracle inequalities for the prediction risk in the general nonparametric
regression model, as well as bounds on the �p estimation loss for 1 ≤ p ≤ 2
in the linear model when the number of variables can be much larger than the
sample size.

1. Introduction. During the last few years, a great deal of attention has been
focused on the �1 penalized least squares (Lasso) estimator of parameters in high-
dimensional linear regression when the number of variables can be much larger
than the sample size [8, 9, 11, 17, 18, 20–22, 26] and [27]. Quite recently, Candes
and Tao [7] have proposed a new estimate for such linear models, the Dantzig se-
lector, for which they establish optimal �2 rate properties under a sparsity scenario;
that is, when the number of nonzero components of the true vector of parameters
is small.

Lasso estimators have also been studied in the nonparametric regression setup
[2–4, 12, 13, 19] and [5]. In particular, Bunea, Tsybakov and Wegkamp [2–5] ob-
tain sparsity oracle inequalities for the prediction loss in this context and point out
the implications for minimax estimation in classical nonparametric regression set-
tings, as well as for the problem of aggregation of estimators. An analog of Lasso
for density estimation with similar properties (SPADES) is proposed in [6]. Mod-
ified versions of Lasso estimators (nonquadratic terms and/or penalties slightly
different from �1) for nonparametric regression with random design are suggested
and studied under prediction loss in [14] and [25]. Sparsity oracle inequalities for
the Dantzig selector with random design are obtained in [15]. In linear fixed de-
sign regression, Meinshausen and Yu [18] establish a bound on the �2 loss for the
coefficients of Lasso that is quite different from the bound on the same loss for the
Dantzig selector proven in [7].

The main message of this paper is that, under a sparsity scenario, the Lasso
and the Dantzig selector exhibit similar behavior, both for linear regression and
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for nonparametric regression models, for �2 prediction loss and for �p loss in the
coefficients for 1 ≤ p ≤ 2. All the results of the paper are nonasymptotic.

Let us specialize to the case of linear regression with many covariates,
y = Xβ + w, where X is the n × M deterministic design matrix, with M possibly
much larger than n, and w is a vector of i.i.d. standard normal random variables.
This is the situation considered most recently by Candes and Tao [7] and Mein-
shausen and Yu [18]. Here, sparsity specifies that the high-dimensional vector β

has coefficients that are mostly 0.
We develop general tools to study these two estimators in parallel. For the fixed

design Gaussian regression model, we recover, as particular cases, sparsity oracle
inequalities for the Lasso, as in Bunea, Tsybakov and Wegkamp [4], and �2 bounds
for the coefficients of Dantzig selector, as in Candes and Tao [7]. This is obtained
as a consequence of our more general results, which are the following:

• In the nonparametric regression model, we prove sparsity oracle inequalities for
the Dantzig selector; that is, bounds on the prediction loss in terms of the best
possible (oracle) approximation under the sparsity constraint.

• Similar sparsity oracle inequalities are proved for the Lasso in the nonparametric
regression model, and this is done under more general assumptions on the design
matrix than in [4].

• We prove that, for nonparametric regression, the Lasso and the Dantzig selector
are approximately equivalent in terms of the prediction loss.

• We develop geometrical assumptions that are considerably weaker than those of
Candes and Tao [7] for the Dantzig selector and Bunea, Tsybakov and Wegkamp
[4] for the Lasso. In the context of linear regression where the number of vari-
ables is possibly much larger than the sample size, these assumptions imply the
result of [7] for the �2 loss and generalize it to �p loss 1 ≤ p ≤ 2 and to predic-
tion loss. Our bounds for the Lasso differ from those for Dantzig selector only
in numerical constants.

We begin, in the next section, by defining the Lasso and Dantzig procedures and
the notation. In Section 3, we present our key geometric assumptions. Some suffi-
cient conditions for these assumptions are given in Section 4, where they are also
compared to those of [7] and [18], as well as to ones appearing in [4] and [5]. We
note a weakness of our assumptions, and, hence, of those in the papers we cited,
and we discuss a way of slightly remedying them. Sections 5 and 6 give some
equivalence results and sparsity oracle inequalities for the Lasso and Dantzig es-
timators in the general nonparametric regression model. Section 7 focuses on the
linear regression model and includes a final discussion. Two important technical
lemmas are given in Appendix B as well as most of the proofs.

2. Definitions and notation. Let (Z1, Y1), . . . , (Zn,Yn) be a sample of inde-
pendent random pairs with

Yi = f (Zi) + Wi, i = 1, . . . , n,
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where f :Z → R is an unknown regression function to be estimated, Z is a Borel
subset of R

d , the Zi’s are fixed elements in Z and the regression errors Wi are
Gaussian. Let FM = {f1, . . . , fM} be a finite dictionary of functions fj :Z → R,
j = 1, . . . ,M . We assume throughout that M ≥ 2.

Depending on the statistical targets, the dictionary FM can contain qualitatively
different parts. For instance, it can be a collection of basis functions used to ap-
proximate f in the nonparametric regression model (e.g., wavelets, splines with
fixed knots, step functions). Another example is related to the aggregation prob-
lem, where the fj are estimators arising from M different methods. They can also
correspond to M different values of the tuning parameter of the same method.
Without much loss of generality, these estimators fj are treated as fixed functions.
The results are viewed as being conditioned on the sample that the fj are based
on.

The selection of the dictionary can be very important to make the estimation
of f possible. We assume implicitly that f can be well approximated by a member
of the span of FM . However, this is not enough. In this paper, we have in mind the
situation where M � n, and f can be estimated reasonably only because it can
approximated by a linear combination of a small number of members of FM , or, in
other words, it has a sparse approximation in the span of FM . But, when sparsity
is an issue, equivalent bases can have different properties. A function that has a
sparse representation in one basis may not have it in another, even if both of them
span the same linear space.

Consider the matrix X = (fj (Zi))i,j , i = 1, . . . , n, j = 1, . . . ,M and the vec-
tors y = (Y1, . . . , Yn)

T, f = (f (Z1), . . . , f (Zn))
T, w = (W1, . . . ,Wn)

T. With the
notation

y = f + w,

we will write |x|p for the �p norm of x ∈ R
M , 1 ≤ p ≤ ∞. The notation ‖ · ‖n

stands for the empirical norm

‖g‖n =
√√√√1

n

n∑
i=1

g2(Zi)

for any g :Z → R. We suppose that ‖fj‖n 	= 0, j = 1, . . . ,M . Set

fmax = max
1≤j≤M

‖fj‖n, fmin = min
1≤j≤M

‖fj‖n.

For any β = (β1, . . . , βM) ∈ R
M , define fβ = ∑M

j=1 βjfj or, explicitly, fβ(z) =∑M
j=1 βjfj (z) and fβ = Xβ . The estimates we consider are all of the form fβ̃(·),

where β̃ is data determined. Since we consider mainly sparse vectors β̃ , it will be
convenient to define the following. Let

M(β) =
M∑

j=1

I{βj 	=0} = |J (β)|
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denote the number of nonzero coordinates of β , where I{·} denotes the indicator
function J (β) = {j ∈ {1, . . . ,M} :βj 	= 0} and |J | denotes the cardinality of J .
The value M(β) characterizes the sparsity of the vector β . The smaller M(β), the
“sparser” β . For a vector δ ∈ R

M and a subset J ⊂ {1, . . . ,M}, we denote by δJ

the vector in R
M that has the same coordinates as δ on J and zero coordinates on

the complement J c of J .
Introduce the residual sum of squares

Ŝ(β) = 1

n

n∑
i=1

{Yi − fβ(Zi)}2

for all β ∈ R
M . Define the Lasso solution β̂L = (β̂1,L, . . . , β̂M,L) by

β̂L = arg min
β∈RM

{
Ŝ(β) + 2r

M∑
j=1

‖fj‖n|βj |
}
,(2.1)

where r > 0 is some tuning constant, and introduce the corresponding Lasso esti-
mator

f̂L(x) = fβ̂L
(x) =

M∑
j=1

β̂j,Lfj (z).(2.2)

The criterion in (2.1) is convex in β , so that standard convex optimization pro-
cedures can be used to compute β̂L. We refer to [9, 10, 20, 21, 24] and [16] for
detailed discussion of these optimization problems and fast algorithms.

