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SEMIPARAMETRIC HYPOTHESES
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Massachusetts Institute of Technology

We introduce a new framework for constructing tests of general semi-
parametric hypotheses which have nontrivial power on the n−1/2 scale in
every direction, and can be tailored to put substantial power on alternatives
of importance. The approach is based on combining test statistics based on
stochastic processes of score statistics with bootstrap critical values.

1. Introduction. The practice of statistical testing plays several roles in em-
pirical research. These roles range from the careful assessment of the evidence
against specific scientific hypotheses to the judgment of whether an estimated
model displays decent goodness of fit to the empirical data. The paradigmatic sit-
uation we consider is one where the investigator views some departures from the
hypothesized model as being of primary importance, with others of interest if suf-
ficiently gross, but otherwise secondary. For instance, low-frequency departures
from a signal hypothesized to be constant might be considered of interest, even if
of low amplitude; while high-frequency departures are less so, unless they are of
high amplitude.

The optimal testing of a simple hypothesis against a simple alternative is the
cornerstone of modern statistical theory. However, there is no clear notion of op-
timality for more complicated situations. The Hájek–Le Cam asymptotic theory
proved that there exist strong concepts of asymptotic efficiency in parametric es-
timation. These ideas have been extended to semiparametric models—see [3, 14,
22]. However, there is no compelling sense of an asymptotically optimum test,
in either the parametric or the semiparametric asymptotic theories, save for some
simple one-parameter hypotheses.

We deal exclusively with the “elementary” case of i.i.d. data for ease of exposi-
tion. Moreover, all our considerations are asymptotic save for illustrative simula-
tions. Generalization of this point of view to the two-sample problem, independent
nonidentically distributed case, time series, and so on, is conceptually not difficult,
and may be even simpler because of availability of permutation tests.
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The general types of tests that people have constructed fall into one of two
classes:

(i) Those which have nonnegligible asymptotic power for departures on
the n−1/2 scale in every possible direction. In the standard problems of testing
goodness of fit to a single distribution against all alternatives, these are the classi-
cal tests of Kolmogorov and Cramér–von Mises and their classical extensions to
the problem of testing fit to a parametric hypothesis on the one hand and indepen-
dence on the other.

(ii) Those which have trivial asymptotic power at the n−1/2 scale in every di-
rection. The χ2 tests with increasing number of cells as n → ∞ are the preeminent
example of this type, but a number of variants have recently been explored through
devices such as empirical likelihood—see [10] for recent examples.

Tests of type (ii) have the feature that they have approximately equal power in
all directions. As a consequence, they can enjoy minimax properties over suitable
nonparametric families of alternatives—see [15], for example. But, as we noted,
they pay for this by not having power at rate n−1/2 in any particular direction. The
tests of type (i) have the weakness that they concentrate their power at the n−1/2

scale in very explicit alternative directions, dictated primarily by the metric, im-
plicitly or explicitly, used. For example, the Kolmogorov test for goodness of fit to
the uniform (0,1) distribution is well known to have power mainly against alter-
natives such that |P(X ≤ 1/2) − 1/2| is large.

The principal reason for limiting oneself to tests of types (i) and (ii) appears
to have been the need for simple approximations to the critical values under the
null which need to be coupled with specification of a test statistic to implement
a test. However, the critical values can be approximated by bootstrap methods, as
discussed in Section 3.3.

Our goal in this paper is to show that it is possible to construct tests for any
semiparametric hypothesis, which have as much power as possible at the n−1/2

scale in a few directions of interest, specific to the particular scientific problem
investigated, reserving some power for gross departures (in the n−1/2 scale) for
other directions.

We clearly do not adopt the minimax and adaptive minimax testing point of
view of Ingster [15]. Our proposal does not aim at minimaxity and since we con-
centrate on the n−1/2 scale our tests do not have uniformity properties except over
relatively small families. We believe that in testing, even more than in estimation,
prior information or biases need to be paid attention to, since, as Janssen [16]
points out, achieving reasonable power over more than a few orthogonal directions
is hopeless.

There has been another direction that we want to mention but do not develop in
this paper. The idea is to construct a sequence of tests which are consistent against
broader and broader classes of alternatives as one proceeds down the sequence,
stopping testing at a data-determined point on the sequence. A limited proposal of



TAILOR-MADE TESTS 723

this type was made by Rayner and Best [24] and developed more generally in [6].
Some important special cases are discussed in [13], Chapter 7, in the context of
testing the hypothesis of no effect in nonparametric regression.

Our general approach, which is detailed in Section 3, is to use as building blocks
one-dimensional score (Rao) test statistics for simple hypotheses. For composite
hypotheses we use the natural generalizations of Rao tests, efficient scores. These
efficient score tests are called Neyman C(α) tests in the statistics literature or con-
ditional moment restriction tests in the econometrics literature (see [2]).

Conceptually, as we discuss in Section 3, our approach applies to general semi-
parametric hypotheses such as independence, the Cox model in survival analysis
and index models in econometrics. It also, as we demonstrate, guides us how to
proceed when we test a parametric or semiparametric model within a semipara-
metric alternative, for instance, independence within copula models, simple index
versus multiple index models. We view this as the most important nontechnical
contribution of the paper.

In Section 3 we give some general conditions under which the asymptotic theory
for the types of test statistics discussed in this section, and for appropriate boot-
strap critical values, is valid. We also study the power behavior of these tests under
these assumptions. In Section 4 we discuss the classical examples of goodness of
fit to a parametric hypothesis and independence. We show how the classical tests
of Kolmogorov–Smirnov and Cramér–von Mises type fit into our framework, and
also derive a variety of new tests based on our principles. We indicate how the
general conditions of Section 3 are implied by mild and easily checkable condi-
tions in these classical situations. We have chosen to exhibit the approach in detail
in two situations here, namely parametric hypotheses and independence. Tests of
index models are covered in [7]. However, as we have indicated, our approach
is applicable to any of the hundreds of goodness-of-fit problems that arise with
semiparametric models.

2. Heuristics.

2.1. Parametric tests. Suppose that X1, . . . ,Xn are a (i.i.d.) random sam-
ple from the probability P ∈ Q, where P � µ, p = dP

dµ
. Suppose that Q ={Pθ :

θ ∈ R} is a regular (one-dimensional) submodel of probabilities. Consider testing
the hypothesis H :P = P0 against K :P = Pθ where θ > 0.

