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Sharp failure rates for the bootstrap

particle filter in high dimensions

Peter Bickel1 , Bo Li2 and Thomas Bengtsson3

University of California-Berkeley, Tsinghua University and Bell Labs

Abstract: We prove that the maximum of the sample importance weights
in a high-dimensional Gaussian particle filter converges to unity unless the
ensemble size grows exponentially in the system dimension. Our work is mo-
tivated by and parallels the derivations of Bengtsson, Bickel and Li (2007);
however, we weaken their assumptions on the eigenvalues of the covariance
matrix of the prior distribution and establish rigorously their strong conjec-
ture on when weight collapse occurs. Specifically, we remove the assumption
that the nonzero eigenvalues are bounded away from zero, which, although
the dimension of the involved vectors grow to infinity, essentially permits the
effective system dimension to be bounded. Moreover, with some restrictions on
the rate of growth of the maximum eigenvalue, we relax their assumption that
the eigenvalues are bounded from above, allowing the system to be dominated
by a single mode.
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1. Introduction

Bayesian filtering methods are a commonly employed tool for combing physical
models and data. The filters treat the unknown system state as a random variable
and resolve its probability density conditional on the data (and the system dynam-
ics) through Monte Carlo sampling techniques. When applied sequentially in time,
these methods are commonly referred to as particle filters ([8], [10]). For a diverse
collection of applications and an excellent introduction to the field in general, see
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the edited volume by Doucet [6]. The particle filter method relies heavily on a likeli-
hood based reweighting mechanism of the involved sample draws. This reweighting
scheme produces the so called importance weights, and these weights are the pri-
mary focus of our work. Specifically, in a Gaussian filter context, we examine the
behavior of the importance weights as a function of the system dimension and of
sample size.

The popularity of the particle filter is no doubt due to the flexibility of the
model framework to handle both non-linear and non-gaussian structures. However,
in spite of its generality, the method is not without flaws: the particle filter is
known to require large Monte Carlo ensembles and frequent resampling to estimate
the desired densities (cf., [9]). This drawback is particularly prevalent in higher
dimensional systems where the filter becomes unstable and quickly collapses onto
a single point mass. In recent work, for a single Bayes update step in a Gaussian
setting, Bengtsson, Bickel, and Li [3] give a derivation of the weight collapse as
a function of the system dimension and of sample size. To shed further light on
the weight collapse, this paper establishes conjectures (given in [3]) which make
their arguments fully rigorous. Just as significantly, we exhibit that collapse is a
function of the effective dimension (defined in Section 3), rather than the absolute
dimension. As in [3], our analysis is given in the context of a stylized Gaussian
example, but we conjecture (and simulations show) that our results are informative
for situations that depend on similarly defined reweighting schemes. The results
imply that to avoid collapse, the sample size must grow super-exponentially in the
effective dimension. We do not investigate refinements of particle filters methods,
such as simulated tempering [4], although our discussion in Section 2.1 suggests
that their approach is not a solution to avoid collapse in truly high-dimensional
settings.

Our work is outlined as follows. The next section describes the particle filter,
provides notation, and describes the use of the ensemble method for approximating
posterior densities. The main developments are then presented in Section 3, where
we give several results establishing the conditions under which the maximum sample
weight in a Gaussian particle filter converges to unity. All technical results are
proved in the Appendix. (We note that some material in Section 2.1 and Section 3
is given in [3], but is reproduced here for completeness.)

2. Model setting

2.1. The particle filter

Let Xt represent the unknown system state at time t, Yt be a noisy data mea-
surement of Xt, and let Yt represent all data up to and including time t. Based
on the data Yt and (some) knowledge of the time-evolution of the system state
from Xt−1 to Xt, we seek the posterior distribution p(Xt|Yt). We assume we have
available a random sample {Xf

t,i} of size n from the prior distribution p(Xt|Yt−1).
Associated with the prior sample is a set of weights {wf

i }. We assume further that
the likelihood density p(Yt|Xt) is computable for arbitrary Xt.