A necessary and sufficient condition of the minimizer in (2.1) is that 0 belongs
to the subdifferential of the convex function β �→ n−1|y − Xβ|22 + 2r|D1/2β|1.
This implies that the Lasso selector β̂L satisfies the constraint∣∣∣∣1

n
D−1/2XT(y − Xβ̂L)

∣∣∣∣∞ ≤ r,(2.3)

where D is the diagonal matrix

D = diag{‖f1‖2
n, . . . ,‖fM‖2

n}.
More generally, we will say that β ∈ R

M satisfies the Dantzig constraint if β be-
longs to the set {

β ∈ R
M :

∣∣∣∣1

n
D−1/2XT(y − Xβ)

∣∣∣∣∞ ≤ r

}
.

The Dantzig estimator of the regression function f is based on a particular
solution of (2.3), the Dantzig selector β̂D , which is defined as a vector having the
smallest �1 norm among all β satisfying the Dantzig constraint

β̂D = arg min
{
|β|1 :

∣∣∣∣1

n
D−1/2XT(y − Xβ)

∣∣∣∣∞ ≤ r

}
.(2.4)
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The Dantzig estimator is defined by

f̂D(z) = fβ̂D
(z) =

M∑
j=1

β̂j,Dfj (z),(2.5)

where β̂D = (β̂1,D, . . . , β̂M,D) is the Dantzig selector. By the definition of Dantzig
selector, we have |β̂D|1 ≤ |β̂L|1.

The Dantzig selector is computationally feasible, since it reduces to a linear
programming problem [7].

Finally, for any n ≥ 1, M ≥ 2, we consider the Gram matrix

�n = 1

n
XTX =

(
1

n

n∑
i=1

fj (Zi)fj ′(Zi)

)
1≤j,j ′≤M

,

and let φmax denote the maximal eigenvalue of �n.

3. Restricted eigenvalue assumptions. We now introduce the key assump-
tions on the Gram matrix that are needed to guarantee nice statistical properties
of the Lasso and Dantzig selectors. Under the sparsity scenario, we are typically
interested in the case where M > n, and even M � n. Then, the matrix �n is
degenerate, which can be written as

min
δ∈RM :δ 	=0

(δT�nδ)
1/2

|δ|2 ≡ min
δ∈RM :δ 	=0

|Xδ|2√
n|δ|2 = 0.

Clearly, ordinary least squares does not work in this case, since it requires positive
definiteness of �n; that is,

min
δ∈RM :δ 	=0

|Xδ|2√
n|δ|2 > 0.(3.1)

It turns out that the Lasso and Dantzig selector require much weaker assumptions.
The minimum in (3.1) can be replaced by the minimum over a restricted set of
vectors, and the norm |δ|2 in the denominator of the condition can be replaced by
the �2 norm of only a part of δ.

One of the properties of both the Lasso and the Dantzig selectors is that, for the
linear regression model, the residuals δ = β̂L − β and δ = β̂D − β satisfy, with
probability close to 1,

|δJ c
0
|1 ≤ c0|δJ0 |1,(3.2)

where J0 = J (β) is the set of nonzero coefficients of the true parameter β of the
model. For the linear regression model, the vector of Dantzig residuals δ satisfies
(3.2) with probability close 1 if c0 = 1 and M is large [cf. (B.9) and the fact that
β of the model satisfies the Dantzig constraint with probability close to 1 if M is
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large]. A similar inequality holds for the vector of Lasso residuals δ = β̂L −β , but
this time with c0 = 3 [cf. Corollary B.2].

Now, for example, consider the case where the elements of the Gram ma-
trix �n are close to those of a positive definite (M × M)-matrix � . Denote, by

εn
�= maxi,j |(�n − �)i,j |, the maximal difference between the elements of the

two matrices. Then, for any δ satisfying (3.2), we get

δT�nδ

|δ|22
= δT�δ + δT(�n − �)δ

|δ|22
≥ δT�δ

|δ|22
− εn|δ|21

|δ|22
(3.3)

≥ δT�δ

|δ|22
− εn

(
(1 + c0)|δJ0 |1

|δJ0 |2
)2

≥ δT�δ

|δ|22
− εn(1 + c0)

2|J0|.

Thus, for δ satisfying (3.2), which are the vectors that we have in mind, and for
εn|J0| small enough, the LHS of (3.3) is bounded away from 0. This means that we
have a kind of “restricted” positive definiteness, which is valid only for the vectors
satisfying (3.2). This suggests the following conditions, which will suffice for the
main argument of the paper. We refer to these conditions as restricted eigenvalue
(RE) assumptions.

ASSUMPTION RE(s, c0). For some integer s such that 1 ≤ s ≤ M and a posi-
tive number c0, the following condition holds:

κ(s, c0)
�= min

J0⊆{1,...,M},
|J0|≤s

min
δ 	=0,

|δJc
0
|1≤c0|δJ0 |1

|Xδ|2√
n|δJ0 |2

> 0.

The integer s here plays the role of an upper bound on the sparsity M(β) of a
vector of coefficients β .

Note that, if Assumption RE(s, c0) is satisfied with c0 ≥ 1, then

min{|Xδ|2 :M(δ) ≤ 2s, δ 	= 0} > 0.

In other words, the square submatrices of size ≤ 2s of the Gram matrix are neces-
sarily positive definite. Indeed, suppose that, for some δ 	= 0, we have simultane-
ously M(δ) ≤ 2s and Xδ = 0. Partition J (δ) in two sets J (δ) = I0 ∪ I1, such that
|Ii | ≤ s, i = 0,1. Without loss of generality, suppose that |δI1 |1 ≤ |δI0 |1. Since,
clearly, |δI1 |1 = |δI c

0
|1 and c0 ≥ 1, we have |δI c

0
|1 ≤ c0|δI0 |1. Hence, κ(s, c0) = 0,

a contradiction.
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To introduce the second assumption, we need some notation. For integers s,m

such that 1 ≤ s ≤ M/2 and m ≥ s, s +m ≤ M , a vector δ ∈ R
M and a set of indices

J0 ⊆ {1, . . . ,M} with |J0| ≤ s; denote by J1 the subset of {1, . . . ,M} correspond-
ing to the m largest in absolute value coordinates of δ outside of J0, and define

J01
�= J0 ∪ J1. Clearly, J1 and J01 depend on m, but we do not indicate this in our

notation for the sake of brevity.

ASSUMPTION RE(s,m, c0).

κ(s,m, c0)
�= min

J0⊆{1,...,M},
|J0|≤s

min
δ 	=0,

|δJc
0
|1≤c0|δJ0 |1

|Xδ|2√
n|δJ01 |2

> 0.

Note that the only difference between the two assumptions is in the denomina-
tors, and κ(s,m, c0) ≤ κ(s, c0). As written, for fixed n, the two assumptions are
equivalent. However, asymptotically for large n, Assumption RE(s, c0) is less re-
strictive than RE(s,m, c0), since the ratio κ(s,m, c0)/κ(s, c0) may tend to 0 if s

and m depend on n. For our bounds on the prediction loss and on the �1 loss of the
Lasso and Dantzig estimators, we will only need Assumption RE(s, c0). Assump-
tion RE(s,m, c0) will be required exclusively for the bounds on the �p loss with
1 < p ≤ 2.

Note also that Assumptions RE(s ′, c0) and RE(s′,m, c0) imply Assumptions
RE(s, c0) and RE(s,m, c0), respectively, if s′ > s.

4. Discussion of the RE assumptions. There exist several simple sufficient
conditions for Assumptions RE(s, c0) and RE(s,m, c0) to hold. Here, we discuss
some of them.