Denote the log-likelihood of an observation and its derivative at θ = 0, the effi-
cient score (see [23]) by

�(·,P ) ≡ lnp, �̇(·,P0) ≡ ∂�(·,P0)

∂θ
,(1)

where �̇ ∈ L2(P0), E0(�̇(·,P0)) = 0. The familiar scoring test of Rao [23] is based
on the mean score test statistic, and is locally asymptotically most powerful. Since
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n−1/2 ∑n
i=1 �̇(Xi,P0)

D→ N (0,‖�̇‖2
0) under the null, it uses as asymptotic critical

value z1−α‖�̇‖0, where ‖h‖2
0 = ∫

h2 dP0 and z1−α is the standard Gaussian 1 − α

quantile. Note that this test is consistent if and only if Eθ(�̇(X,P0)) > 0 for θ > 0,
namely if a nonzero θ implies a positive mean score.

All the nontechnical difficulties in testing are already in composite parametric
hypotheses, although they are traditionally ignored. Suppose that the general fam-
ily is defined as P = {P(η,θ) : θ ∈ Rq, η ∈ Rp} so that the general log-density takes
the form � = �(·,P(η,θ)), which for simplicity we write �(η, θ).

Suppose first that q = 1 < p. The null hypothesis is the restricted family P0 ≡
{P(η,0), η ∈ Rp}. The null set can be approximated locally by the tangent space
associated with the null hypothesis,

•
P 0(P0) = span

{
∂�(η0,0)

∂ηj

: 1 ≤ j ≤ p

}
.(2)

The score function of the alternative is �̇ ≡ ∂�(η0,0)/∂θ . However, part of this
score is in fact in the null space. Therefore, the efficient score is that part that is
left by removing contributions from directions in the tangent space,

�∗ = ∂�(η0,0)

∂θ
−

p∑
j=1

aj (η,00)
∂�(η0,0)

∂ηj

,

where the aj ’s are projection (least squares) weights; namely {aj (η0,0)} mini-
mize ‖�̇ − ∑p

j=1 aj (η0,0) ∂�(η0,0)/∂ηj‖2
0. If q = 1 and η̂ is a

√
n-consistent

estimator of η under H , then the Neyman [21] C(α) test statistic is T =
n−1/2 ∑n

i=1 �∗(Xi, η̂,0).
When q > 1 = p, P = {Pθ : θ ∈ Rq}, the departure can happen in different di-

rections. The tangent space
•
P (P0) is the linear closure of {∂�/∂θj : j = 1, . . . , q},

and a standard test statistic is

T = 1

n

[
n∑

i=1

∇ϑ�(Xi)

]′
I−1

0

[
n∑

i=1

∇ϑ�(Xi)

]
,

where I0 is the information matrix. The Rao tests, which are called Lagrange
multiplier tests in econometrics, have the advantage of making use of estimates of
the statistical model only under the null hypothesis. In contrast, Wald tests [27]
and likelihood ratio tests are based on comparing estimates of the model under
alternatives with those of the model estimated under the null. In the parametric
context, to first order, both Wald and likelihood ratio tests are equivalent to score-
based tests.

It is important to note that T is just one way of combining the different test
directions. There is nothing magic in the Mahalanobis distance. Suppose that we
can rank the alternative one-dimensional models for which h1, . . . , hq are score
functions in order of plausibility. If they are orthogonal, it is plausible to use
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Ta ≡ ∑q
j=1 λ2

j (n
−1/2 ∑n

i=1 hj (Xi))
2 where 0 < λ1 < · · · < λp reflect the relative

importance of the hj . In general we would arrive at

Ta = 1

n

[
n∑

i=1

h̃(Xi)

]′
	
−1

0 	

[
n∑

i=1

h̃(Xi)

]
,(3)

where 	 = Diag(λ1, . . . , λp).
Another alternative is to use the union-intersection principle of Roy [25], to

obtain

Tb = max
1≤j≤p

∣∣∣∣∣ λj√
n

n∑
i=1

hj (Xi)

∣∣∣∣∣.(4)

In general, any norm of the vector (h1, . . . , hq) could be used as a test statistic.

2.2. Semiparametric essentials. When the hypotheses are composite and
semiparametric, the collection of score functions that generalize (1) and (2) de-
pends on P , and no longer consists of Euclidean spaces.

Let Q ={Pθ : θ ∈ R} ⊂ P denote a regular one-parameter submodel with P0 the
true distribution. Clearly, the score in the model Q, hQ ≡ �̇ depends on Q. A com-
posite hypothesis P is the union of many, usually an infinite number of such Q’s.

The relevant set of (alternative) scores is the tangent space
•
P (P0) defined as the

linear closure of all the associated scores hQ—see, for instance, [3], Chapter 2, for
details.

We parameterize the model by P = {P(α,β) :α ∈ A,β ∈ B} where A, B are
subsets of function spaces, and the null hypothesis is H :β = 0. Define the “full,”
“null” and “alternative” tangent spaces (see [3], page 70):

•
P (α,β) = tangent space of the model P at P(α,β),

•
P (α,0) = tangent space of

{
P(α,0) :α ∈ A

}
at P(α,0),

•
P ⊥

0 (α,0) = orthogonal complement of
•
P 0(α,0) in

•
P (α,0).

That is,
•

P 0(α,0) ⊥ •
P ⊥

0 (α,0) and
•

P (α,0) = •
P (α,0) ⊕ •

P ⊥
0 (α,0).

The space
•
P 0(P0) captures the directions of variation from P0 that are consis-

tent with the null hypothesis of interest. To test θ = 0, we should remove from any

�̇ ∈ •
P (P0) its component that is actually consistent with the null hypothesis and

is in P0(P0). Therefore, the effective direction of interest for the alternative Q is
given by efficient score function

�∗(·,P0) ≡ �̇(·,P0) − �(�̇,α), �̇(·,P0) ∈ •
P (P0),

where �(·, α) is the projection operator from L2(Pα) to the subspace
•
P 0(Pα)

of L0
2(Pα), the space of square integrable functions with mean zero under Pα .
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NOTATION. We write Q(h) for
∫

hdQ, and Pn for the empirical distribution
function.