The particle filter seeks to recursively in time estimate the probability distri-
bution of the unknown state Xt. At each time t, the probability distribution is
represented by the sample ensemble {Xf

t,i, w
f
i }, and the distribution can be propa-

gated forward one time-step by evolving each Xf
t,i using the system dynamics. Once

new data Yt is available, Bayes theorem is used to adjust the weights based on how
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“close” the associated sample points are to the data. The following schematic de-
scribes the particle filter:

p(Xt|Yt−1), Yt
Bayes−→ p(Xt|Yt)

G(·)−→ p(Xt+1|Yt), Yt+1
Bayes−→ p(Xt+1|Yt+1).

Here, at time t (on the left), Bayes theorem combines p(Xt|Yt−1) and Yt to produce
p(Xt|Yt). The system dynamics, in the above represented by G(·) (middle), is used
to propagate p(Xt|Yt) one time step and this yields p(Xt+1|Yt). Bayes theorem is
then again employed to find the posterior p(Xt+1|Yt+1) (right).

In a particle filter, the above schematic is straightforwardly implemented (at least
conceptually) using a random sample. We note first that the change-of-variables
problem represented by the propagation of p(Xt|Yt) can be solved by evaluating
G(·) at each sample point. We will not discuss the implementation of the forecast
step here; instead, our focus is on the Bayes update step. As mentioned, the particle
filter implements the Bayes step by reweighting the prior sample according to the
likelihood. We note in passing that the particle filter may be derived as a (sequen-
tial) importance sampler (e.g., [2]) where the proposal distribution is given by the
prior and the target distribution is given by the posterior. In the schematic be-
low, which describes a bootstrap-likelihood filter, the prior sample is “converted”
to a posterior sample by resampling (with replacement) each member Xf

t,i with
probability proportional to wf

i × p(Yt|Xf
t,i), i.e.,

prior ensemble︷ ︸︸ ︷
{Xf

t,1, . . . , X
f
t,n}, Yt

resample−→
posterior ensemble︷ ︸︸ ︷
{Xu

t,1, . . . , X
u
t,n} .

Although the particle filter has been successfully applied to a variety settings, it
often produces highly varying importance weights. Remedies to stabilize the filter
include resampling (renormalizing) the involved empirical measure at regular time
intervals [8, 9] and marginalizing or restricting the sample space by conditioning on
a larger information set [10, 11]. Another approach is given by simulated tempering
[4], which makes use of the regularized likelihood p(Yt|Xf

t,i)
α, where 0 < α < 1.

However, as can be seen from our derivations, e.g. Proposition 3.1, a fixed α does not
alter the conclusion of collapse. Moreover, for each time point, to obtain samples
from the target density, simulated tempering generates a sequence of ensembles
from kernels Ki(·) (i = 1, . . . , I) such that KI(·) approaches the desired kernel
K(·) associated with the posterior density. Unfortunately, for truly high dimensional
systems, we conjecture that the number of intermediate sampling steps I would be
prohibitively large and render it practically unfeasible. Thus, such remedies do not
fundamentally address performance when the filter is applied to very large scale
systems. For example, as noted by ([1], [13]), when applied in high dimensions,
the filter collapses to a point mass after a few (or even one!) observation cycles.
In particular, as will be shown in Section 3, it is the normalized quantity wi =
p(Yt|Xf

t,i)/
∑

j p(Yt|Xf
t,j) that behaves singularly.

The next section sets up the necessary notation and formalizes our problem.

2.2. Monte Carlo scheme

We formalize our problem as follows. Consider a set of n sample points X =
{X1, . . . , Xn}, where Xi ∈ �d and both the sample size n and system dimension d
are “large.” (To lighten notation, we have dropped the time subscript and the fore-
cast superscript.) We assume that the sample X is drawn randomly from the prior
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(or proposal) distribution p(X). New data Y is related to the state X by the condi-
tional density p(Y |X). For concreteness, a functional relationship Y = f(X) + ε is
assumed, and ε is taken to be independent of the state X. The goal is to estimate
posterior expectations using the importance ratio, i.e., for some function h(·), we
want to estimate

E(h(X)|Y ) =
∫

h(X)
p(Y |X)p(X)∫
p(Y |X)p(X)dX

dX,

and use

Ê(h(X)|Y ) =
n∑

i=1

h(Xi)
p(Y |Xi)∑n

j=1 p(Y |Xj)

as an estimator. Based on this formulation, the weights attached to each ensemble
member

(1) wi =
p(Y |Xi)∑n

j=1 p(Y |Xj)

are the primary objects of our study. As mentioned, in large scale analyzes, the
weights in (1) are highly variable and often produce estimates Ê(·) which are col-
lapsed onto a point mass with max(wi) ≈ 1. As illuminated in [3], this degeneracy
is pervasive for high-dimensional systems, and appears to hold for a variety of prior
and likelihood distributions.