For a real number 1 ≤ u ≤ M , we introduce the following quantities that we
will call restricted eigenvalues:

φmin(u) = min
x∈RM :1≤M(x)≤u

xT�nx

|x|22
,

φmax(u) = max
x∈RM :1≤M(x)≤u

xT�nx

|x|22
.

Denote by XJ the n × |J | submatrix of X obtained by removing from X the
columns that do not correspond to the indices in J , and, for 1 ≤ m1,m2 ≤ M ,
introduce the following quantities called restricted correlations:

θm1,m2 = max
{
cT

1 XT
I1

XI2c2

n|c1|2|c2|2 : I1 ∩ I2 = ∅, |Ii | ≤ mi, ci ∈ R
Ii \ {0}, i = 1,2

}
.

In Lemma 4.1, below, we show that a sufficient condition for RE(s, c0) and
RE(s, s, c0) to hold is given, for example, by the following assumption on the
Gram matrix.
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ASSUMPTION 1. Assume that

φmin(2s) > c0θs,2s

for some integer 1 ≤ s ≤ M/2 and a constant c0 > 0.

This condition with c0 = 1 appeared in [7], in connection with the Dantzig se-
lector. Assumption 1 is more general, in that we can have an arbitrary constant
c0 > 0 that will allow us to cover not only the Dantzig selector but also the Lasso
estimators and to prove oracle inequalities for the prediction loss when the model
is nonparametric.

Our second sufficient condition for RE(s, c0) and RE(s,m, c0) does not need
bounds on correlations. Only bounds on the minimal and maximal eigenvalues of
“small” submatrices of the Gram matrix �n are involved.

ASSUMPTION 2. Assume that

mφmin(s + m) > c2
0sφmax(m)

for some integers s,m, such that 1 ≤ s ≤ M/2, m ≥ s and s + m ≤ M , and a
constant c0 > 0.

Assumption 2 can be viewed as a weakening of the condition on φmin in [18].
Indeed, taking s + m = s logn (we assume, without loss of generality, that s logn

is an integer and n > 3) and assuming that φmax(·) is uniformly bounded by a
constant, we get that Assumption 2 is equivalent to

φmin(s logn) > c/ logn,

where c > 0 is a constant. The corresponding, slightly stronger, assumption in [18]
is stated in asymptotic form, for s = sn → ∞, as

lim inf
n

φmin(sn logn) > 0.

The following two constants are useful when Assumptions 1 and 2 are consid-
ered:

κ1(s, c0) =
√

φmin(2s)

(
1 − c0θs,2s

φmin(2s)

)
and

κ2(s,m, c0) =
√

φmin(s + m)

(
1 − c0

√
sφmax(m)

mφmin(s + m)

)
.

The next lemma shows that if Assumptions 1 or 2 are satisfied, then the quadratic
form xT�nx is positive definite on some restricted sets of vectors x. The construc-
tion of the lemma is inspired by Candes and Tao [7] and covers, in particular, the
corresponding result in [7].



LASSO AND DANTZIG SELECTOR 1713

LEMMA 4.1. Fix an integer 1 ≤ s ≤ M/2 and a constant c0 > 0.

(i) Let Assumption 1 be satisfied. Then, Assumptions RE(s, c0) and RE(s, s,

c0) hold with κ(s, c0) = κ(s, s, c0) = κ1(s, c0). Moreover, for any subset J0 of
{1, . . . ,M}, with cardinality |J0| ≤ s, and any δ ∈ R

M such that

|δJ c
0
|1 ≤ c0|δJ0 |1,(4.1)

we have
1√
n
|P01Xδ|2 ≥ κ1(s, c0)|δJ01 |2,

where P01 is the projector in R
M on the linear span of the columns of XJ01 .

(ii) Let Assumption 2 be satisfied. Then, Assumptions RE(s, c0) and RE(s,m,

c0) hold with κ(s, c0) = κ(s,m, c0) = κ2(s,m, c0). Moreover, for any subset J0 of
{1, . . . ,M}, with cardinality |J0| ≤ s, and any δ ∈ R

M such that (4.1) holds, we
have

1√
n
|P01Xδ|2 ≥ κ2(s,m, c0)|δJ01 |2.

The proof of the lemma is given in Appendix A.
There exist other sufficient conditions for Assumptions RE(s, c0) and RE(s,m,

c0) to hold. We mention here three of them implying Assumption RE(s, c0). The
first one is the following [1].

ASSUMPTION 3. For an integer s such that 1 ≤ s ≤ M , we have

φmin(s) > 2c0θs,1
√

s,

where c0 > 0 is a constant.

To argue that Assumption 3 implies RE(s, c0), it suffices to remark that

1

n
|Xδ|22 ≥ 1

n
δT
J0

XTXδJ0 − 2

n
|δT

J0
XTXδJ c

0
|

≥ φmin(s)|δJ0 |22 − 2

n
|δT

J0
XTXδJ c

0
|

and, if (4.1) holds,

|δT
J0

XTXδJ c
0
|/n ≤ |δJ c

0
|1 max

j∈J c
0

∣∣δT
J0

XTx(j)

∣∣/n

≤ θs,1|δJ c
0
|1|δJ0 |2

≤ c0θs,1
√

s|δJ0 |22.
Another type of assumption related to “mutual coherence” [8] is discussed in

connection to Lasso in [4, 5]. We state it in two different forms, which are given
below.
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ASSUMPTION 4. For an integer s such that 1 ≤ s ≤ M , we have

φmin(s) > 2c0θ1,1s,

where c0 > 0 is a constant.

It is easy to see that Assumption 4 implies RE(s, c0). Indeed, if (4.1) holds,

1

n
|Xδ|22 ≥ 1

n
δT
J0

XTXδJ0 − 2θ1,1|δJ c
0
|1|δJ0 |1

≥ φmin(s)|δJ0 |22 − 2c0θ1,1|δJ0 |21(4.2)

≥ (
φmin(s) − 2c0θ1,1s

)|δJ0 |22.
If all the diagonal elements of matrix XTX/n are equal to 1 (and thus θ1,1 coin-
cides with the mutual coherence [8]), then a simple sufficient condition for As-
sumption RE(s, c0) to hold is stated as follows.

ASSUMPTION 5. All the diagonal elements of the Gram matrix �n are equal
to 1, and for an integer s, such that 1 ≤ s ≤ M , we have

θ1,1 <
1

(1 + 2c0)s
,(4.3)

where c0 > 0 is a constant.

In fact, separating the diagonal and off-diagonal terms of the quadratic form, we
get

δT
J0

XTXδJ0/n ≥ |δJ0 |22 − θ1,1|δJ0 |21 ≥ |δJ0 |22(1 − θ1,1s).

Combining this inequality with (4.2), we see that Assumption RE(s, c0) is satisfied
whenever (4.3) holds.

Unfortunately, Assumption RE(s, c0) has some weakness. Let, for example, fj ,
j = 1, . . . ,2m − 1, be the Haar wavelet basis on [0,1] (M = 2m), and consider
Zi = i/n, i = 1, . . . , n. If M � n, then it is clear that φmin(1) = 0, since there are
functions fj on the highest resolution level whose supports (of length M−1) con-
tain no points Zi . So, none of Assumptions 1–4 hold. A less severe, although sim-
ilar, situation is when we consider step functions fj (t) = I{t<j/M} for t ∈ [0,1].
It is clear that φmin(2) = O(1/M), although sparse representation in this basis is
very natural. Intuitively, the problem arises only because we include very high res-
olution components. Therefore, we may try to restrict the set J0 in RE(s, c0) to
low resolution components, which is quite reasonable, because the “true” or “in-
teresting” vectors of parameters β are often characterized by such J0. This idea is
formalized in Section 6 (cf. Corollary 6.2, see also a remark after Theorem 7.2 in
Section 7).
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5. Approximate equivalence. In this section, we prove a type of approxi-
mate equivalence between the Lasso and the Dantzig selector. It is expressed as
closeness of the prediction losses ‖f̂D − f ‖2

n and ‖f̂L − f ‖2
n when the number of

nonzero components of the Lasso or the Dantzig selector is small as compared to
the sample size.