3. Score tests.

3.1. The score process and the testing paradigm. The above ideas motivate
our general testing paradigm.

Let 
 be some index set, and let h ≡ h(γ,α) ∈ L0
2(Pα), γ ∈ 
, α ∈ A, be

some test function. Recall that A is the parameter space under the null. The score
process is

Zn(γ,α) ≡ 1√
n

n∑
i=1

�⊥(h,α)(Xi),

where �⊥ is the projection from L0
2(Pα) to

•
P ⊥

0 (α,0).

 is an index set, pointing to a direction h(γ,α) in the tangent space, or more

generally in L0
2(P0), such that {h(·, α)} is not too big, say a universal Donsker

class. As we shall see in examples, the reason for making h depend on α also
is that it is natural to have the family of scores depend on where we think we are
in A. To avoid technicalities, we assume that for all x and α, hγ (x,α) ∈ l∞(
), the
space of all bounded real-valued functions on 
. We may write hγ (α), suppressing
dependence on x.

In general, Zn(γ,α) is not computable given the data, but if α̂ ∈ A is an estimate
of α we can consider

Ẑn(γ ) ≡ Zn(γ, α̂)

defined on 
. If α̂ is an MLE, Ẑn simplifies as in the parametric case to

ˆ̂
Zn(γ ) = √

n(Pn − Pα̂)
(
hγ (·, α̂)

)
since Pn(v) = 0 for all v ∈ •

P 0(α̂) is a restatement of the likelihood equations. In

particular, Pn(�(h, α̂)) = 0. We will also consider ˆ̂
Zn more generally for α̂ an

efficient estimate in the sense of [3], Chapter 5, pages 179–182.

We think of Ẑn(·), ˆ̂
Zn(·), and so on as stochastic processes defined on 
 related

to empirical processes—see [26], for instance. We shall use Ẑn and ˆ̂
Zn to construct

tailor-made tests.
Let A0 ⊂ A be a neighborhood of the true α0 where A is a metric space with

metric ρ. As above, we write P0 for Pα0 , and so on. We always require

Zn(·, α0) ⇒ Z(·, α0)(5)

under Pα0 , for all α0 ∈ A0, in the sense of weak convergence for l∞(
)-valued
variables, where Z(·, α0) is a mean-zero Gaussian process with

cov
(
Z(γ1, α0),Z(γ2, α0)

) = cov0(h1, h2) − cov0
(
�(h1, α0),�(h2, α0)

)
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with the obvious convention in notation. (To be exact, we should be speaking of
outer probabilities since we interpret weak convergence in the sense of Hoffman–
Jørgensen. But measurability issues can be dealt with easily in the situations we
are interested in and we ignore them in the future.) The property we want is

ˆ̂
Zn or Ẑn(·) ⇒ Z(·, α0)(6)

in the same sense as above.
We propose to base our tests on the score process, at least conceptually. What

(6) will give us is the weak convergence of statistics of the form T (Ẑn(·)) where
T : l∞(
) → R continuously. Possibilities are

Tµ ≡
∫

Ẑ2
n(γ ) dµ(γ )(7)

for µ a finite measure on T , or

TK ≡ sup



|Ẑn(γ )|(8)

or more general µ norms of |Ẑn|, or even α-dependent µ’s which are suitably

continuous in α. By taking the span {h(γ,α) :γ ∈ 
} dense in
•

P (α,0) for all α,
and µ with support 
, we can expect consistency against all alternatives. We will
illustrate further in the examples of the next section. A simple example is the fol-
lowing.

EXAMPLE 3.1 (Goodness-of-fit statistics). Consider testing the null hypoth-
esis that a distribution on R is P0 against “all” alternatives, namely where
•
P (P0) = L0

2(P0). We consider the family of directions hγ (·) = 1(· ≤ γ) − F0(γ),
γ ∈ R, where F0 is the cumulative distribution function of P0. The following
two statistics arise in association with those above. Associated with (3) is the
familiar Cramér–von Mises (CvM) goodness-of-fit statistic, Ta = n

∫
(Fn(γ ) −

F0(γ ))2 dF0(γ ), where Fn is the empirical distribution function, and the weighting
measure is µ = F0. Corresponding to (4) is the familiar Kolmogorov–Smirnov (KS)
goodness-of-fit test statistic, Tb = supγ |√n(Fn(γ ) − F0(γ ))|. Note that these hγ

here are typically chosen because we start with the cumulative distribution func-
tion as our representation of the probability P , not because of a desire for power
in clearly defined directions (which is the result).

3.2. General theorems. We close this section with some general theorems giv-
ing essentially the minimal conditions under which our heuristics for test statis-
tic construction and critical value setting are justified. Checking the conditions of
these theorems is the major difficulty.

Here are the conditions we use for our theorems. The estimate α̂ is such that for
P ≡ P0 ≡ Pα0 :
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(M0) {hγ (·, α0) − �(hγ (·, α0), α0) :γ ∈ 
} = {�⊥(hγ (·, α0)) :γ ∈ 
} is a uni-
versal Donsker class.

(M1) ‖(Pn − P0)(�(hγ (·, α̂), α̂) − �(hγ (·, α̂), α0))‖∞ = oP (n−1/2).
(M2) sup{‖(Pα̂ − P0)hγ (·, α) + P0�(hγ (·, α), α̂)‖∞ :α ∈ A} = oP (n−1/2).
(M3) ‖(Pn − P0)(hγ (·, α̂) − hγ (·, α0))‖∞ = oP (n−1/2).
(M4) ‖(Pα̂ − P0)(hγ (·, α̂) − hγ (·, α0))‖∞ = oP (n−1/2).
(M5) ‖(Pα̂ − P0)hγ (·, α0) − (Pn − P0)�(hγ (·, α0), α0)‖∞ = oP (n−1/2).

NOTES. 1. (M3) and (M4) are automatically satisfied if hγ (·, α) does not de-
pend on α.

2. If H0 ≡ {hγ (·, α0) − Pα0hγ (·, α0) :γ ∈ 
} is a Donsker class, showing that
{�(h,α0) :h ∈ H0} is also Donsker is usually not hard. For instance, suppose �

preserves order, �(h1, α0) ≤ �(h2, α0) if h1 ≤ h2. If H ≡ {hγ (·, α0) :γ ∈ 
} sat-
isfies the bracketing entropy condition of Theorem 2.8.4, page 172, of [26], then
since �(·, α0) is L2(P0) norm reducing, {�(h,α0) :h ∈ H0} also satisfies the same
condition. Thus (M0) is usually not difficult.

3. (M5) says that α̂ is efficient under H , a generalization of the requirement that
α̂ be (a regularly behaving) MLE—see [3], pages 176–182.

Here are two theorems.

