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An overview of recent developments in
genomics and associated statistical methods

BY PETER J. BICKEL1, JAMES B. BROWN2, HAIYAN HUANG1,*
AND QUNHUA LI1

1Department of Statistics, and 2Applied Science & Technology, University
of California, Berkeley, CA, USA

The landscape of genomics has changed drastically in the last two decades. Increasingly
inexpensive sequencing has shifted the primary focus from the acquisition of biological
sequences to the study of biological function. Assays have been developed to study
many intricacies of biological systems, and publicly available databases have given rise
to integrative analyses that combine information from many sources to draw complex
conclusions. Such research was the focus of the recent workshop at the Isaac Newton
Institute, ‘High dimensional statistics in biology’. Many computational methods from
modern genomics and related disciplines were presented and discussed. Using, as much
as possible, the material from these talks, we give an overview of modern genomics:
from the essential assays that make data-generation possible, to the statistical methods
that yield meaningful inference. We point to current analytical challenges, where novel
methods, or novel applications of extant methods, are presently needed.

Keywords: genomics; statistical genomics; experimental biotechnologies;
high-dimensional bio-data analysis

1. Introduction

The central dogma of molecular biology, as enunciated by Crick (1958), specified
the instruction manual, DNA (encoding genes), and that genes were transcribed
into RNA to ultimately produce the basic operational elements of cellular
biology, proteins, whose interactions, through many levels of complexity, result in
functioning living cells. This was the first description of the action of genes. After
an enormous experimental effort spanning the last half century, made possible
by the development of many assays and technological advances in computing,
sensing and imaging, it has become apparent that the basic instruction manual
and its processing are vastly more sophisticated than what was imagined in
the 1950s. Genes were found to account for at most 2 per cent of the human
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genome’s string of 3 billion base pairs. The remaining ‘non-coding’ portion,
initially labelled as ‘junk DNA’, is responsible for regulation of the coding
sequence and self-regulation via a list of mechanisms that continues to grow
each year.

Remarkable technologies such as microarrays and their descendants, high-
throughput sequencing, in vivo imaging techniques and many others have enabled
biologists to begin to analyse function at molecular and higher scales. The
various aspects of these analyses have coalesced as ‘omics’: transcriptomics,
the study of gene–gene regulation, in particular, DNA–protein interactions;
proteomics, the large-scale study of the structures and functions of proteins;
metabolomics, the study of small-molecule metabolite profiles. These processes
are tightly linked and the utility of these labels is unclear; see Greenbaum
et al. (2001) for an amusing discussion. Genomics, which encompasses all these,
can be thought of as the science linking DNA structures with functions at the
cellular level.

The primary focus of modern biology is to link genotype to phenotype,
interpreted broadly, from the level of the cellular environment to links with
development and disease. A common feature of these activities is the generation
of enormous amounts of complex data, which, as is common in science, though
gathered for the study of one group of questions, can be fruitfully integrated with
other types of data to answer additional questions. Since all biological data tend
to be noisy, statistical models and methods are a key element of analysis.

The purpose of this paper is to give an overview of current statistical
applications in genomics, primarily the study of genomes at the DNA and mRNA
(transcription) levels. The occasion initially prompting this article was the recent
workshop on high dimensional statistics and biology held at the Newton Institute
in Cambridge, 31 March–4 April 2008. We will largely use the papers and content
presented at the workshop as illustrative examples. We are not so foolhardy as
to attempt to deal with the broad interaction of biology and statistics.

This paper is organized as follows. In §2, we outline the historical development
of genomics and its bases in genetics and biochemistry. In §3, we introduce
various types of modern biological technologies, the data being generated and
the biological questions that are being posed. In §4, we summarize the methods
of analysis that have been developed and indicate possible weaknesses as well
as methods in the literature that may meet these challenges better. In §5, we
discuss possible new directions of research and point to where new analyses and
tools may be needed.

2. A brief history of genomics

Darwin published On the Origin of Species in 1859, outlining the process of
natural selection (Darwin 1900). Contemporary with Darwin’s work, G. Mendel
was in the process of ascertaining the first statistical theory of inheritance
(Weiling 1991). Genetics can be said to have begun when Mendel coined the
term, ‘factors’, to describe the, then unseen, means of conveyance by which
traits were transmitted from generation to generation. During the early twentieth
century, mathematical scientists, in particular, R. A. Fisher, J. B. S. Haldane and
S. Wright, assembled the algebraic analysis of Mendelian inheritance, developed
Phil. Trans. R. Soc. A (2009)
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the statistical framework of population genetics, and so infused the theory
of evolution with genetic explanations and corresponding statistical models
(Fisher 1930; Wright 1930; Haldane 1932; Griffiths et al. 2000).

In the 1940s and early 1950s, the biological focus of investigations shifted
to the physical nature of the gene. In 1944, DNA was successfully isolated by
Oswald Avery as the basic genetic material (Avery et al. 1944). Watson & Crick
(1953) discovered the double helical structure of double-stranded DNA, and the
relation between its structure and capacity to store and transmit information.
These, and many other discoveries, marked the transition from genetics at the
level of organisms to molecular genetics. In 1958, Crick (1970) first enunciated
the central dogma of molecular biology: DNA codes for RNA, which codes for
protein. The regulation of gene expression then became a central issue throughout
the 1960s.

Since the 1970s, technologies for sequencing DNA, RNA and proteins made
possible the direct study of genetic material, and molecular biology entered the
genomic era. In 1972, W. Fiers determined the sequence of a bacterial gene
(Min Jou et al. 1972). In 1977, Sanger first sequenced the complete genomes of a
virus and a mitochondrion (Sanger et al. 1977), and later established systematic
protocols for sequencing, genome mapping and sequence analyses. Many studies
were significantly enhanced by these developments. In the last decades of the
twentieth century, bioinformatics research matured rapidly as a field, driven by
advances in sequencing technology, as well as computer hardware with which to
analyse mounting stores of data.

During the 1980s and 1990s, the polymerase chain reaction (PCR; Bartlett &
Stirling 2003), automated DNA sequencing, and microarrays (Kulesh et al. 1987;
Schena et al. 1995) solidified genomics as a pre-eminent discipline within the life
sciences. These modern assays enabled biologists to resolve questions at a scale
and depth that were not previously possible, e.g. determining entire eukaryotic
genomes, constructing fine-scale genome-wide genetic maps and analysing and
integrating various genomic, proteomic and functional information to elucidate
gene-regulatory networks.

The first collaboration of massive scope was the Human Genome Project, and
it involved contributions from over 100 laboratories (Francis et al. 2003). It was
initiated in 1990 with the goal of ‘mapping’ the entire human genome. In April
2003, 13 years after its inception, the successful completion of the Human Genome
Project was reported, with 99 per cent of the genome sequenced to 99.99 per cent
accuracy. A parallel competitive project was conducted by Celera Genomics, a
private company (Venter et al. 2001). Many more genomes have been sequenced.
As of February 2009, sequences from around 250 000 organisms were publicly
available (http://www.ncbi.nlm.nih.gov).