We next consider the case when both the prior and the likelihood distributions
are Gaussian.

3. Gaussian case

We assume a data model given by Y = HX + ε, where Y is a d × 1 vector, H is a
known d × q matrix, and X is a q × 1 vector. Both the proposal distribution and
the error distribution are Gaussian with p(X) = N(μX , ΣX) and p(ε) = N(0, Σε),
and the noise ε is taken independent of the state X. Since the data model can be
pre-rotated by Σ−1/2

ε , we set Σε = Id without loss of generality (wlog). Moreover,
since EY = EHX, we can replace Xi by (Xi − EXi) and Y by (Y − EY ) and
leave p(Y |X) unchanged. Hence, wlog we also set μX = 0. Further, define, for
conformable A and B, the inner product 〈A, B〉 = AT B (where the superscript T

denotes matrix transpose), and let ‖A‖2 = 〈A, A〉.
With p(Y |X) ∼ N(HX, Id), the weights in (1) can be expressed as

(2) wi =
exp

(
− ‖Y − HXi‖2/2

)∑n
j=1 exp

(
− ‖Y − HXj‖2

/
2)

.

To establish weight collapse for high-dimensional Gaussian p(Y |X) and p(X), we
first write the exponent in (2) in terms of the singular values of cov(HX).

Let d′ = rank(H). With λ2
1, . . . , λ

2
d′ the singular values of cov(HX), define the

d′ × d′ matrix D = diag(λ1, . . . , λd′). Then, with Q an orthogonal matrix obtained
by the singular value decomposition of cov(HX), define the d′ × 1 vector V such
that

QT HX = DV.
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Note that Vi corresponding to Xi is N(0, Id′). Since Q is orthogonal, we can write

(3) ‖Y − HXi‖2 = ‖QT Y − DVi‖2 =
d′∑

j=1

λ2
jW

2
ij +

d∑
j=d′+1

ε20j ,

where, conditional on Y , [Wi1, . . . , Wid′ ]T is N(ξ, Id′), and where ε0j is the jth
component of the observation noise vector ε. The mean vector ξ = [μ1, . . . , μd′ ]T is
given by

(4) ξ = D−1QT Y = V + D−1ε′,

where V and ε′ are independent N(0, Id′).
Now, for i = 1, . . . , n, define

(5) Si =

∑d′

j=1 λ2
j (W

2
ij − (1 + μ2

j ))(
2

∑d′

j=1 λ4
j (1 + 2μ2

j )
)1/2

.

Note that the second term in (3) is constant for every Xi, and will not influence
the weight wi.

By (2), we can express the maximum weight as

(6) w(n) =
1

1 + Tn,d′
,

where Tn,d′ =
∑n

�=2 e−σd′
√

d′(S(�)−S(1)) with σ2
d′ = 2

d′
∑d′

j=1 λ4
j (1 + 2μ2

j ). Thus, to
prove weight collapse, we need to show convergence of the denominator in (6) to
unity. We now state the following.

Proposition 3.1. Let Si, i = 1, . . . , n, be independent random variables with cumu-
lative distribution function (cdf) Gd(·) satisfying the conditions specified in Lemma
A.1 and Lemma A.2 stated in the Appendix. Let S(1) ≤ · · · ≤ S(n) be the ordered
sequence of S1, . . . , Sn, and define, for some σ > 0, Tn,d =

∑n
�=2 e−σ

√
d(S(�)−S(1)).

Then, as, n, d → ∞, if log n log d
d → 0, we have√

σ2d

2 log n
E(Tn,d) → 1.

A proof of the result is provided in the Appendix. For the Gaussian case consid-
ered here, an immediate implication of Proposition 3.1 is weight collapse. Specifi-
cally, with two additional assumptions, we may assert the following.