THEOREM 3.1. If (M0), (M3), (M4) and (M5) hold, then for all α0,

Zn(·, α0) ⇒ Z(·, α0),(9)

ˆ̂
Zn(·) = Zn(·, α0) + oP0(1),(10)

and hence,

ˆ̂
Zn(·) ⇒ Z(·, α0).(11)

PROOF. By construction and (M3)

ˆ̂
Zn(γ ) = n1/2{

(Pn − P0)
(
hγ (·, α̂)

) − (Pα̂ − P0)
(
hγ (·, α̂)

)}
= n1/2{

(Pn − P0)
(
hγ (·, α0)

) − (Pα̂ − P0)
(
hγ (·, α̂)

)} + oP (1)

= n1/2{
(Pn − P0)

(
hγ (·, α0)

) − (Pα̂ − P0)
(
hγ (·, α0)

)} + oP (1)

by (M4). Finally by (M5),

ˆ̂
Zn(γ ) = n1/2{

(Pn − P0)
(
hγ (·, α0) − �

(
hγ (·, α0), α0

))} + oP (1),

which is just (10). Note that oP (1) is interpreted here in the sense of ‖ · ‖∞ on
functions of γ . Conclusions (9) and (11) follow immediately from (M0) and (10).

�
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THEOREM 3.2. If (M0)–(M3) hold, then

Ẑn(γ ) = Zn(γ ) + oP0(1).

The proof appears in the Appendix.
Condition (M2) is implied by the following two more easily checkable condi-

tions. See Lemma A.1.

(N1) (i) α̂ is consistent in the Hellinger metric ρH given by ρ2
H(α1, α2) =∫

(
√

dPα1 − √
dPα2 )2.

(ii) Let A0 be a fixed Hellinger ball around α0 and suppose that µ � Pα ,
α ∈ A0, and with µ a probability measure. Let ‖·‖µ be the L2(µ) norm.
Write s(α) = √

dPα/dµ, ŝ ≡ s(α̂), s0 ≡ s(α0), assume

‖(ŝ − s0)
2/ŝ‖2

µ =
∫

(s0/ŝ − 1)4ŝ2 dµ = oP (n−1).

(iii) Let �µ denote projection in L2(µ) onto the tangent space at s(α0) of
L = {s(α) :α ∈ A}. Assume, ‖ŝ − s0 − �µ(ŝ − s0)‖µ = oP (n−1/2).

(N2) (i) sup{‖hγ (·, α)‖∞ :γ ∈ 
,α ∈ A0} < ∞.
(ii) sup{‖�(hγ (·, α))‖∞ :γ ∈ 
,α ∈ A0} < ∞.

NOTE. In smooth parametric models (N1)(iii) holds if ‖ŝ−s0‖µ = oP (n−1/4),
‖s − s0 − �µ(s − s0)‖µ = O(‖s − s0‖2

µ).
We may wish to consider (see below) statistics in which the averaging mea-

sure also depends on α, say
∫

Ẑ2
n(hγ ) dµ(γ, α̂). This too can be dealt with by

a condition such as α → µ(·, α) is uniformly continuous on H in the bounded
variation topology on the finite signed measures on 
. More generally, we may
simply consider any test statistic of the form F(Ẑn, α̂), where F : l∞(
)×A → R

is continuous in the l∞ × ρ topology.

3.3. Setting critical values: the bootstrap. There is a novel issue that arises
in the context of composite hypotheses. The statistic Ẑn ≡ 1√

n

∑n
i=1 l∗(Xi,Pα̂)

arising from the situation where there is only one direction of departure is, if Pα

is true, an approximation to Zn(α) ≡ 1√
n

∑n
i=1 l∗(Xi,Pα). Since Zn(α) has an

N (0, I (Pα)) limiting distribution, a Gaussian critical value using I (Pα̂) is appro-
priate. On the other hand, if the null hypothesis is simple, critical values for any
statistic can be obtained by simulation. But in the general situation of composite
hypotheses, that we now consider, unless there is invariance, the most plausible
way of setting critical values is by a bootstrap. The natural choice is to simulate
from Pα̂ . That is, let S(γ,α) = �⊥(h,α), where h ≡ h(γ,α), and let

˜̂
Zn(γ ) = n−1/2

n∑
i=1

S(γ, α̂)(X̃i),
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where the X̃i’s are i.i.d. from Pα̂ . We expect that if (6) holds, ˜̂
Zn ⇒ Z(·, α0) in P0

probability. That is, the Prohorov distance between the Pα̂ distribution of ˜̂
Zn and

the distribution of Ẑα tends to 0 in Pα probability.

To ensure that this bootstrap method works for both Ẑn and ˆ̂
Zn we need to

simply replace conditions (M0)–(M5) by versions uniform in α0 ∈ A0. We leave a
formal statement to the reader. Alternatively, in these cases, as has been explored
in [2] and [4], it is also possible to use the m out of n bootstrap, simulating the
distribution of the statistic for samples of size m by drawing subsamples of size m

from the original sample, where m → ∞, m/n → 0.
There is another way of bootstrapping discussed in [5] which may be simpler

since it only involves resampling. Let

Ẑ∗
n(·) = n−1/2

n∑
i=1

(
S(γ, α̂∗)(X∗

i ) − S(γ, α̂)(Xi)
)
,

where α̂∗ ≡ α̂(X∗
1, . . . ,X∗

n) and X∗
1, . . . ,X∗

n are i.i.d. from the empirical distri-
bution Pn ≡ n−1 ∑n

i=1 δXi
. The appropriate heuristic is that again if (6) holds,

Ẑ∗
n ⇒ Z(·, α0) in P0 probability.
This bootstrapping method is more problematic to check. Essentially what is

needed for Ẑ∗
n to obey (3.5) are conditions given in [5]. For these we make the

following identification: Suppose α̂ = α(Pn) where α :M → A, α(Pα) = α for
Pα ∈ P and M is the set of all probabilities. Let T :M → L(H) × L(H) be
defined for H a Banach space of functions containing {hγ :γ ∈ 
} and L(H) the
set of bounded linear functionals on H by

T (P )(h) =
(∫

�
(
h,α(P )

)
dP,

∫
hd

(
P − Pα(P )

))
.

Note that T (Pα) ≡ 0 so that the hypothesis is contained in {P :T (P ) ≡ 0}. Now
put on T (P ) the conditions specified by Bickel and Ren [5].