With the completion of sequencing projects for many model organisms,
molecular biology entered a new era. The focus of research has turned from the
determination of sequences and the genetic units of inheritance to the systematic
study of complex interactions of structure and function in biological systems,
sometimes called systems biology. Since functions do not stop at the cellular
level, this can go beyond genomics as we have defined it.

The ENCODE project (The ENCODE Project Consortium 2004), begun
in September 2003, is a large scale example of systems biology. A necessary
prerequisite of this project is to define ‘function’ in genomics. Prior to the 1970s,
Phil. Trans. R. Soc. A (2009)

http://www.ncbi.nlm.nih.gov
http://rsta.royalsocietypublishing.org/


4316 P. J. Bickel et al.

 on April 21, 2010rsta.royalsocietypublishing.orgDownloaded from 
a gene was defined by promoter sequence upstream of a ‘cystron’, a contiguous,
transcribed unit coding for protein. This simplistic view was refined by the
discovery of exons and introns in 1977 (Gilbert 1978). The ENCODE Project
Consortium (2007) reported, among other things, that many genes, far more than
previously established, generated chimeric transcripts: single RNA transcripts
which come from two or more neighbouring genes. If these chimeric elements
turn out to have important biological functions, then our notion of a gene may
be redefined yet again.

Next-generation DNA sequencers are the most recently developed, game-
changing technology (Mardis 2008). They are capable of sequencing billions
of base pairs of DNA in each automated run, producing more data than
any other technology in the history of biology. These new platforms have
inspired diverse uses. Besides applications in classical genomic studies, cheap
and rapid sequencing may revolutionize diagnostic medicine by permitting an
unprecedented degree of hyper-differentiation in health-care practices. Indeed,
individual genetic profiling has been brought to the medical domain. It is expected
that this will eventually permit more precise dosage control and drug choice.
The 1000 Genome Project will soon release the sequence of 1000 individual
human genomes.

Clearly, the boundaries between genomics and other parts of biology are
disappearing. In fact, several of the talks at the workshop followed these
larger aims. As in other fields, the rapidly evolving and diversifying fields
of biological research, coupled with technological advances, have given rise to
needs for novel computational or analytical techniques, e.g. tools for systematic
or integrative analysis of high-dimensional, diverse biological data. Studies
dependent upon the integration of multiple data-types are becoming increasingly
prevalent, especially in large-scale collaborations such as the ENCODE project.
A wide variety of quantitative scientists (computational biologists, statisticians,
computer scientists, physicists, biochemists, etc.) are working to create, refine
and test computational models to integrate various data-types, but many more
are needed and welcome.

3. Basic technologies

In this section, we briefly describe some fundamental experimental methods
in genomic research and the types of variability associated with each method.
Our goal is to lay out the sources of analytical challenges in genomic
research, thus motivating the statistical methods in the next section. As
we shall see in this section, basic methods have been combined in groups,
reminiscent of the combinatorial complexity of genomes, to generate further,
higher levels of data. The results of thousands of assays have been collected
in databases such as NCBI (www.ncbi.nlm.nih.gov) and the Ensembl genome
browser (www.ensembl.org) enabling their results to be portrayed as ‘features’,
annotations defined across the genome in genomic coordinates. These databases
are enabling us to begin to trace the steps from genome to regulome, to
proteome, to metabolome and, with great gaps in our knowledge, the fundamental
interactions of genotype and environment that lead to observable phenotypes
and disease.
Phil. Trans. R. Soc. A (2009)
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(a) Gel electrophoresis

Introduced in the 1950s, gel electrophoresis is a method for separating
molecules according to their rate of traversal across an electrified gel (Macinnes
1960). This technique can be used to determine the lengths of molecular fragments
down to the single basepair scale, a property employed in a variety of DNA
sequencing protocols.

(b) Blotting

The Southern Blot assay, developed in the 1970s, is an inexpensive and
rapid means of determining the presence or absence of a particular DNA
sequence in a large pool of unknown fragments (Southern 1975). The Northern
Blot (Bor et al. 2006) and the immunoblot (or Western Blot; Towbin et al.
1979) followed within a few years. In the 1990s a ‘Far-Eastern Blot’ was
developed for the analysis of lipids (Ishikawa & Taki 1998). Although initially
used qualitatively, blotting can also be used quantitatively in conjunction with
the other assays. Early versions of microarray, described later, evolved from
this technology.

(c) Polymerase chain reaction (PCR)

PCR is a chemical process that exponentially amplifies the number of copies
of segments of DNA, up to tens of kilobases in length (Tindall & Kunkel 1988).
PCR plays a key role in producing most types of data, especially in sequencing.
Amplification errors in PCR are rare, and in modern protocols are at worst of
the order of 1 base pair in 9000. So in most applications the statistical issues
are minor (Tindall & Kunkel 1988). However, when thousands, millions or even
billions of different DNA sequences are being simultaneously amplified in the same
reaction, sometimes called ‘multiplex ligation-dependent probe amplification’
(Schouten et al. 2002), it may be that there exist subtle differences in the rates
of amplification of the sequences and hence may call for more complex statistical
modelling.

(d) Microarrays

A microarray, introduced in 1995, is a chip ‘printed’ with thousands of
variants of a particular polymer, such as DNA, RNA or cDNA (Schena
et al. 1995). Each variant appears in a tiny dot, known as a probe or
spot, containing many copies of the same sequence. The target or sample
sequences, labelled with fluorescence tags, are washed across the chip. The
dots, when bound by the target sequences, either fluoresce or are detected by
some other imaging method. The luminescent intensity of each probe indicates
the relative quantity of the target present. A recent important application of
microarrays is the ‘tiling array’, where nearly every sequence in a genome,
of at least some particular length, e.g. 30 bp, is tiled on the array. Tiling
arrays are powerful for genome-wide investigations, and have been used in
many studies, such as transcriptome mapping and protein-binding sites mapping
(Bulyk 2006; Sabo et al. 2006). Though different in wet-laboratory protocols,
various applications of microarrays end up with the same output format,
Phil. Trans. R. Soc. A (2009)
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i.e. a high-resolution image of thousands of variously illuminated little dots.
The worth of the assay is predicated on image processing and subsequent
statistical analysis.