THEOREM 5.1. Let Wi be independent N (0, σ 2) random variables with
σ 2 > 0. Fix n ≥ 1, M ≥ 2. Let Assumption RE(s,1) be satisfied with 1 ≤ s ≤ M .
Consider the Dantzig estimator f̂D defined by (2.5)–(2.4) with

r = Aσ

√
logM

n
,

where A > 2
√

2, and consider the Lasso estimator f̂L defined by (2.1)–(2.2) with
the same r .

If M(β̂L) ≤ s, then, with probability at least 1 − M1−A2/8, we have

∣∣‖f̂D − f ‖2
n − ‖f̂L − f ‖2

n

∣∣ ≤ 16A2 M(β̂L)σ 2

n

f 2
max

κ2(s,1)
logM.(5.1)

Note that the RHS of (5.1) is bounded by a product of three factors (and a
numerical constant which, unfortunately, equals at least 128). The first factor
M(β̂L)σ 2/n ≤ sσ 2/n corresponds to the error rate for prediction in regression
with s parameters. The two other factors, logM and f 2

max/κ
2(s,1), can be re-

garded as a price to pay for the large number of regressors. If the Gram matrix
�n equals the identity matrix (the white noise model), then there is only the logM

factor. In the general case, there is another factor f 2
max/κ

2(s,1) representing the
extent to which the Gram matrix is ill-posed for estimation of sparse vectors.

We also have the following result that we state, for simplicity, under the assump-
tion that ‖fj‖n = 1, j = 1, . . . ,M . It gives a bound in the spirit of Theorem 5.1
but with M(β̂D) rather than M(β̂L) on the right-hand side.

THEOREM 5.2. Let the assumptions of Theorem 5.1 hold, but with RE(s,5)

in place of RE(s,1), and let ‖fj‖n = 1, j = 1, . . . ,M . If M(β̂D) ≤ s, then, with

probability at least 1 − M1−A2/8, we have

‖f̂L − f ‖2
n ≤ 10‖f̂D − f ‖2

n + 81A2 M(β̂D)σ 2

n

logM

κ2(s,5)
.(5.2)

REMARK. The approximate equivalence is essentially that of the rates as The-
orem 5.1 exhibits. A statement free of M(β) holds for linear regression, see dis-
cussion after Theorems 7.2 and 7.3 below.
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6. Oracle inequalities for prediction loss. Here, we prove sparsity oracle
inequalities for the prediction loss of the Lasso and Dantzig estimators. These in-
equalities allow us to bound the difference between the prediction errors of the
estimators and the best sparse approximation of the regression function (by an or-
acle that knows the truth but is constrained by sparsity). The results of this section,
together with those of Section 5, show that the distance between the prediction
losses of the Dantzig and Lasso estimators is of the same order as the distances
between them and their oracle approximations.

A general discussion of sparsity oracle inequalities can be found in [23]. Such
inequalities have been recently obtained for the Lasso type estimators in a number
of settings [2–6, 14] and [25]. In particular, the regression model with fixed design
that we study here is considered in [2–4]. The assumptions on the Gram matrix
�n in [2–4] are more restrictive than ours. In those papers, either �n is positive
definite, or a mutual coherence condition similar to (4.3) is imposed.

THEOREM 6.1. Let Wi be independent N (0, σ 2) random variables with
σ 2 > 0. Fix some ε > 0 and integers n ≥ 1, M ≥ 2, 1 ≤ s ≤ M . Let Assump-
tion RE(s,3+4/ε) be satisfied. Consider the Lasso estimator f̂L defined by (2.1)–
(2.2) with

r = Aσ

√
logM

n

for some A > 2
√

2. Then, with probability at least 1 − M1−A2/8, we have

‖f̂L − f ‖2
n

(6.1)

≤ (1 + ε) inf
β∈RM :
M(β)≤s

{
‖fβ − f ‖2

n + C(ε)f 2
maxA

2σ 2

κ2(s,3 + 4/ε)

M(β) logM

n

}
,

where C(ε) > 0 is a constant depending only on ε.

We now state, as a corollary, a softer version of Theorem 6.1 that can be used to
eliminate the pathologies mentioned at the end of Section 4. For this purpose, we
define

Js,γ,c0 =
{
J0 ⊂ {1, . . . ,M} : |J0| ≤ s and min

δ 	=0,

|δJc
0
|1≤c0|δJ0 |1

|Xδ|2√
n|δJ0 |2

≥ γ

}
,

where γ > 0 is a constant, and set

�s,γ,c0 = {β :J (β) ∈ Js,γ,c0}.
In similar way, we define Js,γ,m,c0 and �s,γ,m,c0 corresponding to Assump-
tion RE(s,m, c0).
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COROLLARY 6.2. Let Wi , s and the Lasso estimator f̂L be the same as in
Theorem 6.1. Then, for all n ≥ 1, ε > 0, and γ > 0, with probability at least 1 −
M1−A2/8 we have

‖f̂L − f ‖2
n ≤ (1 + ε) inf

β∈�̄s,γ,ε

{
‖fβ − f ‖2

n + C(ε)f 2
maxA

2σ 2

γ 2

(
M(β) logM

n

)}
,

where �̄s,γ,ε = {β ∈ �s,γ,3+4/ε :M(β) ≤ s}.
To obtain this corollary, it suffices to observe that the proof of Theorem 6.1

goes through if we drop Assumption RE(s,3 + 4/ε), but we assume instead that
β ∈ �s,γ,3+4/ε , and we replace κ(s,3 + 4/ε) by γ .

We would like now to get a sparsity oracle inequality similar to that of Theo-
rem 6.1 for the Dantzig estimator f̂D . We will need a mild additional assumption
on f . This is due to the fact that not every β ∈ R

M obeys the Dantzig constraint;
thus, we cannot assure the key relation (B.9) for all β ∈ R

M . One possibility would
be to prove inequality as (6.1), where the infimum on the right hand side is taken
over β satisfying not only M(β) ≤ s but also the Dantzig constraint. However, this
seems not to be very intuitive, since we cannot guarantee that the corresponding
fβ gives a good approximation of the unknown function f . Therefore, we choose
another approach (cf. [5]), in which we consider f satisfying the weak sparsity
property relative to the dictionary f1, . . . , fM . That is, we assume that there exist
an integer s and constant C0 < ∞ such that the set

�s =
{
β ∈ R

M :M(β) ≤ s,‖fβ − f ‖2
n ≤ C0f

2
maxr

2

κ2(s,3 + 4/ε)
M(β)

}
(6.2)

is nonempty. The second inequality in (6.2) says that the “bias” term ‖fβ − f ‖2
n

cannot be much larger than the “variance term” ∼ f 2
maxr

2κ−2M(β) [cf. (6.1)].
Weak sparsity is milder than the sparsity property in the usual sense. The latter
means that f admits the exact representation f = fβ∗ , for some β∗ ∈ R

M , with
hopefully small M(β∗) = s.

PROPOSITION 6.3. Let Wi be independent N (0, σ 2) random variables with
σ 2 > 0. Fix some ε > 0 and integers n ≥ 1, M ≥ 2. Let f obey the weak sparsity
assumption for some C0 < ∞ and some s such that 1 ≤ s max{C1(ε),1} ≤ M ,
where

C1(ε) = 4[(1 + ε)C0 + C(ε)]φmaxf
2
max

κ2f 2
min

and C(ε) is the constant in Theorem 6.1. Suppose, further, that Assump-
tion RE(s max{C1(ε),1},3 + 4/ε) is satisfied. Consider the Dantzig estimator
f̂D defined by (2.5)–(2.4) with

r = Aσ

√
logM

n
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and A > 2
√

2. Then, with probability at least 1 − M1−A2/8, we have

‖f̂D − f ‖2
n

(6.3)

≤ (1 + ε) inf
β∈RM :M(β)=s

‖fβ − f ‖2
n + C2(ε)

f 2
maxA

2σ 2

κ2
0

(
s logM

n

)
.