3.4. Power. It is easiest to see what happens to the processes on which we
build our tests in the case where alternatives converge to P0 in the n−1/2 scale.
Specifically suppose {Pt : |t | < 1} is a one-dimensional regular parametric model

through P0 with score function g(·) such that g /∈ •
P 0(P0), that is, it is possible

to discriminate {Pt , t �= 0} from P0 at the n−1/2 scale. Then, let Zg(hγ ,0) be the
Gaussian process with the same covariance structure as Z(hγ ,0) but with

E0Zg(hγ ,0) =
∫ (

hγ − �(hγ ,α0)
)
g dP0.

Evidently, Zg(hγ ,0) = Z(hγ ,0), if g does not have a component orthogonal

to
•
P 0. Define Zg(hγ ,α) similarly for g ∈ L2(Pα), g /∈ •

P 0(Pα). The following
result is an immediate consequence of Le Cam’s LAN theory; see, for example,
his “third lemma” [12] and our theorems.
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THEOREM 3.3. Suppose g ∈ •
P ⊥

0 (Pα) is, for each α, the score function of a
regular model through Pα . Assume the sufficient conditions of Theorems 3.1 or 3.2

hold. Then Ẑn(·) tn⇒ Zg(·, α), where
tn⇒ is weak convergence under Pg,tn , where

{Pg,t : |t | < 1} is a regular model passing through P0 = Pα , with score function g

at 0, and tn = tn−1/2 for fixed t .

Suppose q is bowl-shaped and symmetric and its discontinuity set has probabil-
ity 0. That is, if C ≡ {z :q is continuous at z}, P [Z(·, α) or Zg(·, α) /∈ C] = 0, and
q : l∞(
) → R,q(z) = q(−z), q(λz) strictly increasing in λ for λ > 0 and all z.
Then, if, as we assume, Z(·, α) is tight, we have

E
(
q
(
Z(·, α)

)) ≤ E
(
q
(
Zg(·, α)

))
.(12)

Equation (12) follows from Anderson’s theorem if {G1, . . . ,Gk} forms a partition
of 
, Z(γ,α) is replaced by Z(k)(γ,α) ≡ ∑k

j=1 Z(γj ,α)1(γ ∈ Gj) and Zg is

similarly approximated. Now ‖Z(k)
g (·, α) − Zg(·, α)‖∞

P→0 as k → ∞, for all g

including g = 0, and (12) follows in general.
It holds that test statistics of the form (7)–(8) have

lim inf
n

Pg,tn[Tn ≥ c] > lim inf
n

P0[Tn ≥ c]

for tn = λn−1/2, all λ > 0, c as desired, and for all g such that E0Zg(hγ ,0) �= 0
for some γ .

3.5. Consistency. Consistency against fixed P /∈ P0 can be obtained by a
strengthening of conditions—though the strengthening we now give is overkill.

Suppose that P is as above. For a suitable α(P ) ∈ A call (MP j), j = 0, . . . ,5,
condition (Mj ) with P0 replaced by P and α0 replaced by α(P ). Define the
process ZP (·) as the Gaussian process with mean zero and the covariance structure
given in (5) with �(·, α0) replaced by �(·, α(P )) and P0 replaced by P . Then the
conclusion of Theorems 3.1 and 3.2 holds if P0 is replaced by P with:

(i) Ẑn(hγ ) replaced by Ẑn(hγ ) − √
n

∫
hγ (·, α(P )) dP ;

(ii) Z(·, α0) replaced by ZP (·).
We conclude that |Ẑn(hγ )| P→ ∞ if

∫
hγ (·, α(P )) dP �= 0. Thus consistency holds

for Tn given by (7) if
∫

hγ (·, α(P )) dP �= 0 for some γ and all P �= P0. Consis-
tency for other statistics can be reasoned analogously.

4. Examples. In this section we consider a few important examples in which
we show how our notions produce tests which have appeared in the literature and
some new ones. Our point is to illustrate the ideas of the score process and the
tailor-made tests.
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4.1. Testing goodness of fit to a composite parametric hypothesis. Let
{Pθ : θ ∈ � ⊂ Rd} be a regular parametric model and let θ̂n be a regular ([3],
pages 18–19) estimate of θ under H . We test H against a saturated model such

that
•
P (P ) = {a ∈ L2(P ) :Ea(X1) = 0}:

•
P 0(Pθ ) = span

{
∂l

∂θ1
(X1, θ), . . . ,

∂l

∂θd

(X1, θ)

}
,

where l = logp(x, θ) is the log-likelihood. Then

•
P ⊥

0 (Pθ ) =
{
a(X1) −

d∑
j=1

cj (a, θ)
∂l

∂θj

(X1, θ) :a ∈ L2(Pθ ),Eθa(X1) = 0

}

and cj (a, θ) is the coefficient of the projection of a on
•
P 0(Pθ ), defined by mini-

mizing

Eθ

(
a(X1) −

d∑
j=1

cj (a, θ)
∂l

∂θj

(X1, θ)

)2

.

Identifying α with θ , h = hγ (·, θ), we obtain

S(γ, θ) = h − Eθh(X1) −
d∑

j=1

cj (h, θ)
∂l

∂θj

(X1, θ).

The corresponding estimated score process is, for an estimate θ̂ , given by

Ẑn(h) = n−1/2
n∑

i=1

{(
h(Xi) − E

θ̂
h(Xi)

) −
d∑

j=1

cj (h; θ̂)
∂l

∂θj

(Xi, θ̂)

}
.

Suppose P0 is regular parametric, and more:

(R1) θ̂ is regular on �.
(R2) Suppose 
 is compact ⊂ R̄p , where R̄ = [−∞,∞], the processes (γ, θ) →

n1/2(Pn − P0)hγ (·, θ) are tight and supx,γ,θ |hγ (x, θ)| < ∞.
(R3) The map θ → h·(·, θ) is continuous in the norm on functions of (γ, x) given

by ‖ω‖2 = supγ

∫
ω2(x, γ ) dP0(x).

The following proposition is a consequence of Theorem 3.2. We check its con-
ditions using Lemma A.1. (M0) and (M1) hold and (N1)(i) and (N2) are imme-
diate. We can check (M2) via (N1) and (N2). Condition (N1)(iii) follows since
�µ(s(θ̂) − s(θ0)) =•

s (θ0)(θ̂ − θ0) + oP (θ̂ − θ0). Condition (N1)(ii) requires fur-
ther conditions. For instance, it follows if the likelihood ratio s(·, θ)/s(·, θ ′) is
uniformly bounded for θ, θ ′ within ε of θ0, a case which unfortunately excludes
the Gaussian, but the condition can be checked directly fairly easily for suitable θ̂ .
We have established
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PROPOSITION 4.1. If (R1)–(R3) and (N1)(ii) hold for a regular parametric
hypothesis and given estimate α̂, then Ẑn(·) ⇒ Z(·) where

cov
(
Z(h1),Z(h2)

) = covθ0

(
h1(X1), h2(X1)

) − cT (h1, θ0)I (θ0)c(h2, θ0),

where c = (c1, . . . , cd) and I is the Fisher information.