Microarrays exemplify the typical paradigms of modern statistics: observations
with thousands of dimensions are repeated only a few times under possibly
different conditions; there exists high sparsity and noise in data. Noise enters
from many sources: non-specific binding of target to probe (false positives),
unanticipated inaccessibility of certain probes (false negatives), and unknown
relationship (generally nonlinear) between total measured luminescence and
quantity of the target (Yang et al. 2002; Dudoit et al. 2003; Rozowsky et al. 2005).
A rich statistical literature tackling these challenges has emerged, such
as multiple testing (Dudoit et al. 2003), false discovery rates and related
measures (Benjamini & Hochberg 1995; Storey 2002; Storey & Tibshirani 2003;
Benjamini 2008).

(e) DNA sequencing

Sequencing is a key technique in genomics. Since the 1970s, a wide variety
of DNA sequencing technologies have been developed resulting in gains of many
orders of magnitude in speed and accuracy (Sanger et al. 1977; Smith et al. 1986;
Hall 2007). The Sanger method (Sanger et al. 1977), or chain-terminator method,
has been dominant in the field, especially at the time of the Human Genome
Project. This method relies on replicating many copies of the ‘to-be-sequenced’
DNA segment in four separate in vitro reactions, where each reaction is associated
with one of the four dideoxynucleotides (A’s, C’s, G’s and T’s). Whenever a
dideoxynucleotide instead of a deoxynucleotide is recruited, the replication then
suddenly terminates at precisely that base. Hence, each reaction produces many
DNA fragments of various lengths with the same, known base at the end of each
fragment. Next, using gel electrophoresis on these fragments, with one separate
lane of gel for each of the four reactions, the to-be-sequenced DNA sequence
can simply be read from the length distribution on the gel. Later developments
modified this protocol to use fluorescently labelled dideoxynucleotides, which
permits one reaction containing all four chain terminating bases, rather than
four separate reactions (Smith et al. 1986). Recently, next-generation sequencing
technologies, based on parallelizing the sequencing process, have made it possible
to produce thousands or millions of sequences at a cost much lower than those of
the traditional terminator-based methods (Hall 2007).

Arguably, the most important application of sequencing in the last two decades
has been to sequence the model genomes (Francis et al. 2003). It consists of two
basic steps. First, many copies of subsequences of a few hundreds of basepairs
are generated by the sequencers; these small pieces of sequences with every base
known are called as ‘reads’. Then the reads are assembled to reconstruct the
genome. Primary computational difficulties come from both steps. At the read-
generation step efficient methods/algorithms are needed to analyse image data
and correctly call a base at each position. At the assembly step there is no
prior knowledge of how the reads are supposed to fit together, and furthermore,
there are possible base-calling errors. Assembly is analogous to solving a massive
one-dimensional jigsaw puzzle with the pathological property that many of
the pieces occur many times in different places due to the repetitive nature
Phil. Trans. R. Soc. A (2009)
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of genomes. Fairly sophisticated mathematical models and a variety of ‘base-
calling’, ‘mapping’ or ‘assembly’ algorithms have been developed to solve the
problems with varied degrees of success (Ewing & Green 1998; Venter et al. 2001;
Bentley 2006; Zerbino & Birney 2008).

Sequencing technologies also play a key role in the assays that require the
identification of DNA sequences. Examples of such use include the serial analysis
of gene expression (Velculescu et al. 1995) and its updated version, the cap
analysis of gene expression (Shiraki et al. 2003). Both methods measure the
relative frequency of different RNA transcripts in a high-throughput fashion.
The RNA-seq assay, relying on the next-generation sequencing instruments,
provides more comprehensive information on a sample’s RNA contents
(known as transcriptome data; Toth & Biggin 2000). Another noteworthy
example is the ChIP-seq assay, which combines next-generation sequencing with
ChIP (chromatin immunoprecipitation; described in the following subsection) for
detecting the genome-wide DNA binding sites of a protein of interest (Johnson
et al. 2007). Noise of these data comes from possible sequencing (or base calling)
errors and the need to map the sequenced segments back to the genome (mapping
is often not unique). Several methods have been developed to analyse these data
using ad hoc approaches or some probabilistic modelling (Johnson et al. 2007;
Boyle et al. 2008; Jothi et al. 2008; Valouev et al. 2008; Zhang et al. 2008;
Rozowsky et al. 2009).

(f ) Chromatin immunoprecipitation assay

Chromatin immunoprecipitation (ChIP) is a popular approach for measuring
the binding of proteins to DNA in living cells (Gilmour & Lis 1987). It involves
fragmenting chromatin (the protein-DNA complex that is the natural state of
chromosomes) into small fragments, and then precipitating fragments that include
a particular protein of interest. This is done using an antibody specific to that
protein. ChIP has been generally combined with microarrays (known as ChIP-
chip) or sequencing technology (known as ChIP-seq; Toth & Biggin 2000) to
perform genome-wide identification of binding regions such as transcription factor
binding sites or methylation sites (Dekker et al. 2002).

Noise can enter the assay due to the protein of interest being cross-linked to a
genomic region that it does not directly contact. This can occur via intermediary
proteins, where protein chains form bridges to other genomic regions, or due to the
cross reaction of the antibody with another protein (although this latter source
of noise is usually detected during the assay preparation). Statistical techniques
have been and are being developed to separate the signal (e.g. specific binding
events, chimeric sequences, methylation patterns) from the noise (e.g. non-specific
binding, misleading cross-linking, sequencing or microarray errors; Schena et al.
1995; Rozowsky et al. 2005, 2009; Sabo et al. 2006). Since such studies are now
being carried out on the scale of whole genomes, methods such as the false
discovery rate (FDR) also play an important role (Benjamini 2008).

(g) Sequence alignment

The central aim in early sequence analysis was the identification of homologous
sequences. Biosequences are said to be homologous, and therefore likely to share
common function, if they are descendants of a common ancestral sequence
Phil. Trans. R. Soc. A (2009)
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(Kimura 1983). Since sequence homology is generally concluded on the basis of
sequence similarity, this aim gives rise to the need for computational methods
and algorithms, particularly for the discovery of duplicated sequences (paralogs)
in the same genome and highly similar sequences (orthologs) in the genomes of
related species (Burge & Karlin 1998).

Early efforts in sequence comparison were to align amino acid sequences, which
are generally short (at most several thousand residues). The Needleman–Wunsch
algorithm, developed in the 1970s based on dynamic programming, can give a
‘global alignment’ of two sequences optimal under a particular, user-defined,
substitution and insertion/deletion matrix (Needleman & Wunsch 1970). The
Smith–Waterman algorithm generalizes Needleman–Wunsch by finding optimal
‘local alignments’ of subsequences within longer molecules (Smith & Waterman
1981). Both of these time-intensive algorithms were precursors to high-throughput
technologies capable of comparing millions of sequences. The first truly high-
throughput tool was the basic local alignment search tool (BLAST) for searching
a query sequence against a database to detect all elements in the database
homologous to at least a subsequence of the query sequence (Altschul et al.
1990). Statistical evaluation of the searching results has been based on the Karlin–
Altschul statistics (Karlin & Altschul 1990). BLAT, the BLAST-like alignment
tool, was introduced in the 1990s as essentially a faster and more sensitive version
of the original (Kent 2002).