Here, C2(ε) = 16C1(ε) + C(ε) and κ0 = κ(max(C1(ε),1)s,3 + 4/ε).

Note that the sparsity oracle inequality (6.3) is slightly weaker than the anal-
ogous inequality (6.1) for the Lasso. Here, we have infβ∈RM :M(β)=s instead of
infβ∈RM :M(β)≤s in (6.1).

7. Special case. Parametric estimation in linear regression. In this section,
we assume that the vector of observations y = (Y1, . . . , Yn)

T is of the form

y = Xβ∗ + w,(7.1)

where X is an n × M deterministic matrix β∗ ∈ R
M and w = (W1, . . . ,Wn)

T.
We consider dimension M that can be of order n and even much larger. Then,

β∗ is, in general, not uniquely defined. For M > n, if (7.1) is satisfied for β∗ = β0,
then there exists an affine space U = {β∗ :Xβ∗ = Xβ0} of vectors satisfying (7.1).
The results of this section are valid for any β∗ such that (7.1) holds. However, we
will suppose that Assumption RE(s, c0) holds with c0 ≥ 1 and that M(β∗) ≤ s.
Then, the set U ∩ {β∗ :M(β∗) ≤ s} reduces to a single element (cf. Remark 2 at
the end of this section). In this sense, there is a unique sparse solution of (7.1).

Our goal in this section, unlike that of the previous ones, is to estimate both Xβ∗
for the purpose of prediction and β∗ itself for purpose of model selection. We will
see that meaningful results are obtained when the sparsity index M(β∗) is small.

It will be assumed throughout this section that the diagonal elements of the
Gram matrix �n = XTX/n are all equal to 1 (this is equivalent to the condition
‖fj‖n = 1, j = 1, . . . ,M , in the notation of previous sections). Then, the Lasso
estimator of β∗ in (7.1) is defined by

β̂L = arg min
β∈RM

{
1

n
|y − Xβ|22 + 2r|β|1

}
.(7.2)

The correspondence between the notation here and that of the previous sections is

‖fβ‖2
n = |Xβ|22/n, ‖fβ − f ‖2

n = |X(β − β∗)|22/n,

‖f̂L − f ‖2
n = |X(β̂L − β∗)|22/n.

The Dantzig selector for linear model (7.1) is defined by

β̂D = arg min
β∈�

|β|1,(7.3)
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where

� =
{
β ∈ R

M :
∣∣∣∣1

n
XT(y − Xβ)

∣∣∣∣∞ ≤ r

}
is the set of all β satisfying the Dantzig constraint.

We first get bounds on the rate of convergence of Dantzig selector.

THEOREM 7.1. Let Wi be independent N (0, σ 2) random variables with
σ 2 > 0, let all the diagonal elements of the matrix XTX/n be equal to 1 and
M(β∗) ≤ s, where 1 ≤ s ≤ M , n ≥ 1, M ≥ 2. Let Assumption RE(s,1) be sat-
isfied. Consider the Dantzig selector β̂D defined by (7.3) with

r = Aσ

√
logM

n

and A >
√

2. Then, with probability at least 1 − M1−A2/2, we have

|β̂D − β∗|1 ≤ 8A

κ2(s,1)
σ s

√
logM

n
,(7.4)

|X(β̂D − β∗)|22 ≤ 16A2

κ2(s,1)
σ 2s logM.(7.5)

If Assumption RE(s,m,1) is satisfied, then, with the same probability as above,
simultaneously for all 1 < p ≤ 2, we have

|β̂D − β∗|pp ≤ 2p−18

{
1 +

√
s

m

}2(p−1)

s

(
Aσ

κ2(s,m,1)

√
logM

n

)p

.(7.6)

Note that, since s ≤ m, the factor in curly brackets in (7.6) is bounded by a
constant independent of s and m. Under Assumption 1 in Section 4, with c0 = 1
[which is less general than RE(s, s,1), cf. Lemma 4.1(i)], a bound of the form (7.6)
for the case p = 2 is established by Candes and Tao [7].

Bounds on the rate of convergence of the Lasso selector are quite similar to
those obtained in Theorem 7.1. They are given by the following result.

THEOREM 7.2. Let Wi be independent N (0, σ 2) random variables with
σ 2 > 0. Let all the diagonal elements of the matrix XTX/n be equal to 1, and
let M(β∗) ≤ s, where 1 ≤ s ≤ M , n ≥ 1, M ≥ 2. Let Assumption RE(s,3) be sat-
isfied. Consider the Lasso estimator β̂L defined by (7.2) with

r = Aσ

√
logM

n
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and A > 2
√

2. Then, with probability at least 1 − M1−A2/8, we have

|β̂L − β∗|1 ≤ 16A

κ2(s,3)
σ s

√
logM

n
,(7.7)

|X(β̂L − β∗)|22 ≤ 16A2

κ2(s,3)
σ 2s logM,(7.8)

M(β̂L) ≤ 64φmax

κ2(s,3)
s.(7.9)

If Assumption RE(s,m,3) is satisfied, then, with the same probability as above,
simultaneously for all 1 < p ≤ 2, we have

|β̂L − β∗|pp ≤ 16

{
1 + 3

√
s

m

}2(p−1)

s

(
Aσ

κ2(s,m,3)

√
logM

n

)p

.(7.10)

Inequalities of the form similar to (7.7) and (7.8) can be deduced from the results
of [3] under more restrictive conditions on the Gram matrix (the mutual coherence
assumption, cf. Assumption 5 of Section 4).

Assumptions RE(s,1) and RE(s,3), respectively, can be dropped in Theorems
7.1 and 7.2 if we assume β∗ ∈ �s,γ,c0 with c0 = 1 or c0 = 3 as appropriate. Then,
(7.4) and (7.5) or, respectively, (7.7) and (7.8) hold with κ = γ . This is analogous
to Corollary 6.2. Similarly, (7.6) and (7.10) hold with κ = γ if β∗ ∈ �s,γ,m,c0 with
c0 = 1 or c0 = 3 as appropriate.

Observe that, combining Theorems 7.1 and 7.2, we can immediately get
bounds for the differences between Lasso and Dantzig selector |β̂L − β̂D|pp and
|X(β̂L − β̂D)|22. Such bounds have the same form as those of Theorems 7.1 and 7.2,
up to numerical constants. Another way of estimating these differences follows di-
rectly from the proof of Theorem 7.1. It suffices to observe that the only property
of β∗ used in that proof is the fact that β∗ satisfies the Dantzig constraint on the
event of given probability, which is also true for the Lasso solution β̂L. So, we can
replace β∗ by β̂L and s by M(β̂L) everywhere in Theorem 7.1. Generalizing a bit
more, we easily derive the following fact.

THEOREM 7.3. The result of Theorem 7.1 remains valid if we replace |β̂D −
β∗|pp by sup{|β̂D − β|pp :β ∈ �,M(β) ≤ s} for 1 ≤ p ≤ 2 and |X(β̂D − β∗)|22 by
sup{|X(β̂D −β)|22 :β ∈ �,M(β) ≤ s}, respectively. Here, � is the set of all vectors
satisfying the Dantzig constraint.

REMARKS.

1. Theorems 7.1 and 7.2 only give nonasymptotic upper bounds on the loss,
with some probability and under some conditions. The probability depends on M

and the conditions depend on n and M . Recall that Assumptions RE(s, c0) and
RE(s,m, c0) are imposed on the n × M matrix X. To deduce asymptotic conver-
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gence (as n → ∞ and/or as M → ∞) from Theorems 7.1 and 7.2, we would need
some very strong additional properties, such as simultaneous validity of Assump-
tion RE(s, c0) or RE(s,m, c0) (with one and the same constant κ) for infinitely
many n and M .