Proposition 3.2. We assume, for the Gaussian case considered here,
A1: There is a positive constant δ such that 1

δ ≥ λ1, · · · , λd′ > δ; and

A2: τ2
d′ = 2

d′
∑d′

j=1(3λ4
j + 2λ2

j ) → σ2 > 0.

Then, if log n log d′

d′ → 0, we have w(n)
P→ 1.

Proposition 3.2 follows by Lemma A.3 (Appendix) and Proposition 3.1.
The above result implies that, unless n grows super-exponentially in d′, we have

weight collapse. We note that Proposition 3.2 is a sharpening of the convergence
rate as compared to that implied by Section 3.1 of [3]. The log d′ term appears only
because max |μj | = Op(

√
log d′), and we need to make our analysis conditional on

the {μj}.
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The results in Proposition 3.2 suggest that large d′ leads to collapse. However,
we argue now that what really matters is the effective dimension of X, defined as
the sum of the singular values of cov(HX). We shall assume that

B : λ1 ≥ λ2 ≥ · · · ≥ λd′ ≥ · · · are part of an infinite sequence.

Our arguments can be modified to the case where {λj : 1 ≤ j ≤ d′} is a double
array, but we eschew this complication.

There are two possibilities,

(i)
∞∑

j=1

λ2
j < ∞, or (ii)

∞∑
j=1

λ2
j = ∞.

We claim that if (i) holds, there is no weight collapse. That is, if, say, g : R �→ R is
bounded and continuous,

(7)
n∑

i=1

wig(X∗
i ) P→ Eg(X|Y ).

In the above, X∗
i is drawn from the empirical measure

∑n
j=1 wiδ(Xi), where δ(·)

represents the delta function, and where, as before, the wi represents the likelihood-
defined weights.

To verify the convergence in (7), note that

wi = Ui/
n∑

j=1

Uj ,

where

(8) Ui = c−1
d′ exp{−1

2

d′∑
j=1

[
λ2

j (Z
2
ij − 1) + 2λ2

jμjZij

]
}.

In (8), the Zij ’s are i.i.d. N(0, 1) and

cd′ = E
[
exp{−1

2

d′∑
j=1

[
λ2

j (Z
2
ij − 1) + 2λ2

jμjZij

]
}
]

=
d′∏

j=1

[
(1 + λ2

j )
−1/2eλ2

j/2e

λ4
j

μ2
j

2(1+λ2
j
) ]

.

Now, since (i) implies that
∏d′

j=1(1 + λ2
j )

−1/2eλ2
j/2 converges and

E
[ ∞∑

j=1

λ4
jμ

2
j

1 + λ2
j

]
=

∞∑
j=1

λ4
jE(μ2

j )
1 + λ2

j

=
∞∑

j=1

λ2
j ,

we have E(U1) = 1 and cd′ → c (with c a constant).
Arguing as in Proposition 4.1 in [3], we can show that

V ar
[ 1
n

n∑
i=1

Uig(Xi)
]
≤ 1

n
E

[
U2

1 g2(X1)
]
→ 0,
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since a straightforward computation shows that E(U2
1 ) ≤ M < ∞ for all d′. Thus,

under (i), the importance weights have the correct expectation and vanishing vari-
ance.

On the other hand, if (ii) holds, we can state the following proposition.

Proposition 3.3. Under B, if
∑∞

j=1 λ2
j = ∞ and (log n log d′)/τ2

d′ → 0, we have

τd′√
2 log n

E(Tn,d′) → 1.

We note that our conditions imply that

max1≤j≤d′λ2
j (1 + y2

0j)
τ2
d′

→ 0

so that asymptotic normality holds. The proof requires Lemmas A.1 and A.3.
The form reveals that it is possible to have much slower collapse than what

Proposition 3.2 suggests. For instance, if λ2
j = 1/j, B holds but τ2

d′ = log d′(1+o(1)).
In fact, the requirement that the λj form an infinite sequence as above can be
weakened to requiring simply that the λj be bounded above uniformly, and this
can be verified using a subsequence argument.

In conclusion, on the basis of Proposition 3.3, provided that the nonzero λj ’s are
commensurate, it seems reasonable to define

∑d′

j=1 λ2
j as the effective dimension.

We note that the form of the effective dimension also plays a crucial role in the work
of [7], who study Monte Carlo sample size requirements in the ensemble Kalman
filter framework.