Tools such as BLAST have made pair-wise alignment quite fast. However,
multiple alignment, an increasingly popular aim, is computationally far more
expensive. Most multiple alignment approaches fall into a class known as
‘progressive alignment’ (Brudno et al. 2003). Its underlying strategy is as follows:
many pair-wise alignments are conducted, and those pair-wise alignments are
aggregated. Aggregation is non-trivial due to the size of the set of sequences
under consideration, and because the particular technique varies among methods
of multiple alignment (Blanchette et al. 2004; Blanchette 2007). The problem here
tends to be computational rather than statistical, but remains very challenging.

We have chosen to highlight several of the many canonical technologies
presently in use in molecular biology. These and other technologies and techniques
come together in pairs and higher-order groupings to generate the diversity of
biological data presently being produced in laboratories around the world. As we
pointed out, ChIP, a selection protocol, can be combined with any of a number of
sensing technologies, including sequencing, microarrays or PCR, depending upon
the desired scale and resolution of the assay. Such combinations of assays extend
beyond combining biochemical selection and sensing procedures. Entirely diverse
experiments can be and are regularly combined in mathematical or statistical
models to permit inferences that cannot be tested directly. The integration of
many techniques from biochemistry and statistics is likely to be the direction of
molecular and systems biology in the next decade (Segal et al. 2008).

The intrinsically high-dimensional nature of biological data will continue to
provide novel challenges for both statisticians and computer scientists in the
coming decades. Presently, it is often necessary to make sacrifices in statistical
methodology in order to develop computationally tractable models. In the
following section, we discuss the extant statistical and mathematical approaches
that have thus far facilitated studies, and point out areas where new methods or
applications are needed.
Phil. Trans. R. Soc. A (2009)
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4. Data analysis

As discussed throughout this paper, the advance of technology has drastically
broadened the scope of biological research. Research interests have diversified
with the technical capacity to investigate them, and now vary from
genealogy to mapping the three-dimensional structure of chromatin in living
cells. Contemporary questions are as specific as ‘Does ascorbic acid inhibit
nitrosamines?’ or as exploratory as ‘Can we classify the functional features of
non-coding elements evolutionarily conserved across mammalian species?’ The
approaches used to address such issues can be qualitative or quantitative, and
often vary across levels of complexity.

In classical hypothesis-driven research, the biologist seeks to test putative
actions or interactions via experiments with explicit incentives, e.g. knock-out
assays are used to investigate the functional role of genes. Such experiments
produce the basic data and information needed for validation. As in any field,
the extent to which a hypothesis can be directly addressed is determined by
the effectiveness of experimental design, the power of the applied technology
and the capacity of analysts to interpret the output. For instance, to study
the gene function, one may imagine that in an ideal world, one would
simply record a ‘movie’ of the relevant segment of chromatin, and watch the
unfolding process of transcription, translation and the downstream action of
the folded protein. This is, of course, presently impossible, and instead for
such investigations biologists rely upon a variety of technologies, including
the above-mentioned knock-out assays, to produce a host of data types, each
with their own idiosyncrasies and signal-to-noise ratios. Technologies and assays
have been born of a process of iterative refinement, where wet-laboratory
biology is progressively informed by the challenges of data analysis. The
ChIP-seq experiment is an example of such an ongoing interaction. What
constitutes an appropriate negative control, as well as the process by which
any negative control should be applied to the assay signal, has yet to be
determined, and will require input both from organic chemists and statistical
analysts.

Tukey in his famous 1962 paper (Tukey 1962) describes data analysis by part
of what it contains: ‘Large parts of data analysis are inferential in the sample-to-
population sense, but these are only parts, not the whole. Large parts of data
analysis are incisive, laying bare indications which we could not perceive by
simple and direct examination of the raw data, but these too are only parts,
not the whole. Some parts of data analysis, as the term is here stretched beyond
its philology, are allocation, in the sense that they guide us in the distribution
of effort and other valuable considerations in observation, experimentation or
analysis. Data analysis is a larger and more varied field than inference or incisive
procedures or allocation.’ We briefly touch on subsets of these themes under their
more modern rubrics, ‘exploratory’ (also a Tukeyism) for incisive, ‘validatory’ for
inference, ‘experimental design’ under allocation, and ‘prediction’ for the parts
now referred to as machine learning.

Exploratory analysis is essentially visual. This can mean trivial transfor-
mations, such as looking at data using histograms or boxplots, or examining
data-derived quantities like regression residual plots or correlation coefficients. Or,
it can mean more sophisticated techniques: dimension reduction using principal
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/


4322 P. J. Bickel et al.

 on April 21, 2010rsta.royalsocietypublishing.orgDownloaded from 
component analysis (PCA; Alter et al. 2003); low-dimensional projections of high-
dimensional data; or cluster analysis. The goal is to reveal features invisible in the
original data. Validatory analysis corresponds to using tools such as hypothesis
testing and confidence regions to determine if features found by exploratory
analysis are simply due to chance. Experimental design, which precedes data
collection, ensures that the data gathered are as informative as possible under
cost constraints. For instance, for gene-expression microarray assays, the number
of biological and technical replicates has to be chosen so that variability between
gene-expression levels is not washed out by intrinsic variability due to biological
and technical sources.

An aspect not explicitly mentioned in Tukey’s description that we will dwell
on extensively in the following is probabilistic modelling. It is sometimes the
case that probabilistic models of how the data are generated precede exploratory
analysis and are partly based on physical considerations. An example would be
the formula for the binding affinity constant in a reaction involving reagents A and
B in thermodynamics,

KA = [fraction bound]
[free A][free B] . (4.1)

This is a basic element of probabilistic models for binding of a transcription
factor (protein) to a given oligonucleotide (short sequence of DNA), a primary
mechanism of gene transcriptional regulation (Djordjevic et al. 2003).

It is only after we have a probabilistic model of the data that we can
talk about validatory analysis. Technically, constructing a model based on
exploratory analysis and fitting it on the same data makes validatory statements
somewhat questionable and, in the context of prediction, is dangerous, as
we argue below. But, in practice, it is always done since we usually do
not know enough about biological phenomena to postulate hard and fast
models. The expectation is that ultimate validation will come from new data
or other evidence. The danger of postulating a model based on poor prior
information is much greater, since all validatory statements depend on the validity
of the model.