2. Note that neither Assumption RE(s, c0) or RE(s,m, c0) implies identifia-
bility of β∗ in the linear model (7.1). However, the vector β∗ appearing in the
statements of Theorems 7.1 and 7.2 is uniquely defined, because we addition-
ally suppose that M(β∗) ≤ s and c0 ≥ 1. Indeed, if there exists a β ′ such that
Xβ ′ = Xβ∗, and M(β ′) ≤ s, then, in view of assumption RE(s, c0) with c0 ≥ 1,
we necessarily have β∗ = β ′ [cf. discussion following the definition of RE(s, c0)].
On the other hand, Theorem 7.3 applies to certain values of β that do not come
from the model (7.1) at all.

3. For the smallest value of A (which is A = 2
√

2) the constants in the bound of
Theorem 7.2 for the Lasso are larger than the corresponding numerical constants
for the Dantzig selector given in Theorem 7.1, again, for the smallest admissible
value A = √

2. On the contrary, the Dantzig selector has certain defects as com-
pared to Lasso when the model is nonparametric, as discussed in Section 6. In
particular, to obtain sparsity oracle inequalities for the Dantzig selector, we need
some restrictions on f , for example, the weak sparsity property. On the other hand,
the sparsity oracle inequality (6.1) for the Lasso is valid with no restriction on f .

4. The proofs of Theorems 7.1 and 7.2 differ mainly in the value of the tuning
constant, which is c0 = 1 in Theorem 7.1 and c0 = 3 in Theorem 7.2. Note that,
since the Lasso solution satisfies the Dantzig constraint, we could have obtained a
result similar to Theorem 7.2, but with less accurate numerical constants, by sim-
ply conducting the proof of Theorem 7.1 with c0 = 3. However, we act differently,
and we deduce (B.30) directly from (B.1) and not from (B.25). This is done only
for the sake of improving the constants. In fact, using (B.25) with c0 = 3 would
yield (B.30) with the doubled constant on the right-hand side.

5. For the Dantzig selector in the linear regression model and under Assump-
tions 1 or 2, some further improvement of constants in the �p bounds for the co-
efficients can be achieved by applying the general version of Lemma 4.1 with the
projector P01 inside. We do not pursue this issue here.

6. All of our results are stated with probabilities at least 1 − M1−A2/2 or 1 −
M1−A2/8. These are reasonable (but not the most accurate) lower bounds on the
probabilities P(B) and P(A), respectively. We have chosen them for readability.
Inspection of (B.4) shows that they can be refined to 1 − 2M�(A

√
logM) and

1 − 2M�(A
√

logM/2), respectively, where �(·) is the standard normal c.d.f.

APPENDIX A

PROOF OF LEMMA 4.1. Consider a partition J c
0 into subsets of size m,

with the last subset of size ≤ m: J c
0 = ⋃K

k=1 Jk , where K ≥ 1, |Jk| = m for
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k = 1, . . . ,K − 1 and |JK | ≤ m, such that Jk is the set of indices correspond-
ing to m largest in absolute value coordinates of δ outside

⋃k−1
j=1 Jj (for k < K)

and JK is the remaining subset. We have

|P01Xδ|2 ≥ |P01XδJ01 |2 −
∣∣∣∣∣

K∑
k=2

P01XδJk

∣∣∣∣∣
2

= |XδJ01 |2 −
∣∣∣∣∣

K∑
k=2

P01XδJk

∣∣∣∣∣
2

(A.1)

≥ |XδJ01 |2 −
K∑

k=2

|P01XδJk
|2.

We will prove first part (ii) of the lemma. Since for k ≥ 1 the vector δJk
has only m

nonzero components, we obtain

1√
n
|P01XδJk

|2 ≤ 1√
n
|XδJk

|2 ≤
√

φmax(m)|δJk
|2.(A.2)

Next, as in [7], we observe that |δJk+1 |2 ≤ |δJk
|1/√m, k = 1, . . . ,K −1. Therefore,

K∑
k=2

|δJk
|2 ≤ |δJ c

0
|1√

m
≤ c0|δJ0 |1√

m
≤ c0

√
s

m
|δJ0 |2 ≤ c0

√
s

m
|δJ01 |2,(A.3)

where we used (4.1). From (A.1)–(A.3), we find

1√
n
|Xδ|2 ≥ 1√

n
|XδJ01 |2 − c0

√
φmax(m)

√
s

m
|δJ01 |2

≥
(√

φmin(s + m) − c0

√
φmax(m)

√
s

m

)
|δJ01 |2,

which proves part (ii) of the lemma.
The proof of part (i) is analogous. The only difference is that we replace, in the

above argument, m by s, and instead of (A.2), we use the bound (cf. [7])

1√
n
|P01XδJk

|2 ≤ θs,2s√
φmin(2s)

|δJk
|2. �

APPENDIX B: TWO LEMMAS AND THE PROOFS OF THE RESULTS

LEMMA B.1. Fix M ≥ 2 and n ≥ 1. Let Wi be independent N (0, σ 2) random
variables with σ 2 > 0, and let f̂L be the Lasso estimator defined by (2.2) with

r = Aσ

√
logM

n
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for some A > 2
√

2. Then, with probability at least 1 − M1−A2/8, we have, simul-
taneously for all β ∈ R

M ,

‖f̂L − f ‖2
n + r

M∑
j=1

‖fj‖n|β̂j,L − βj |

≤ ‖fβ − f ‖2
n + 4r

∑
j∈J (β)

‖fj‖n|β̂j,L − βj |(B.1)

≤ ‖fβ − f ‖2
n + 4r

√
M(β)

√ ∑
j∈J (β)

‖fj‖2
n|β̂j,L − βj |2,

and ∣∣∣∣1

n
XT(f − Xβ̂L)

∣∣∣∣∞ ≤ 3rfmax/2.(B.2)

Furthermore, with the same probability,

M(β̂L) ≤ 4φmaxf
−2
min(‖f̂L − f ‖2

n/r2),(B.3)

where φmax denotes the maximal eigenvalue of the matrix XTX/n.

PROOF OF LEMMA B.1. The result (B.1) is essentially Lemma 1 from [5]. For
completeness, we give its proof. Set rn,j = r‖fj‖n. By definition,

Ŝ(β̂L) + 2
M∑

j=1

rn,j |β̂j,L| ≤ Ŝ(β) + 2
M∑

j=1

rn,j |βj |

for all β ∈ R
M , which is equivalent to

‖f̂L − f ‖2
n + 2

M∑
j=1

rn,j |β̂j,L|

≤ ‖fβ − f ‖2
n + 2

M∑
j=1

rn,j |βj | + 2

n

n∑
i=1

Wi(f̂L − fβ)(Zi).

Define the random variables Vj = n−1 ∑n
i=1 fj (Zi)Wi , 1 ≤ j ≤ M, and the event

A =
M⋂

j=1

{2|Vj | ≤ rn,j }.

Using an elementary bound on the tails of Gaussian distribution, we find that the
probability of the complementary event Ac satisfies

P{Ac} ≤
M∑

j=1

P
{√

n|Vj | > √
nrn,j /2

} ≤ MP
{|η| ≥ r

√
n/(2σ)

}
(B.4)

≤ M exp
(
− nr2

8σ 2

)
= M exp

(
−A2 logM

8

)
= M1−A2/8,



1724 P. J. BICKEL, Y. RITOV AND A. B. TSYBAKOV

where η ∼ N (0,1). On the event A we have

‖f̂L − f ‖2
n ≤ ‖fβ − f ‖2

n +
M∑

j=1

rn,j |β̂j,L − βj | +
M∑

j=1

2rn,j |βj | −
M∑

j=1

2rn,j |β̂j,L|.