Appendix

We first introduce two lemmas that pertain to Edgeworth expansion type uniform
normal approximations of the distribution (the cdf and the density respectively)
of independent sums of random variables. The two lemmas lay the groundwork for
the proof of Proposition 3.1. Valid for moderately large deviations, the first result
(Lemma A.1) is a special case of Theorem 2.5 in [12], and is stated here without
proof.

Lemma A.1. Let ξ1, . . . , ξd be independent random variables with Eξj = 0 and
σ2

j = V ar(ξ2
j ) < ∞. Set

Sd =
1

Bd
(ξ1 + · · · + ξd),

where B2
d =

∑d
j=1 σ2

j , and define the Lyapunov quotients

Lk,d =
1

Bk
d

d∑
j=1

E
∣∣ξj

∣∣k, k = 1, 2, . . . .

We also suppose |E(Zk
j )| ≤ k!γk−2

j σ2
j , k ≥ 3, where γ1, . . . , γd are constant terms.

With these conditions, as d → ∞, there exist analytic functions Pd(x) =∑∞
k=3 λk,dx

k with |λk,d| ≤ Ackd−
k−2
2 for some A, c and all d, such that the cdf

of Sd, denoted Gd(·), satisfies,

1 − Gd(x) = (1 − Φ(x))exp(Pd(x))(1 + o(1)),
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Gd(−x) = Φ(−x) exp(Pd(−x))(1 + o(1))

uniformly for all x ≥ 0 and x = o(Bd/Kd), where Kd = max1≤j≤d{γj , σj}. Fur-
thermore, Pd satisfies

(9) |Pd(x)| ≤ cx3/Bd

for some constant c > 0. We use c generically as a constant independent of d.

Lemma A.1 gives a normal approximation for the cdf of independent sums, and
serves as the basis for the normality conditions of Proposition 3.1. Next we give a
lemma for a normal approximation of the density of independent sums, which can
be directly derived from Proposition 2 and Theorem 3 of [5].

Lemma A.2. With the same notation and conditions as in Lemma A.1, we assume
ξj,d has density gj,d such that supx{|gj,d(x)| : 1 ≤ j ≤ d} ≤ M < ∞. Then, as
d → ∞, the density of Sd, gd(·) = Gd(·), satisfies

gd(x) = φ(x)exp(Pd(x))(1 + o(1)),

gd(−x) = φ(−x)exp(Pd(−x))(1 + o(1))

uniformly for all x ≥ 0 and x = o(Bd/Kd), where Kd = max1≤j≤d{γj , σj}.
We note in passing that the condition of uniform boundedness of the gj,d does not

hold for Zj , the Gaussian–Gaussian case. However, the sum of λ2
1Z

2
1 +λ2

2Z
2
2 , where

λ1, λ2 > 0 and Z1, Z2 are independent Gaussian, does indeed satisfy the condition.
This may be verified by a direct calculation of the density of the convolution.

The next lemma is given for the purpose of verifying the Lyapunov quotients
conditions appearing in Lemmas A.1 and A.2.

Lemma A.3. Let Zj , Vj , εj , j = 1, . . . , d, be iid N(0,1). Let λ1 ≥ λ2 ≥ · · · where∑∞
j=1 λ2

j = ∞. Then, given μj ≡ Vj + εj

λj
, for all j, we have

λ2k
j E

(
|(Zj + μj)2 − (1 + μ2

j )|k
∣∣μj

)
(10)

≤ Op(
√

log d)k

k!
ρkλ4

jE
(
(Zj + μj)2 − (1 + μ2

j )
∣∣μj

)
,

for k ≥ 3.

Thus, given the mean vector ξ = [μ1, μ2, · · · , μd] defined in (4), Lemma A.3
states that the Lyapuanov conditions required by Lemma A.1 hold, with probability
tending to 1. We note that our argument also implies Lemma A.1.

Proof of Lemma A.3. Since (Zj + μj)2 − (1 + μ2
j ) = (Z2

j − 1) + 2μjZj , it is enough
to bound

λ2k
j E

(
|(Z2

j − 1) + 2μjZj |k
∣∣μj

)
≤ 2k

(
λ2k

j E|Z2
j − 1|k + 2k(|μj |λ2

j )
kE|Zj |k

)
.