The last aspect we believe needs to be added is prediction, the main concern of
machine learning. In one of the main types of prediction problems, classification,
we wish to predict a yet-to-be determined outcome, e.g. whether an individual
has cancer or not based on features of his or her genotype. We do this using
a prediction rule based on a training sample of individuals whose genotype
and disease status are known. Clearly, real validation here is only obtainable
by ascertaining the individual’s true disease status. We can, however, try to
estimate the probability of misclassification in advance. If we do this naively
by simply counting incorrect decisions using the rule on the training sample used
to fit it we will underestimate possibly grossly and generate consequences such
as selection bias (Ambroise & McLachlan 2002). For studies involving modern
high-throughput technologies (e.g. microarrays), an issue that is always present
and has become paramount is speed of computation. We will discuss this as
we go along.

We now turn to discussion of subtopics under these broad headings, with
illustrative examples from the workshop talks and other papers.
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(a) Exploratory data analysis

(i) Clustering

Clustering is of particular importance given that dataset dimension is well
beyond visualization. Many applications of clustering were discussed in the
workshop, including classification of differentiation of stem cells (Bertone), cell
types from microscopy data (Huber) and different virus types (Beerenwinkel).

The goal can crudely be defined as grouping the like and separating the
unlike. However what ‘like’ means depends on the definition of likeness. If
the points to be clustered are in a Euclidean space then it is natural to use
distance between points as a measure of similarity, at least if the features
(coordinates) are on the same scale. This is the type of problem treated by most
types of clustering. Included in this approach are many clustering techniques,
such as the classical agglomerative and other hierarchical methods, k-means
clustering and other disaggregative methods. The classic statistical approach
is to use mixture models, used and discussed by McLachlan et al. (2008), for
clustering genes with different expression patterns using microarray experiments.
An excellent reference for all the above methods is Hartigan’s 1975 book
(Hartigan 1975).

A key element in analysing high-dimensional and noisy biological signals
is dimension reduction preceding clustering, for instance PCA (Alter et al.
2003), which will be discussed further later. Briefly, the empirical covariance
matrix of the n points to be clustered is formed and the basis given by
the 2 or 3 eigenvectors corresponding to the largest eigenvalues is used to
give a representation in which cluster membership may be easy to identify
visually. In biology, metrics other than Euclidean distance are often needed. A
canonical example is the creation of gene clusters based on their expression in
series of microarray experiments, where metrics such as those based on putting
expression scores on the same scale are used. Often, numerical similarity measures
between vectors of features which are not necessarily numerical are given in
n × n matrix form. An example is the cosine measure to compare phenotype
similarity (Lage et al. 2007). If the resulting matrix is positive semi-definite, the
vectors can be identified with functions in a reproducible kernel Hilbert space
and it may be appropriate to base a method of clustering on the eigenvectors
and eigenvalues of the (normalized) similarity matrix as a generalization of
PCA (Lanckriet et al. 2004). A huge literature on clustering using spectral
properties of appropriate matrices has developed, in particular with so-called
graph clustering. The relationships of these methods to natural properties of
random walks and diffusions on appropriate spaces have been well explored (Shi &
Malik 2000; Meila & Shi 2001; Ng et al. 2002; Nadler et al. 2005). These methods
have only started appearing in the biological literature but are becoming more
appreciated given that they provide natural methods of dimension reduction as
well as clustering.

(b) Prediction

In the prediction literature, classification is called supervised learning while
clustering is known as unsupervised, the difference being the presence of a
training sample. There are many types of classification methods. Among the
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most popular are neural nets, logistic regression, classification and regression trees
(CART), support vector machines and k-nearest-neighbour rules. The ones judged
most effective currently are boosting and random forests. All such methods are
reviewed from a practical point of view in the book by Hastie et al. (2009).

The basic principle behind all these methods is the same. Given a training
sample of feature vectors and known outcomes, (X1, Y1), . . . , (Xn , Yn), we wish
to construct a rule which given a new X predicts its yet-to-be determined Y as
well as possible. Here, for Y , several examples can be found in the workshop
lectures: Y can be a disease state in the talk by Huang, a protein complex in
the talk by Brunak, an mi-RNA gene in the talk by Enright. In classification
the number of possible values of outcomes Y is finite. In the Brunak talk, the
number of outcomes was given by the number of possible protein complexes.
The feature vector X can consist of quantifications of gene expression, as in the
Huang talk. If the training sample were infinite and not subject to selection bias,
there would be a unique form of best method, the Bayes rule, deciding which
value of Y is most likely given the observed X . In practice, one often has a small
number of samples in relation to the dimension of X . The methods mentioned
implicitly estimate these likelihood ratios, though often this is far from apparent.
For instance, CART and random forests build decision trees, while the k-nearest-
neighbour rule classifies the new X according to the majority category (value)
of Y among the training set X ’s which are the k nearest neighbours of X in an
appropriate metric. The major issue if X is high-dimensional is the problem of
overfitting; the rule does a superb job on the training sample, but is poor on
a new X . The simplest example of this phenomenon is the k-nearest-neighbour
rule, which predicts perfectly in the training sample, but no matter how large the
training sample is, does not approximate the Bayes rule. These issues appeared
in Buhlmann’s talk at the workshop and will be discussed further below. In this
context, he modified a method for regression analysis between expression levels
and motif occurrence frequencies (Conlon et al. 2003), avoiding overfitting by
using variable selection.

(c) Probabilistic models

As we have noted, it is now common to face problems in which hundreds or
thousands of elements are linked in complex ways and complementary information
is shared between different data sources or different types. For example, in
complex diseases, phenotypes are often determined not by a single or just few
genes, but by the underlying structure of genetic pathways that involve many
genes. Probabilistic models are an excellent way of organizing our thinking in
such situations. We necessarily want to make them reflect as much subject-
matter knowledge in terms of the data-gathering methods and known biology
as possible.

Probabilistic models feature in exploratory analysis, predictive and validatory
aspects of statistics. Their use in exploratory analysis is essentially implicit and it
is often unclear whether the exploratory tool preceded or followed from the model.
Gauss introduced the method of least squares, as opposed to the method of least
absolute deviations favoured by Laplace, for computational reasons and proposed
the Gaussian distribution because it was the one for which least squares estimates
agreed with maximum likelihood (Stigler 1986). In prediction, probability models
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also play an implicit role since validation of predictions should be external to
the data used to predict and hence model-free. They are, as we shall see, used
primarily for predictive purposes in genomics.