Adding the term
∑M

j=1 rn,j |β̂j,L −βj | to both sides of this inequality yields, on A,

‖f̂L − f ‖2
n +

M∑
j=1

rn,j |β̂j,L − βj |

≤ ‖fβ − f ‖2
n + 2

M∑
j=1

rn,j (|β̂j,L − βj | + |βj | − |β̂j,L|).

Now, |β̂j,L − βj | + |βj | − |β̂j,L| = 0 for j /∈ J (β), so that, on A, we get (B.1).
To prove (B.2) it suffices to note that, on A, we have∣∣∣∣1

n
D−1/2XTW

∣∣∣∣∞ ≤ r/2.(B.5)

Now, y = f + w, and (B.2) follows from (2.3) and (B.5).
We finally prove (B.3). The necessary and sufficient condition for β̂L to be the

Lasso solution can be written in the form
1

n
xT
(j)(y − Xβ̂L) = r‖fj‖n sign(β̂j,L) if β̂j,L 	= 0,

(B.6) ∣∣∣∣1

n
xT
(j)(y − Xβ̂L)

∣∣∣∣ ≤ r‖fj‖n if β̂j,L = 0,

where x(j) denotes the j th column of X, j = 1, . . . ,M . Next, (B.5) yields that,
on A, we have ∣∣∣∣1

n
xT
(j)W

∣∣∣∣ ≤ r‖fj‖n/2, j = 1, . . . ,M.(B.7)

Combining (B.6) and (B.7), we get∣∣∣∣1

n
xT
(j)(f − Xβ̂L)

∣∣∣∣ ≥ r‖fj‖n/2 if β̂j,L 	= 0.(B.8)

Therefore,

1

n2 (f − Xβ̂L)TXXT(f − Xβ̂L) = 1

n2

M∑
j=1

(
xT
(j)(f − Xβ̂L)

)2

≥ 1

n2

∑
j :β̂j,L 	=0

(
xT
(j)(f − Xβ̂L)

)2

= M(β̂L)r2‖fj‖2
n/4 ≥ f 2

minM(β̂L)r2/4.
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Since the matrices XTX/n and XXT/n have the same maximal eigenvalues,

1

n2 (f − Xβ̂L)TXXT(f − Xβ̂L) ≤ φmax

n
|f − Xβ̂L|22 = φmax‖f − f̂L‖2

n,

and we deduce (B.3) from the last two displays. �

COROLLARY B.2. Let the assumptions of Lemma B.1 be satisfied and
‖fj‖n = 1, j = 1, . . . ,M . Consider the linear regression model y = Xβ+w. Then,

with probability at least 1 − M1−A2/8, we have

|δJ c
0
|1 ≤ 3|δJ0 |1,

where J0 = J (β) is the set of nonzero coefficients of β and δ = β̂L − β .

PROOF. Use the first inequality in (B.1) and the fact that f = fβ for the linear
regression model. �

LEMMA B.3. Let β ∈ R
M satisfy the Dantzig constraint∣∣∣∣1

n
D−1/2XT(y − Xβ)

∣∣∣∣∞ ≤ r

and set δ = β̂D − β , J0 = J (β). Then,

|δJ c
0
|1 ≤ |δJ0 |1.(B.9)

Further, let the assumptions of Lemma B.1 be satisfied with A >
√

2. Then, with
probability of at least 1 − M1−A2/2, we have∣∣∣∣1

n
XT(f − Xβ̂D)

∣∣∣∣∞ ≤ 2rfmax.(B.10)

PROOF OF LEMMA B.3. Inequality (B.9) follows immediately from the defi-
nition of Dantzig selector (cf. [7]). To prove (B.10), consider the event

B =
{∣∣∣∣1

n
D−1/2XTW

∣∣∣∣∞ ≤ r

}
=

M⋂
j=1

{|Vj | ≤ rn,j }.

Analogously to (B.4), P{Bc} ≤ M1−A2/2. On the other hand, y = f+w, and, using
the definition of Dantzig selector, it is easy to see that (B.10) is satisfied on B. �

PROOF OF THEOREM 5.1. Set δ = β̂L − β̂D . We have

1

n
|f − Xβ̂L|22 = 1

n
|f − Xβ̂D|22 − 2

n
δTXT(f − Xβ̂D) + 1

n
|Xδ|22.
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This and (B.10) yield

‖f̂D − f ‖2
n ≤ ‖f̂L − f ‖2

n + 2|δ|1
∣∣∣∣1

n
XT(f − Xβ̂D)

∣∣∣∣∞ − 1

n
|Xδ|22

(B.11)

≤ ‖f̂L − f ‖2
n + 4fmaxr|δ|1 − 1

n
|Xδ|22,

where the last inequality holds with probability at least 1 − M1−A2/2. Since the
Lasso solution β̂L satisfies the Dantzig constraint, we can apply Lemma B.3 with
β = β̂L, which yields

|δJ c
0
|1 ≤ |δJ0 |1(B.12)

with J0 = J (β̂L). By Assumption RE(s,1), we get

1√
n
|Xδ|2 ≥ κ|δJ0 |2,(B.13)

where κ = κ(s,1). Using (B.12) and (B.13), we obtain

|δ|1 ≤ 2|δJ0 |1 ≤ 2M1/2(β̂L)|δJ0 |2 ≤ 2M1/2(β̂L)

κ
√

n
|Xδ|2.(B.14)

Finally, from (B.11) and (B.14), we get that, with probability at least 1−M1−A2/2,

‖f̂D − f ‖2
n ≤ ‖f̂L − f ‖2

n + 8fmaxrM
1/2(β̂L)

κ
√

n
|Xδ|2 − 1

n
|Xδ|22

(B.15)

≤ ‖f̂L − f ‖2
n + 16f 2

maxr
2M(β̂L)

κ2 ,

where the RHS follows (B.2), (B.10) and another application of (B.14). This
proves one side of the inequality.

To show the other side of the bound on the difference, we act as in (B.11), up
to the inversion of roles of β̂L and β̂D , and we use (B.2). This yields that, with
probability at least 1 − M1−A2/8,

‖f̂L − f ‖2
n ≤ ‖f̂D − f ‖2

n + 2|δ|1
∣∣∣∣1

n
XT(f − Xβ̂L)

∣∣∣∣∞ − 1

n
|Xδ|22

(B.16)

≤ ‖f̂D − f ‖2
n + 3fmaxr|δ|1 − 1

n
|Xδ|22.

This is analogous to (B.11). Now, paralleling the proof leading to (B.15), we obtain

‖f̂L − f ‖2
n ≤ ‖f̂D − f ‖2

n + 9f 2
maxr

2M(β̂L)

κ2 .(B.17)

The theorem now follows from (B.15) and (B.17). �
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PROOF OF THEOREM 5.2. Set, again, δ = β̂L − β̂D . We apply (B.1) with
β = β̂D , which yields that, with probability at least 1 − M1−A2/8,

|δ|1 ≤ 4|δJ0 |1 + ‖f̂D − f ‖2
n/r,(B.18)

where, now, J0 = J (β̂D). Consider the following two cases: (i) ‖f̂D − f ‖2
n >

2r|δJ0 |1 and (ii) ‖f̂D −f ‖2
n ≤ 2r|δJ0 |1. In case (i), inequality (B.16) with fmax = 1

immediately implies

‖f̂L − f ‖2
n ≤ 10‖f̂D − f ‖2

n,

and the theorem follows. In case (ii), we get, from (B.18), that

|δ|1 ≤ 6|δJ0 |1
and thus |δJ c

0
|1 ≤ 5|δJ0 |1. We can therefore apply Assumption RE(s,5), which

yields, similarly to (B.14),

|δ|1 ≤ 6M1/2(β̂D)|δJ0 |2 ≤ 6M1/2(β̂D)

κ
√

n
|Xδ|2,(B.19)

where κ = κ(s,5). Plugging (B.19) into (B.16) we finally get that, in case (ii),

‖f̂L − f ‖2
n ≤ ‖f̂D − f ‖2

n + 18rM1/2(β̂D)