Versions of a result such as this one appear in [9] and [19] when the hγ are
indicators of half lines.

The corresponding result for the bootstrap process ˜̂
Zn is also valid as is that

for Ẑ∗
n . That is, both the parametric and the Bickel–Ren application of the non-

parametric bootstrap to testing can be used to set critical values.
Suppose h does not depend on α and we weaken (R1) to

(R1)′ θ̂ = θ + oPθ (n
−1/4) for all θ ∈ �.

The theorem will still hold provided that we have Cramér conditions on several
derivatives of the likelihood ensuring that the remainders in (N1) are quadratic
in θ̂ − θ0. Note that Proposition 4.1 enables us to plug in subefficient estimates
without affecting the properties of our tests.

PROPOSITION 4.2. If the hypothesis is regular parametric, (R1), (R2)
and (R3) hold and θ̂ is efficient in the sense of [3], page 43, then the conclusion of
Theorem 3.1 is valid.

PROOF. We need only check (M5) and (M4). The former follows from

sup
H

∣∣∣∣
∫

h(x)p(x, θ̂) dx −
∫

h(x)p(x, θ0) dx

−
∫

h(x)�̇(x, θ)(θ̂ − θ0)p(x, θ0) dx

∣∣∣∣
= oP (|θ̂ − θ0|),

and this requires in view of (R2) only that θ → p(·, θ) is L1 differentiable,
which is a consequence of regularity. The latter follows from regularity of P0 and
(R1) and (R3). �

Again with θ̂ , the MLE, results such as this one appear in [9] and [19]. The
uniformity required for both versions of the bootstrap can easily be imposed.

4.2. The Gaussian model. We specialize to one of the most important para-
metric hypotheses P = {N (µ,σ 2) :µ ∈ R,σ 2 > 0}. Here we naturally take
θ̂ = (X̄, σ̂ 2), the MLE’s. It is convenient to use the invariance properties of the
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hypothesis and take h(·, γ, θ) = hγ (
x−µ

σ
) if θ = (µ,σ ). With this choice we are

considering

ˆ̂
Zn(γ ) = 1√

n

n∑
i=1

(
hγ

(
Xi − X̄

σ̂

)
−

∫ ∞
−∞

h(z)ϕ(z) dz

)
.

If {hγ = 1(−∞, γ ), γ ∈ R} ≡ H0, then satisfaction of (R1)–(R3) is easy. Us-

ing ˆ̂
Zn as above we arrive at the common test statistics of Kac, Kiefer and

Wolfowitz [17]: the Kolmogorov–Smirnov type,

sup
H0

| ˆ̂Zn(γ )| = sup
x

∣∣∣∣Fn

(
x − X̄

σ̂

)
− �(x)

∣∣∣∣,
and the Cramér–von Mises type,∫ ∞

−∞
ˆ̂
Z2

n(hx) d�(x) =
∫ ∞
−∞

(
Fn

(
x − X̄

σ̂

)
− �(x)

)2

d�(x),

where Fn is the empirical d.f. H0 is a well-known universal Donsker class and the
classical limiting result for Cramér–von Mises tests given in [17] follows. Tests can
be implemented for both statistics using either of the two bootstraps. Invariance
here implies that only simulation under N (0,1) is required. Other classes of tests
are covered, for example, tests based on the empirical characteristic function [11].

We can also tailor statistics more carefully. For example, we can consider the
two Gaussian mixture models as the alternative:

(1 − ε)�

(
t − µ

σ

)
+ ε�

(
t − µ − �

σ

)
, µ,� ∈ R,σ > 0,0 < ε ≤ 1

2
.

At least formally the tangent set
•
P (P0) (see [3], page 50) at ε = 0, θ = (µ,σ ) is

just the set span{X1 − µ, (X1 − µ)2} ∪ {(exp{ �
σ 2 (X1 − µ) − �2

2σ 2 } − 1) :� ∈ R}.
We are led to consider H0 = {exp{λx − λ2

2 } :λ ∈ R} and statistics such as

Tn ≡ sup
λ

∣∣∣∣∣ 1√
n

n∑
i=1

(
eλ((Xi−X̄)/σ̂ )−λ2/2 − 1

)∣∣∣∣∣.
Unfortunately, H0 is not a Donsker class and Tn

P→ ∞ under H ; see [1]. Our
heuristics and Theorem 3.1 apply if we restrict λ to a compact set. The power
against n−1/2 alternatives of such Tn persists. Note that Tn can be viewed as a
diagnostic since the maximizing value of λ indicates where a second component
might be.

We can also consider versions of the Cramér–von Mises approach reflecting
our goals more precisely. For instance, consider a wavelet basis for [0,1] written
lexicographically ωij in order of scale and then within scale with ω11 ≡ 1. Then
given that we care more for departures at lower scales, consider λij = λi ∼ ρi ,
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1 ≤ j ≤ 2i , ρ < 1
4 . Since ‖ωij‖∞ = O(2i/2), if we let hij = ωij (�(·)), and

ht (x) ≡ ∑
i,j λijhij (x)hij (t), then ‖ht‖∞ ≤ M < ∞ and T = ∫ 1

0
ˆ̂
Z2

n(t) dt =∑
i,j λ2

ij [ ˆ̂
Zn(i, j)]2 where ˆ̂

Zn(i, j) ↔ hij falls under the statistics covered by The-
orem 3.2.

An interesting basis to consider is the set of normalized Hermite polynomials

hj (x) = (−1)j .
dj ϕ(x)

dxj /ϕ(x), j ≥ 3. Here h3 and h4 correspond to skewness and
kurtosis so that it is attractive to make λ3 = λ4 = 1 and λj decrease rapidly further
on.

We stress again that Propositions 4.1 and 4.2 can be applied to all these diverse
tests.