(i) Regression models

In biology, the dimension of covariates derived from experiments is a major
issue. This is well illustrated in Buhlmann’s talk. His lecture introduces a special
case of a class of models which have been used throughout the sciences and which
we now describe. The situation that the number of potential explanatory variables
substantially exceeds the number of observations (known as the large p small n
problem) is prevalent in high-throughput data analysis, not just in genomics.
A useful and frequently used model for problems of this kind is the regression
model, with the simplest form written as

Y = Xβ + ε, (4.2)

where X is an m × p matrix of the values of the p predictive variables associated
with each of the n observations and ε is a ‘noise’ vector. It is expected that
the column vector β will be sparse. For instance, if Y comes from measures
relating to phenotype and X is the matrix of gene expression scores coming from
a microarray, most genes will have no bearing on Y . Though the form of the
model itself is simple, the potential high noise and combinatorial complexity of
the problem (2p subsets with p features) impose challenges. To make effective
predictions and select important variables, various regularization methods have
been and are being developed. A popular one of these is the least absolute
shrinkage and selection operator (Tibshirani 1996), given by

β(λ) = arg min
β

(n−1‖Y − Xβ‖2 + λ‖β‖1). (4.3)

In addition to discussing this method theoretically, Buhlmann applies it to
finding the most relevant motifs from over 250 candidate sequences for explaining
the binding strength of a transcription factor on about 200 regions in a handful
of ChIP-chip experiments.

(ii) Graphical models

Whenever we have a high-dimensional vector of numerical variables
(X1, . . . , Xj), we can model these as jointly Gaussian, unrealistic though this
may be. If, as usual, we are interested in modelling their interdependencies this
leads to models of their covariance or its inverse matrix. However, this can be
represented as the weights on the edges of a graph whose vertices are the variables.
Thus, cov(Xi , Xj) is the weight attached to the edge between Xi and Xj . We
can, in the case of both numerical and categorical variables, make each variable
correspond to a vertex, with the presence of an edge indicating dependence, or
for the inverse conditional dependence, though, in general, no single set of edge
weights can summarize the degree of dependence. The most striking examples of
graphical models in genomics are regulatory pathways (Segal et al. 2003, 2008;
Meinshausen & Buhlmann 2006; Lee et al. 2008).
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It has become clear that the graphical dependence structure has to be very
sparse for us to be able to estimate it with a small number of replicates
(Meinshausen & Buhlmann 2006). Sparsity here means a small number of
edges and/or the possibility of reduction in the number of vertices which
bear on the question of interest. In fact, it has been demonstrated in the
literature that many biochemical and genetic networks are not fully connected
(Jeong et al. 2001; Gardner et al. 2003; Tegner et al. 2003). Many genetic
interaction networks contain many genes with few interactions and a few genes
with many interactions. This observation was made at the workshop, for the
protein–protein network in Brunak’s talk (Lage et al. 2007), the gene network in
Marcotte’s talk (Lee et al. 2008) and the metabolism network in Luscombe’s talk
(Seshasayee et al. 2009). It would appear that genetic networks are intrinsically
sparse. A large body of literature deals with questions such as these. On the other
hand, regulatory networks function, even when some elements of the pathway
have been eliminated, and thus, in some form, exhibit extensive redundancy
(Laney & Biggin 1996; Kafri et al. 2005). Combining these contradictions is a
novel challenge. The book edited by Jordan is an excellent general reference on
the construction and fitting of graphical models (Jordan 1999).

A set of issues one has to be cautious about in connection with graphical
models is the assignment of causality. This can be viewed as making the graph
directed, by assigning arrows to the edges in the model. The arrow, directed
from Xi to Xj , means that Xi causes Xj . A thought-provoking discussion of these
issues (which are not limited to the high-dimensional context) may be found in
Freedman (2005). Of course, conjectured causal arrows can to some extent be
validated by additional experiments, e.g. by checking the phenotypic effects of
perturbation of possible causal genes (Lee et al. 2008), but believing in them
purely on the basis of evidence, coming from a body of data designed to measure
association, is dangerous.

(iii) Latent variable models

This class encompasses a wide variety of models with other names,
hidden Markov models (HMMs), mixture models, factor analysis and Bayesian
hierarchical models. The common feature of all of these is that the model
postulates the existence of unobservable random quantities (latent variables)
which, if known, would result in simple stochastic relationships between the
observables. The most widely used of these models in bioinformatics is the HMM.
A typical formulation is that time corresponds to genomic position and that the
corresponding basepair is viewed as an observable. The observable outcomes in a
genomic stretch are viewed as conditionally independent, given a latent (hidden)
Markov chain of unobservable states evolving in parallel, with the distribution
of a basepair at a given position dependent only on what state the Markov
chain is in that position. For example, a state of the Markov chain could be the
presence of one of several possible transcription-factor binding-sites or absence
of any such site. The data can then be used to fit the parameters of the HMM
and then predict the most likely state for the Markov chain at a given position.
This is part of the model in Segal’s talk at the workshop for predicting spatial
expression patterns in the Drosophila embryo from binding site information,
spatial concentration data for several transcription factors, and sequence data
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for several target genes (Segal et al. 2008). HMMs are also an intrinsic part of
the SUNFLOWER set of algorithms presented in Birney’s talk at the workshop.
These algorithms model regions of the genome believed to serve as gene regulatory
elements, that is, genomic regions that provide binding sites for transcription
factors. These formulations are typical of latent variable models. These models
have value for predictive and exploratory purposes. Unfortunately they typically
reflect the biology only crudely. For instance, in some biological systems, motif
positions have been shown not to be independent (Bulyk et al. 2002), and there
is no reason to believe that the sequence of binding sites along the genome is
Markovian (of any low order). As a result, validatory statements are questionable.

HMMs can be reasonably stably fitted when the number of possible states
is small compared to the length of genome considered. Otherwise the ‘curse of
dimensionality’ operates in both stability of fitting and computation since the
number of parameters to be fitted and the time needed for fitting algorithms
both scale as the square of the number of states (Bellman 1957). HMMs have
been used with great success in speech recognition and other engineering and
physical science applications since the 1970s (Rabiner 1989). Durbin et al. (1999)
remains an excellent reference for applications in bioinformatics.

Another well-known example of a hidden variable model is the mixture model
in which the hidden variable is the label of a component of the mixture. This
model has been extensively used for modelling due to its flexibility and simplicity.
By estimating the distribution of individual components and the latent label for
each individual, this method provides a useful tool for clustering observations
and exploring scientifically meaningful structures in biological problems. For
instance, it has been used for clustering subpopulations in human population
(Pritchard et al. 2000). These are situations where it is plausible to model
observed populations as being mixtures of distinct types although the structure
of the individual populations being sampled from is less secure. However, again
the purpose of the analysis is more exploratory and predictive than validatory.
Some general references are available in the literature (Titterington et al. 1985;
Lindsay 1995). The dangers of overfitting are indirectly present in the issue of
the number of clusters to be chosen.