By standard properties of the Gaussian moments, for some positive constant C,

E|Z2
j − 1|k ≤ Ckk!, and E|Zj |k ≤ Ckk! .

Since E(Z2
j − 1 + 2μjZj)2 = 2 + 4μ2

j we see that (10) follows from the bound

λ2k
j |μj |k ≤ λ2

jμ
2
j max{|λ2

�μ�|k−2 : 1 ≤ 
 ≤ d} =
(
Op(

√
log d)

)k−2
,

since the λ2
jμj are independent N(0, λ2

j + λ4
j ) so that

max{|λ2
�μ�| : 1 ≤ 
 ≤ d} ≤ (λ2

j + λ4
j )

1/2 max{|V�| : 1 ≤ 
 ≤ d}
where the V� are i.i.d. N(0, 1). The lemma follows.
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The remainder of the Appendix is devoted to the proof of the main result given
in Proposition 3.1.

Proof of Proposition 3.1. Let Sj (j = 1, . . . , n) be as defined in the Proposition and
let S(1) be the minimum. Note that

(11) E(Tn,d|S(1)) =
(n − 1)

∫ ∞
S(1)

exp
(
− τd(z − S(1))

)
dGd(z)

Ḡd(S(1))
,

since, given S(1), the remaining (n − 1) observations are i.i.d. with cdf equal to
Gd(z)/Ḡd(S(1)), z ≥ S(1).

Let εd be a sequence of constants such that εd → 0 and εdτd/
√

2 log n → ∞ as
n, d → ∞. We first define, for x < εdτd,

(12) hn,d(x) :=
∫ ∞

x

exp
(
− τd(z − x)

)
dGd(z).

To evaluate hn,d(x), we break the integral into two parts: the first part yields
the integral from x to x + εdτd, and the second part yields the tail integral from
x + εdτd to ∞. By using the normal approximations of Lemmas A.1 and A.2,
under the assumption that (log n)/τ2

d → 0, one can show that the second part is
o
(√

2 log n/nτd

)
.

To deal with the first part, we shall show that as x → −∞ and x > −εdτd,

(13)
∫ x+εdτd

x

exp
(
− τd(z − x)

)
dGd(z) =

1
τd

φ(x) exp
(
Pd(x)

)
(1 + o(1))

To this end, applying Lemma A.2 with 
 = 3, we obtain,

Rd(x) :=
∫ x+εdτd

x

exp
[
− τd(z − x) − 1

2
(z2 − x2) + Pd(z) − Pd(x)

]
dz(1 + o(1))

=
∫ Δn,d

0

exp
[
− τdv − 1

2
((x + v)2 − x2)

+
∞∑

k=3

λk,d((x + v)k − xk)
]
dv(1 + o(1))

=
1
|x|

∫ |x|εdτd

0

exp
[
− (−1 +

τd

|x| )w − w2

2|x|2

+
∞∑

k=3

λk,d

k∑
j=1

(−1)k−jCk,j |x|k−2jwj
]
dw(1 + o(1))

=
1
|x|

∫ |x|εdτd

0

exp
[
− b1w − b2w +

∞∑
j=3

bjw
j
]
dw(1 + o(1)),(14)

where

b1 =
σ
√

d

|x| − b∗1 = −1 +
τd

|x| −
∞∑

k=3

(−1)k−1Ck,1λk,d|x|k−2,

b2 =
1

2|x|2 − b∗2 =
1

2|x|2 −
∞∑

k=3

(−1)k−2Ck,2λk,d|x|k−4
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and

bj =
∞∑

k=j

(−1)k−jCk,jλk,d|x|k−2j .