4.3. Independence. One of the most important semiparametric hypotheses
corresponds to X = (U,V ) ∼ P , H :P = PU × PV , U and V are indepen-
dent, U,V ∈ R. In this case the NPMLE of P under H , known to be efficient,
is Pn = PnU × PnV , where PnU and PnV are the empirical marginals of U and V ,
and is known to be efficient ([3], Chapter 5). Thus

ˆ̂
Zn(γ ) = √

n
(
Pn − (PnU × PnV )

)
(h)

= n1/2

{
1

n

n∑
i=1

h(Ui,Vi, γ, P̂n) − 1

n2

n∑
i=1

n∑
j=1

h(Ui,Vj , γ, P̂n)

}
.

Natural hj (u, v) here are of the form h1γ (u)h2γ (v). If we take hγ (u, v) =
1Qγ (u, v) = 1Q1γ

(u)1Q2γ
(v), where Qj = Q1γ × Q2γ , Qjγ = (−∞, γj ],

j = 1,2, we arrive at the familiar

ˆ̂
Zn(γ ) = √

n
(
Fn(γ1, γ2) − FnU(γ1)FnU(γ2)

)
,

where Fn,FnU ,FnV are the appropriate empirical d.f.’s.
Application of Theorem 3.1 here is appropriate and easy. (M0) simply says

γ → 1((x, y) ∈ Qγ ) − FU(γ1)1(y ≤ γ2) − FV (γ2)1(x ≤ γ1) is a Donsker class,
essentially a statement about the bivariate empirical process. Since hγ does not
depend on α, (M3) and (M4) are immediate. Finally, (M5) is well known for this
process—see, for instance, [3].

If we take µα(dγ ) = dFU(γ1) dFV (γ2) with α = (FU ,FV ) we obtain the
Kiefer–Wolfowitz statistic

T = n

∫ ∫ (
Fn(γ1, γ2) − FnU(γ1)FnV (γ2)

)2
dFnU(γ1) dFnV (γ2).

If we take T = supγ | ˆ̂Zn(γ1, γ2)| we obtain the Kolmogorov–Smirnov version of
the Kiefer–Wolfowitz statistic.

Invariance under monotone transformation of H suggests

h(u, v, γ,PU × PV ) = 1Qj

(
FU(u),FV (v)

)
,(13)
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where FU,FV are the c.d.f.’s of U,V , and leads to ˆ̂
Zn(γ ), a linear rank test statis-

tic,

ˆ̂
Zn(γ ) = n−1/2

n∑
i=1

hγ

(
Ri

n
,
Si

n

)
− 1

n3/2

n∑
i=1

n∑
j=1

hγ

(
i

n
,
j

n

)
,

where Ri is the rank of Ui among the U ’s and Si is the rank of Vi among the V ’s.
These are the building blocks of the Kallenberg–Ledwina [18] statistics, though
the ones they propose are of non-n−1/2 consistent type. We leave it to the reader to
construct tests with power against all n−1/2 alternatives and directions that (s)he
prefers.

PROPOSITION 4.3. Suppose hγ is given by (13), α̂ is the NPMLE as specified
and α0 has continuous marginals. Then, (M0), (M3), (M4) and (M5) hold.

PROOF. In this case

�(h,α)(x, y) =
∫

h(x, v) dFV (v) +
∫

h(u, y) dFU(u)

− 2
∫

h(u, v) dFU(u)dFV (v),

where FU,FV ↔ α. So (M5) can be written

sup
γ

{∣∣∣∣
∫

hγ (x, y) d
(
FnU (x) − FU(x)

)
d
(
FnV (y) − FV (y)

)∣∣∣∣
}

= oP (n−1/2),(14)

where FnU is the empirical d.f. of U , F0U corresponds to α0, and so on. For this
condition and all subsequent ones, we can assume, w.l.o.g., that α0 is the uniform
distribution on the unit square by making separate probability integral transforms.
But (14) is just

sup
0≤γ1≤1

|FnU (γ1) − γ1| sup
0≤γ2≤1

|Fnv(γ2) − γ2| = OP (n−1),

and (M5) follows. (M0) has been discussed in connection with hγ . For (M3) write

(Pn − P0)
(
hγ (·, α̂) − hγ (·, α0)

)
= (Pn − P0)

(
1
(
(u, v) ≤ (

F−1
U (γ1),F

−1
V (γ2)

)) − 1
(
(u, v) ≤ (γ1, γ2)

))
,

where (F̂U , F̂V ) ↔ α̂. Now, by Glivenko–Cantelli sup |F̂−1
U (γ1) − γ1| → 0 and

sup |F̂−1
V (γ2)−γ2| → 0. So (M3) follows from the weak convergence of n1/2(Pn−

P0)(hγ ). (M4) is argued similarly. �

Application of the type I bootstrap is straightforward when FU and FV are con-
tinuous under α0: In view of the invariance, we need only simulation under the
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uniform distribution on the unit square. Resampling from the empirical (type II) is
also possible but the argument is more delicate.

This result can easily be extended to more general h1γ (u)h2γ (v) and we
can also tailor tests here. For instance, consider the tensor wavelet basis on
[0,1] × [0,1], {hi,j1,j2} where i corresponds to scale and (j1, j2) to the location.
We can again suppose that departures from independence at lower resolution are
more significant and proceed as in Section 4.1 to form

T =
∫
I 2

(∫
I 2

∑
i,j1,j2

λihi,j1,j2

× (
FnU (x),FnV (y)

)
d(Pn − P̂n)(x, y)hi,j1,j2(u, v)

)2

dudv

= ∑
i,j1,j2

λ2
i

(∫
hi,j1,j2

(
FnU (x),FnV (y)

)
d(Pn − P̂n)(x, y)

)2

,

where I 2 is the unit square and P̂n = PnU × PnV . The λi can be chosen so as to
weight the lower-resolution terms as one pleases.

4.4. Copula models. The standard copula model is X = (U,V ), U,V ∈ R as
above, where for some monotone strictly increasing transformations a(·) :R → R,
b(·) :R → R the vector (a(U), b(V )) ∼ Pϑ , ϑ ∈ �, a regular parametric model.
A natural model to consider here is the bivariate Gaussian copula, where under ϑ ,
X has standard normal marginals with correlation ϑ , −1 < ϑ < 1. (Assuming
unknown means and variances adds nothing since making a and b arbitrary makes
these parameters unidentifiable.) In such a model we consider two problems:

(i) H :P ∈ P0 = {Pϑ,a,b :ϑ ∈ �,a, b general}, the copula model hypothesis.
(ii) H :ϑ = ϑ0. K :ϑ �= ϑ0 within P0.