Continuous latent variable models play an important part in dimension
reduction. Thus, PCA may be viewed as a model where each of the p observations
is of the form X = AZ , where A is an orthonormal matrix and Z has a distribution
with diagonal covariance matrix. A is the set of population principal components
and the variances of Z are the eigenvalues of the covariance matrix of X . The
Z ’s are the latent variables here and dimension reduction corresponds to all
but s � p of the Z ’s having variance 0. We can go further if we assume all the
components of Z independent and at most one of these Gaussian. Then A can
be retrieved up to scaling and the permutation of the rows, using algorithms
such as independent component analysis, where again the Z ’s are latent. A final
method of this type is factor analysis, where the observed variables are modelled
as linear combinations of Z components plus an error term. If the dimension p is
large the usual empirical estimates may be quite misleading. Again, if sparsity is
present, procedures that do not suffer from the ‘curse of dimensionality’ should
be used. Sparsity can be enforced either directly through thresholding methods
(Bickel & Levina 2008), or through appropriate prior distributions on the above
matrices. Although the latter approach is not fully understood theoretically, the
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success of applications can be judged by predictive performance. For example,
studies of cancer genomics are often concerned with predictive/prognostic uses
of aggregate patterns in gene expression profiles in clinical contexts, and also the
investigation and characterization of heterogeneity of structure related to specific
oncogenic pathways. At the workshop, West presented case studies drawn from
breast cancer genomics (Carvalho et al. 2008). They explore the decomposition
of Bayesian sparse factor models into pathway subcomponents, and how these
components overlie multiple aspects of known biological structure in this network,
using further sparse Bayesian modelling of multivariate regression, ANOVA and
latent factor models.

(iv) Bayesian networks

A Bayesian network is often just another name for a graphical model that
encodes the joint probability distribution for a large set of variables. The term
Bayesian applies if the joint distribution of all variables in the model is postulated
with at least one, the ‘prior’ variable, being latent. Its appeal lies in its generality
enabling the integration of prior knowledge and diverse data. Its formulation
often involves the insertion of causal arrows and, in principle, predicting the
consequences of intervention. These models are not mechanistic and reflect
biological knowledge only crudely, but they can have predictive value with
external validation. Internal claims of causality and evidence have to be taken
with a grain of salt. As examples, Bayesian networks have been used to integrate
protein–protein interaction data with clinical diagnosis in order to infer the
functional groups of proteins (Lage et al. 2007). In the work of Huang presented
at the workshop, a Bayesian network was built to link published microarray
data with clinical databases for medical diagnosis. Recently, a network covering
most Caenorhabditis elegans genes has been generated using a Bayesian network,
which successfully predicted how changes in DNA sequence alter phenotypes
(Lee et al. 2008). An excellent reference on Bayesian networks is Heckerman
(1999). It may well be that, in the instances discussed, most involve a large
number of variables. Using dimension reduction methods, as by Buhlmann, might
have been beneficial.

As these examples illustrate, probabilistic modelling is used in genomics
primarily for prediction. Insofar as the predictions can be verified experimentally,
statistical validation is not an issue, though evidently the more biological
information a model can successfully mirror the greater its predictive power.
Using sparsity leads to good predictive behaviour. However, as discussed below,
probabilistic models are essential for any validatory statements.

(d) Validatory statistics

(i) Testing for association

In genomics, the following situation is typical of many recent studies,
especially consortium studies, such as ENCODE or genome-wise association
studies (Stranger et al. 2007; The Wellcome Trust Case Control Consortium 2007;
The ENCODE Project Consortium 2007; Barnes et al. 2008). Several features, or
annotations, are defined across the genome. These features may be putative exons
as determined by mRNA-seq or a microarray experiment, transcription-factor
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binding sites as predicted by a ChIP-seq assay, or perhaps just a measure of
local G-C content. The researcher wishes to understand the relationship between
two features. This can be stated as a question, such as, ‘Do all these new exons
predicted by biochemical assays tend to occur in regions predicted to be bound
by RNA polymerase?’

In order to answer questions regarding the association of features, one must
construct some kind of model for the genome. Once a model has been selected,
one can compute confidence intervals, or conduct testing of null hypotheses. It
is customary to cite small p-values under the hypothesis of no association as
evidence of strength of association, or to compare small p-values in order to
argue that one set of associations are stronger than another. There are a number
of problems with these practices.

(i) The null model of no association between two features is difficult to
formulate mathematically since, for a single genome, association has to
be defined taking into account genomic structure.

(ii) In almost all talks at the workshop, associations are being examined and
their strength measured for many pairs of factors. To have p-values support
many statements of association they have to be very small, since they need
to reflect either a Bonferonni correction or figure in an FDR, topics which
will be discussed later under the heading of multiple testing (Benjamini
2008; Efron 2008). Not all the papers presented at the workshop were
careful on this point.

(iii) p-values are poor measures of association since they measure the distance
in some peculiar metric from the implausible hypothesis of no association.
Is a p-value of 10−12 for an association 1 000 000 times as strong as one
with 10−6 or only twice as strong (as measured on a logarithmic scale)?

(iv) It is quite unclear how features can be combined in regulatory pathways
using p-values.

Pursuing point (i) above, formulations based on the assumption (made in
BLAST, in naive phylogenetic models, in position weight matrices and elsewhere)
that positions on the genome are independent and identically distributed are
evidently unrealistic. Other implicit models such as in homogeneous Poisson
processes of features, permitting some basepair clumping, or Markov models
are based on convenience rather than a conscious effort to capture underlying
structure.

In a paper under submission, presented at the workshop (Bickel’s talk), a
non-parametric model for the statistical structure of the genome was proposed.
This model when used for testing for association between features makes the
minimal set of assumptions needed for genuine probabilistic inference based on
single genomes. It results in the most conservative assessments of significance
of observed association among the models we have cited. Moreover, it provides
error bars for measures of strength of association, such as feature overlap. This
approach is much more suited to the elucidation of feature interaction and avoids
the weaknesses pointed out in points (ii) and (iii) above. As for point (iv), tools,
such as graphical and other probabilistic models discussed above, are evidently
more suitable. However, the need for an appropriate probabilistic model such as
the one in Bickel’s talk remains when we are dealing with single genomes.
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(ii) Multiple testing

In the association analyses discussed above, and more generally during the
analysis of large biological datasets, thousands of statistical tests may be
conducted, where a number of such tests are expected to be significant. This is the
case in, for instance, the analysis of ChIP-seq data: the assay produces a signal
that is well defined across the genome. One would like to know where this signal
becomes significant, that is, where it deviates from some null distribution (derived
analytically or from a negative control). This process is known as ‘peak calling’,
and many solutions have been proposed (Johnson et al. 2007; Zhang et al. 2008;
Rozowsky et al. 2009). Many of these rely upon the generation and thresholding
of p-values.

In such cases, even if we assume the underlying probability model to be
adequate we need to control the possibility of false positives among our
statements. This can be handled, in an essentially model-free way, by multiplying
the p-value of any test by the number of tests (Bonferroni’s inequality). This
procedure, which guards against any single false positive occurring, is referred
to as controlling the family-wise error rate. It is often seen as much too strict
and may lead to many missed findings. An alternative goal is to identify as many
significant features in the genome as possible, while incurring a relatively low
proportion of false positives.