Note |λk,d| ≤ Ack
0τ

−(k−2)
d and Ck,j < ck, for some constants A, c0, c where μj =

Vj + εj/λj . Hereafter, we use c as a generic positive constant that does not depend
on x and d. Under the assumptions that x → −∞, |x| < εdτd (hence |x|/τd → 0),
and |x|Δn,d → ∞, we have, firstly,

b∗1 ≤
∞∑

k=3

Akck
0τ

−(k−2)
d |x|k−2

= Ac2
0

[
3(c0|x|/τd)/(1 − (c0|x|/τd)) + (c0|x|/τd)2/(1 − (c0|x|/τd))2

]
= o(1),(15)

secondly,

(16) b∗2 ≤ x−2
∞∑

k=3

c(c|x|/τd)k−2 = |x|−2(c|x|/τd)/(1 − c|x|/τd) = o(|x|−2),

and thirdly,

bj ≤ (
2j−1∑
k=j

+
∞∑

k=2j

)A(cc0)kτ
−(k−2)
d |x|k−2j

=
2j−1∑
k=j

A(cc0)k(|x|/τd)k−j |x|−jτ
−(j−2)
d

+
∞∑

k=2j

A(cc0)k(|x|/τd)k−2jτ2−2j
d

≤ |x|−2(c|x|τd)−(j−2) + cτ2−2j
d

≤ 2|x|−2(c|x|τd)−(j−2).(17)

Since w/(|x|τd) ≤ εd → 0, we can further derive

∞∑
j=3

bjw
j ≤ 2(w/x)2(cw/(|x|τd))j−2 = 2(w/|x|)2cw/(|x|τd)/

[
1 − cw/(|x|τd)

]
= o(|x|−2)w2.

Combining (14), (15), (16), and (18) yields

(18) Rd(x) =
1
|x|

∫ |x|Δn,d

0

exp
[
− (−1 +

τd

|x| )(1 + o(1))w − (
w2

2|x|2 )(1 + o(1))
]
dw.

The o(1)’s appearing in the last expression are uniform as w varies over the integral
interval. Now, the bounded convergence theorem ensures Rd(x) = (1/τd)(1+ o(1)),
which establishes (13). Taking into account the remainder term, we conclude that

(19) hn,d(x) =
1
τd

φ(x) exp
(
Pd(x)

)
(1 + o(1)) + o

(√2 log n

nτd

)
.
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Our target (τd/
√

2 log n)E(Tn,d) can now be written as

τd√
2 log n

E(Tn,d) =
τd(n − 1)√

2 log n
E

[hn,d(S(1))
Ḡd(S(1))

]
=

τdn√
2 log n

∫ ∞

−∞
hn,d(x)Ḡn−2

d (x)dGd(x).(20)

We decompose the preceding integral into three parts

(21)
τd√

2 log n
E(Tn,d) = In,d + IIn,d + IIIn,d

where In,d, IIn,d, and IIIn,d represent the integral of (11) over the intervals [−∞,
−εdτd], (−εdτd,−(log n)1/4), and [−(log n)1/4,∞), respectively. The preceding dis-
cussion, combined with the approximation gd(x) = xGd(x)(1 + o(1)) as x → −∞
and |x| = o(τd), implies that the dominating part is the quantity represented by
IIn,d. We have,

IIn,d =
n(n − 1)√

2 log n

∫ −(log n)1/4

−εdτd

xGd(x)Ḡn−2
d (x)dGd(x)(1 + o(1))

=
1√

2 log n

∫ nGd(−(log n)1/4)

nGd(−εdτd)

G−1
d (w/n)w(1 − w/n)ndw(1 + o(1))

=
1√

2 log n

∫ nGd(−(log n)1/4)

nGd(−εdτd)

√
−2 log(w/n)we−wdw(1 + o(1))

=
∫ ∞

0

we−wdw(1 + o(1)) − 1√
2 log n

∫ ∞

0

w log we−wdw(1 + o(1))

= 1 + o(1).(22)

To arrive at (22) we have used the approximation G−1
d (z) =

√
−2 log z(1+o(1)) for

z → 0 in light of Lemma A.1 and Mill’s ratio.
For the remaining two parts, we use Mill’s ratio and obtain

In,d + IIIn,d ≤ τd√
2 log n

(n − 1)
[
P (S(1) ≤ −εdτd) + P (S(1) ≥ −(log n)1/4)

]
=

τd√
2 log n

(n − 1)
[
1 − Ḡn

d (−εdτd) + Ḡn
d

(
− (log n)1/4

)]
≤ τd√

2 log n
(n − 1)

[
nGd(−εdτd) + Ḡn

d

(
− (log n)1/4

)]
→ 0.(23)

Finally, combining (21), (22), and (23), yields the desired result.
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