The first hypothesis requires use of efficient estimates of (a, b,ϑ). These are
in general difficult to construct. Inefficient estimates are readily computable, but
application of Theorem 3.1 requires computation of �(·, α) which can be char-
acterized by Sturm–Liouville equations and computed numerically (see [3], pages
172–175). We do not pursue this interesting special case further.

On the other hand, by our assumptions in Section 3, tests of (ii) are nat-
urally based on hγ (·, α) = hγ (FU(·),FV (·)), where the {hγ (x, y), γ ∈ Rp}
are scores of the parametric model {Pϑ : θ ∈ �} at ϑ = ϑ0. If efficient esti-

mates F̂U , F̂V under H are used, then ˆ̂
Zn(γ ) is the asymptotically most pow-

erful score test in direction γ . Otherwise, if, say, we use the empirical d.f.’s
FnU and FnV , we can construct �(·, γ ), the projection on the tangent space of
Pϑ0 = {P(ϑ0,a,b) :a, b, arbitrary} and use Ẑn. Finally, if efficient estimates of ϑ
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under P are available, these can be used in the obvious way, though in general
such estimates will be difficult to obtain. These hypotheses of finite codimension
are the subject of Choi, Hall and Schick [8]. If we specialize to the Gaussian cop-
ula model and consider H :ρ = 0, the independence hypothesis, it is easy to see
that the single asymptotically most powerful test is to use the normal score rank
statistic

T ≡ 1√
n

n∑
i=1

�−1(Ri/n + 1)�−1(Si/n + 1).

The reason here is that FnU , FnV are efficient in this case—as we have already
seen. Remarkably, Klaassen and Wellner [20] show that T is the asymptotically
most powerful score statistic for H :ρ = ρ0, any ρ0, by showing effectively that

T = 1√
n

n∑
i=1

h
(
�−1FU(Ui),�

−1FV (Vi), ρ0
) + oP (1),

where h(�−1FU(Ui),�
−1FV (Vi), ρ0) is orthogonal to the tangent space

•
P 2(ρ0,

(a0, b0)), a0 = �−1FU , b0 = �−1FV .
The development of tailored tests for independence in copula models in general

should be the same as for independence in general.

APPENDIX

Proof of Theorem 3.2. We need

LEMMA A.1. If (N1) and (N2) hold, then so does (M2),

sup
{∥∥Pα̂(h) − P0(h) + P0

(
�(h, α̂)

)∥∥∞ :h ∈ H
} = oP (n−1/2).

PROOF. By (N1) we may w.l.o.g. assume α̂ ∈ A0. For simplicity let µ ≡ P0
so that s0 ≡ 1. Obvious modifications suffice if µ � P0. Then

Pα̂(h) − P0(h) =
∫

hŝ2 dµ −
∫

hdµ

(A.1)
= 2

∫
h(ŝ − 1) dµ +

∫
h(ŝ − 1)2 dµ.

Since Pα̂�(h, α̂) = 0,

P0
(
�(h, α̂)

) = −
∫

�(h, α̂)(ŝ2 − 1) dµ

(A.2)
= −2

∫
�(h, α̂)(ŝ − 1) dµ +

∫
�(h, α̂)(ŝ − 1)2 dµ.

But, since Pα̂ � P0 we have by [3], formula (4b), page 50,

�(h, α̂) = ŝ−1�(hŝ, α0).
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Therefore, if ŝ−1
ŝ

∈ L2(µ),∫
�(h, α̂)(ŝ − 1) dµ =

∫
�(hŝ, α0)

(ŝ − 1)

ŝ
dµ

=
∫

hŝ�

(
ŝ − 1

ŝ
, α0

)
dµ.

Substituting in (A.2) we get after some manipulation

P0
(
�(h, α̂)

) = −2
∫

h�

(
ŝ − 1

ŝ
, α0

)
ŝ dµ +

∫
�(h, α̂)(ŝ − 1)2 dµ

= −2
{∫

h�(ŝ − 1, α0) dµ +
∫

h(ŝ − 1)�(ŝ − 1, α0) dµ.

−
∫

ŝ�

(
(ŝ − 1)2

ŝ
, α0

)
dµ

}
(A.3)

+
∫

�(h, α̂)(ŝ − 1)2 dµ

= −2(I + II + III) + IV.

We bound the last three terms in absolute value by

|II| ≤ M

∫
|ŝ − 1|�(ŝ − 1, α0) dµ ≤ M‖ŝ − 1‖2

µ ≤ M

∥∥∥∥(ŝ − 1)2

ŝ

∥∥∥∥
µ

,

|III| ≤ M

∥∥∥∥�
(

(ŝ − 1)2

ŝ
, α0

)∥∥∥∥
µ

≤ M

∥∥∥∥(ŝ − 1)2

ŝ

∥∥∥∥
µ

,

where M = supH {‖h‖∞ + ‖�(h,α0)‖∞} < ∞ by (N2).
Again, using (N2),

|IV| ≤ M‖ŝ − 1‖2
µ ≤ M

∥∥∥∥(ŝ − 1)2

ŝ

∥∥∥∥
µ

.

Combining (A.1)–(A.3) we obtain

Pα̂(h) − P0(h) + P0
(
�(h, α̂)

) = 2
∫

h
(
(ŝ − 1) − �(ŝ − 1, α0)

)
dµ

+ OP

(∥∥∥∥(ŝ − 1)2

ŝ

∥∥∥∥
µ

)

= OP

(
‖ŝ − 1 − �(ŝ − 1, α0)‖µ +

∥∥∥∥(ŝ − 1)2

ŝ

∥∥∥∥
µ

)

= oP (n−1/2)

by (N1) and the lemma follows. �
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PROOF OF THEOREM 3.2. Write ĥ for hγ (·, α̂) and h for hγ (·, α0). Then,

Ẑn(γ ) = n1/2(
Pnĥ − Pα̂ĥ − Pn�(ĥ, α̂)

)
= n1/2{(Pn − P0)(ĥ) − (Pα̂ − P0)(ĥ) − Pn�(ĥ, α̂)}
= n1/2(Pn − P0)

(
ĥ − �(ĥ, α̂)

) + oP (1)

by (M2). But

n1/2(Pn − P0)
(
ĥ − �(ĥ, α̂)

) = n1/2(Pn − P0)
(
h − �(h,α0)

) + oP (1)

= Zn(γ,α0) + oP (1)

by (M3) and (M1). (The equivalences hold uniformly in γ by assumption.) �
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