The FDR of a test is defined as the expected proportion of incorrectly rejected
null hypotheses among the declared significant results (Benjamini & Hochberg
1995). Because of this directly useful interpretation, the FDR often provides a
more convenient scale than p-values. For example, if we declare a collection of 100
genes with a maximum FDR of 0.10 to be differentially expressed, then we expect
around 10 genes to be false positives. This lies between the naive use of single
test p-values, and the ultraconservative Bonferroni correction, which controls the
possibility of reporting a single false positive in a study. Statistical methods have
been proposed either to transform a p-value into an FDR or to compute FDR
directly (Storey 2002; Storey & Tibshirani 2003).

Since Benjamini and Hochberg’s seminal 1995 paper (Benjamini & Hochberg
1995), several versions of FDR (such as FDR, local fdr, pFDR) have been
proposed. These approaches can be combined under a two-component mixture
model of true significants and false significants, with the mixture component rate
estimated from the empirical distribution of p-values (Benjamini 2008). Thus, a
global FDR controls the average number of false positives as above, while a local
FDR estimates the posterior null probability for every test. More discussion of
their connections and differences can be found in a recent review by Efron and
discussants (Benjamini 2008; Efron 2008). In his talk and the paper in this issue
(Benjamini et al. in press), Benjamini discussed other issues arising in genomic
and other datasets using a recently published WTCCC study (Zeggini et al.
2007) as an example. These included controlling the error for multiple confidence
intervals constructed for selected parameters, measuring replicability in multiple
datasets, and strategies to improve the power of testing when the abundance of
true findings to be discovered is very low. In particular, he showed how hypotheses
may be combined into sets in which they are likely to be true or false together
thus increasing power and reducing the number of hypotheses to be tested. The
last issue is clearly important and is again a phenomenon of the high-dimensional
data we are dealing with.
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The FDR is not robust against dependence of hypotheses, precisely the
situation which obtains among many genes (Efron 2008). There are attempts to
deal with this issue, but they involve using knowledge of the type of dependence
which is often not available (Leek & Storey 2008), and more work needs
to be done.

(iii) Methods of inference based on subsampling

Many methods of inference have a substantial Monte Carlo component,
usually labelled as bootstrapping. The bootstrap, introduced by Efron (1979),
is a computer-based method for assigning measures of accuracy to statistical
estimates. It has become an essential ingredient of many statistical methods.
In its most basic form the bootstrap can estimate features of a population,
such as quantiles of statistics like the Kolmogorov–Smirnov statistic, which
are difficult or impossible to compute analytically. Other applications include
the approximation of statistical functions depending on the data, notably
including confidence bounds for a parameter. Confidence bounds can be
set by estimating the population distribution, either parametrically or non-
parametrically, by the empirical distribution of the statistic of interest as
computed on each of the bootstrap samples. The general prescription of the
bootstrap is to estimate the probability model, and then to act as if it were
the truth.

The bootstrap enjoys the advantage, and the danger, of being automatic
after the probability mechanism has been estimated. The danger is that it
is no better than the hypothesized model. Thus, if we apply it, treating
genomic positions as independent and identically distributed, its results can
be nonsensical. As a principle, however, it is very important, since it has
freed statistics from being unable to deal with situations where there is no
closed distributional form. Its justification is always asymptotic (Hall 1997).
However, when valid it enables us to deal with situations where the validity
of asymptotics is known but the limit is analytically intractable, as in a
situation discussed in Bickel’s talk at the workshop, testing for uniformity of
distribution via a Kolmogorov–Smirnov-like statistic, given that there are many,
potentially unknown, genomic regions forbidden to it. The bootstrap has been
extended to structured data, where it becomes necessary to simultaneously
sample multiple data-units in order to ascertain extant dependencies, such
as is done with the model underlying the GSC, the method introduced
in Bickel’s talk.

(iv) Bayesian methods

Bayesian inference is based on posterior distributions. To the models we have
discussed, all of which involve unknown parameters, a prior distribution assumed
known is added to govern all parameters. We do not enter into the pros and
cons of Bayesian inference here. The resurgence of Bayesian methods is due to
the possibility of approximately computing posteriors, an analytically infeasible
task with most models. This is quite generally done via Markov chain Monte
Carlo techniques that characterize the posterior as the stationary distribution
of a Markov chain that is run long enough to produce a pseudosample from
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the posterior. The model-dependent choice of Markov chain and the length of
time it needs to be run to approach stationarity are the subject of a great deal
of discussion in the Bayesian literature (Gilks et al. 1996; Robert 2001).

The problems of high dimension of the parameter space are not resolved by the
Bayesian paradigm. Markov chains take much longer to converge to stationarity
in high-dimensional state spaces. This is not surprising, since they need to explore
the space thoroughly before reaching stationarity. However, it is possible to build
sparsity into Bayesian priors producing effective dimension reduction, as for
instance in West’s talk at the workshop (Carvalho et al. 2008). Unfortunately,
it is also known that Bayesian methods can behave arbitrarily badly in high-
dimensional space (Freedman 2005). The phenomenon that the prior dominates
the data can persist for arbitrarily large sample sizes.

The theoretical understanding of Bayesian methods is progressing but unknown
pitfalls remain. It is again important to stress that, if Bayesian methods are used
for prediction rather than validation, these issues do not arise.

5. Discussion

Our paper has been prompted primarily by the biological panorama presented at
the Newton Workshop ‘High dimensional statistics and molecular biology’. We
have focused (i) on the history of genomics and the technologies developed to
study function of the molecular level and (ii) on statistical methodology and its
relevance and appropriateness to genomics. In that connection, we have pointed
out the following features.

(i) The relative role of explanatory statistics, prediction, probabilistic
modelling, and validatory statistics.

(ii) Some dangers of the use of p-values for validation and substitutes for these
methods.

(iii) The importance of techniques which assume some sparsity in terms of the
relevant variables and of dimension reduction.

(iv) The relatively primitive state of mathematical and statistical modelling in
this field.

We have pointed to new methods in statistics, some being currently developed,
which address point (iii). Great challenges remain.

We have not discussed modelling at higher levels of organization: intercellular
networks, tissues, organisms, populations. The different types of mathematical
methods arising naturally in these applications are surveyed sketchily, but
extensively, in the report on Mathematics and 21st Century Biology from the
National Research Council (2005). It is nevertheless clear that the integration
of models at the level of the genome with the more mechanistic models of the
biology of organisms and the statistical models of population genetics is of great
importance and promise.

There is an ever-increasing need for analytical scientists, mathematicians, engi-
neers, physicists and statisticians to enter this exciting and highly
interdisciplinary area of computational biology.
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