κ
√

n
|Xδ|2 − 1

n
|Xδ|22

(B.20)

≤ ‖f̂D − f ‖2
n + 81r2M(β̂D)

κ2 . �

PROOF OF THEOREM 6.1. Fix an arbitrary β ∈ R
M with M(β) ≤ s. Set δ =

D1/2(β̂L −β), J0 = J (β). On the event A, we get, from the first line in (B.1), that

‖f̂L − f ‖2
n + r|δ|1 ≤ ‖fβ − f ‖2

n + 4r
∑
j∈J0

‖fj‖n|β̂j,L − βj |
(B.21)

= ‖fβ − f ‖2
n + 4r|δJ0 |1,

and from the second line in (B.1) that

‖f̂L − f ‖2
n ≤ ‖fβ − f ‖2

n + 4r
√

M(β)|δJ0 |2.(B.22)

Consider, separately, the cases where

4r|δJ0 |1 ≤ ε‖fβ − f ‖2
n(B.23)

and

ε‖fβ − f ‖2
n < 4r|δJ0 |1.(B.24)

In case (B.23), the result of the theorem trivially follows from (B.21). So, we will
only consider the case (B.24). All of the subsequent inequalities are valid on the
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event A ∩ A1, where A1 is defined by (B.24). On this event, we get, from (B.21),
that

|δ|1 ≤ 4(1 + 1/ε)|δJ0 |1,
which implies |δJ c

0
|1 ≤ (3 + 4/ε)|δJ0 |1. We now use Assumption RE(s,3 + 4/ε).

This yields

κ2|δJ0 |22 ≤ 1

n
|Xδ|22 = 1

n
(β̂K − β)TD1/2XTXD1/2(β̂L − β)

≤ f 2
max

n
(β̂L − β)TXTX(β̂L − β) = f 2

max‖f̂L − fβ‖2
n,

where κ = κ(s,3 + 4/ε). Combining this with (B.22), we find

‖f̂L − f ‖2
n ≤ ‖fβ − f ‖2

n + 4rfmaxκ
−1

√
M(β)‖f̂L − fβ‖n

≤ ‖fβ − f ‖2
n + 4rfmaxκ

−1
√

M(β)(‖f̂L − f ‖n + ‖fβ − f ‖n).

This inequality is of the same form as (A.4) in [4]. A standard decoupling argument
as in [4], using inequality 2xy ≤ x2/b + by2 with b > 1, x = rκ−1√M(β) and y

being either ‖f̂L − f ‖n or ‖fβ − f ‖n, yields that

‖f̂L − f ‖2
n ≤ b + 1

b − 1
‖fβ − f ‖2

n + 8b2f 2
max

(b − 1)κ2 r2M(β) ∀b > 1.

Taking b = 1 + 2/ε in the last display finishes the proof of the theorem. �

PROOF OF PROPOSITION 6.3. Due to the weak sparsity assumption, there ex-
ists β̄ ∈ R

M with M(β̄) ≤ s such that ‖fβ̄ − f ‖2
n ≤ C0f

2
maxr

2κ−2M(β̄), where
κ = κ(s,3 + 4/ε) is the same as in Theorem 6.1. Using this together with Theo-
rem 6.1 and (B.3), we obtain that, with probability at least 1 − M1−A2/8,

M(β̂L) ≤ C1(ε)M(β̄) ≤ C1(ε)s.

This and Theorem 5.1 imply

‖f̂D − f ‖2
n ≤ ‖f̂L − f ‖2

n + 16C1(ε)f
2
maxA

2σ 2

κ2
0

(
s logM

n

)
,

where κ0 = κ(max(C1(ε),1)s,3 + 4/ε). Once Again, applying Theorem 6.1, we
get the result. �

PROOF OF THEOREM 7.1. Set δ = β̂D − β∗ and J0 = J (β∗). Using Lem-
ma B.3 with β = β∗, we get that, on the event B (i.e., with probability at least
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1 −M1−A2/2), the following are true: (i) 1
n
|XTXδ|∞ ≤ 2r , and (ii) inequality (4.1)

holds with c0 = 1. Therefore, on B we have

1

n
|Xδ|22 = 1

n
δTXTXδ

≤ 1

n
|XTXδ|∞|δ|1

≤ 2r(|δJ0 |1 + |δJ c
0
|1)(B.25)

≤ 2(1 + c0)r|δJ0 |1
≤ 2(1 + c0)r

√
s|δJ0 |2 = 4r

√
s|δJ0 |2

since c0 = 1. From Assumption RE(s,1), we get that

1

n
|Xδ|22 ≥ κ2|δJ0 |22,

where κ = κ(s,1). This and (B.25) yield that, on B,

1

n
|Xδ|22 ≤ 16r2s/κ2, |δJ0 |2 ≤ 4r

√
s/κ2.(B.26)

The first inequality in (B.26) implies (7.5). Next, (7.4) is straightforward in view
of the second inequality in (B.26) and of the relations (with c0 = 1)

|δ|1 = |δJ0 |1 + |δJ c
0
|1 ≤ (1 + c0)|δJ0 |1 ≤ (1 + c0)

√
s|δJ0 |2(B.27)

that hold on B. It remains to prove (7.6). It is easy to see that the kth largest in
absolute value element of δJ c

0
satisfies |δJ c

0
|(k) ≤ |δJ c

0
|1/k. Thus,

|δJ c
01

|22 ≤ |δJ c
0
|21

∑
k≥m+1

1

k2 ≤ 1

m
|δJ c

0
|21,

and, since (4.1) holds on B (with c0 = 1), we find

|δJ c
01

|2 ≤ c0|δJ0 |1√
m

≤ c0|δJ0 |2
√

s

m
≤ c0|δJ01 |2

√
s

m
.

Therefore, on B,

|δ|2 ≤
(

1 + c0

√
s

m

)
|δJ01 |2.(B.28)

On the other hand, it follows from (B.25) that

1

n
|Xδ|22 ≤ 4r

√
s|δJ01 |2.

Combining this inequality with Assumption RE(s,m,1), we obtain that, on B,

|δJ01 |2 ≤ 4r
√

s/κ2.
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Recalling that c0 = 1 and applying the last inequality together with (B.28), we get

|δ|22 ≤ 16

(
1 + c0

√
s

m

)2(
r
√

s/κ2)2
.(B.29)

It remains to note that (7.6) is a direct consequence of (7.4) and (B.29). This fol-
lows from the fact that inequalities

∑M
j=1 aj ≤ b1 and

∑M
j=1 a2

j ≤ b2 with aj ≥ 0
imply

M∑
j=1

a
p
j =

M∑
j=1

a
2−p
j a

2p−2
j ≤

(
M∑

j=1

aj

)2−p(
M∑

j=1

a2
j

)p−1

≤ b
2−p
1 b

p−1
2 ∀1 < p ≤ 2. �

PROOF OF THEOREM 7.2. Set δ = β̂L − β∗ and J0 = J (β∗). Using (B.1),
where we put β = β∗, rn,j ≡ r and ‖fβ − f ‖n = 0, we get that, on the event A,

1

n
|Xδ|22 ≤ 4r

√
s|δJ0 |2(B.30)

and (4.1) holds with c0 = 3 on the same event. Thus, by Assumption RE(s,3) and
the last inequality, we obtain that, on A,

1

n
|Xδ|22 ≤ 16r2s/κ2, |δJ0 |2 ≤ 4r

√
s/κ2,(B.31)

where κ = κ(s,3). The first inequality here coincides with (7.8). Next, (7.9) fol-
lows immediately from (B.3) and (7.8). To show (7.7), it suffices to note that on
the event A the relations (B.27) hold with c0 = 3, to apply the second inequality
in (B.31) and to use (B.4).

Finally, the proof of (7.10) follows exactly the same lines as that of (7.6). The
only difference is that one should set c0 = 3 in (B.28) and (B.29), as well as in the
display preceding (B.28). �
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