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Abstract

We discuss the importance of sparsity in the context of nonparametric regres-
sion and covariance matrix estimation. We point to low manifold dimension
of the covariate vector as a possible important feature of sparsity, recall an
estimate of dimension due to Levina and Bickel (2005) and establish some
conjectures made in that paper.
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1 Introduction

In a pathbreaking RSS discussion paper in 1995, Donoho, Johnstone,
Hoch and Stern pointed out the importance of sparsity. Subsequent im-
portant work by Donoho, Johnstone and collaborators (1995-2006) focused
mainly on sparsity in the form of sparse linear representations of regression
functions and the like when estimation is carried out using overcomplete
dictionaries. My own appreciation of the importance of sparsity came from
the following observation that grew out of conversations with my late friend
and colleague, Leo Breiman.

Stone (1977) considered the estimation of regression functions

η(X) = E(Y
∣
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on the basis of i.i.d. observations, (Xi,Yi), with X ∈ R
d, assuming only

that η has smoothness of order s, e.g., bounded partial derivatives of order
s. He obtained the result that, from a minimax (least favorable) point of
view, estimation in the root mean square sense could not be achieved at a
rate greater than n− s

2s+d .

Qualitatively, what this said to us was that unless we assume an unwar-
ranted degree of smoothness for the function we are estimating, the sample
sizes required to get reasonable accuracy are larger that anything possibly
available. For example, if s = 2, d = 12, n = 104, n− s

2s+d ∼= .33.

Of course, in principle, constants may favor performance, s may be very
large, but the qualitative conclusion is that if Nature is out to get us, we
have no chance with today’s very high dimensional data with poorly un-
derstood models. Yet in practice there routinely are remarkable successes.
Here is a table of high dimensional data sets with large to small n where high
prediction accuracy has been achieved. R corresponds to misclassification
probability.

Table 1. Some empirical evidence

d classes n R

ZIP code digits 256 10 10,000 <0.025
Microarrays 3-4000 2-3 70-100 0.08

spam 57 2 4,600 <0.07

What are possible explanations? I believe in Einstein’s words that “God
is subtle but not malicious”.

In the next two sections we will discuss the meaning and consequences
of sparsity in two contexts, regression and covariance matrix estimation and
relate them to some extent.

Roughly speaking we will discuss sparse data, by which we mean points
lying on or near a low dimensional sub-manifold of a high dimensional space
and sparse models, ones whose probability structures are characterized by
low dimensional parameters.

Our treatment is extremely sketchy and covers only a very small part of
a huge and growing body of literature. Key topics such as Bayesian methods
are only briefly pointed to at the end. But we hope this will only be one of the
first of many review papers of aspects of modern statistics which we believe
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are both novel and of key importance. In a final more technical section, we
take the opportunity to analyze and essentially settle some conjectures on
nonparametric dimension estimation raised in Levina and Bickel (2005).

2 Sparsity Issues in Nonparametric Regression

Consider the regression model we introduced in the introduction

Y = η(X) + ǫ (2.1)

where E(ǫ|X) = 0 and for simplicity we take ǫ ∼ N (0, σ2) independent of X.
We specify the family of possible probability distributions of (X,Y) by P.

There are two familiar paradigms. One is linear regression where f1, ..., fp :
X 7→ R is given and

η(X) = fT (X)β,f = (f1, ..., fp)
T (2.2)

for β ∈ R
p unknown. The other is nonparametric regression where η(X)

belongs to “a nice function space”, e.g., X = R
d,Ps ↔ {|Dkη|(.) ≤ K <

∞, 1 ≤ k ≤ s}.
A theoretical goal is to obtain a minimax procedure, η̂(X), such that,

sup
P

EP(η̂(X) − Y)2 = min
η

sup
P

EP(η̂(X) − Y)2 (2.3)

or EP(η̂(X)−Y)2 is “small” for P ∈ P. The standard solution to prediction
for linear regression

η(x) = fT (x)β

is least squares,

β̂ = [F T F ]−1F T Y (2.4)

where FN×p ≡ ||fj(Xi)||, yielding as predictions

Ŷ = F [F T F ]−1F TY (2.5)

η̂(x) = β̂T f(x). (2.6)

We are faced with the “Overfitting” problem,

E|Ŷ − F T β|2 =
σ2p

n
(2.7)
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where F T β is the best predictor of Y if β is known. Note that if p > n,
then β is unidentifiable; if p

n → ∞, then Ŷ is worthless.

In the nonparametric case, p = ∞. The standard solution is, if X = R
d

to find a basis f1, ..., fp, ..., such that for η ∈ Ps,

max
P

E(η(X) − fT
p (X)βp)

2 → 0

where fp(x) = (f1(x), ..., fp(x))T and regularize. For a review of regulariza-
tion - see Bickel and Li (2007) for instance. Some standard solutions are to
choose p so that

β̂(λ) = arg min
βp,p

{

|Y − fT
p βp|2 + λ|βp|r

}

r = 2 Ridge Regression
r = 1 LASSO

}

, λ → 0.

There are many other methods - see, for example, references in Candès
and Tao (2007) discussion, and Hastie, Tibshirani, and Friedman (2001).

All such methods can be interpreted as estimating “sparse” - low dimen-
sional approximations to η in the belief that these are adequate. It is in fact
methods such as these which yield Stone’s rates. But they do not therefore
a priori eliminate our difficulty, since we identify approximate sparsity with
smoothness of η. There are however often classes of models, we shall refer
to as sparse models (SM) which do - and these are, in some form, familiar
from classical statistics. By SM we think of model families, such as

a) E(Y |X) =
∑d

j=1 gj(Xj) (Additive models)

Type a) are the natural generalizations of no interaction models in
ANOVA. They were introduced by Breiman and Friedman (1985) and
as one might expect correspond to difficulty d = 1.

b) There exists S ⊂ {1, ..., d} such that |S| ≪ min(d, n) and

(i) {Xj : j ∈ S} ⊥ {Xk : k ∈ Sc}
(ii) Y ⊥ {Xk : k ∈ Sc}
(iii) E(Y |X) = E(Y |Xj : j ∈ S)

Note that Xj are used generically and could be (known) functions of original
X1, ...,Xd.
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Type b) corresponds to the belief that most variables Xj are irrelevant
in that they are independent of both Y and the set of relevant variables in
S.

The other main feature of regression models which makes Table 1 possible
is, we believe, the presence of what we call “Sparse data” (SD). By SD we
mean, X lives on (or close to) M, a m dimensional Riemannian manifold
X = Td×1(U) for U ∈ O ⊂ R

m,m ≪ d, T 1-1 and smooth or |X−T (U)| ≤ ǫ
for some U . Note a special case is that M is a hyperplane, and this leads to
principal components regression.

Of course, one can have both, irrelevant variables corresponding to SM
and predictors highly correlated with each other as well as Y. It is, however,
clear that the irrelevant variables have to be removed before we can take
advantage of the correlated good predictors - since independent variables
result in high dimension.

It is worth pointing out that the goal we are focusing on here is prediction
and sparsity really means being well approximable by low dimensional linear
submodels. This is different from the goal of model selection where there is
implicitly a belief that the data has been generated by an η(x) for which
most of the βj are 0.

For prediction, for instance, we choose λ in the lasso so as to ensure op-
timal prediction for a smoothness class P with f1(.), ..., fk(.), ..., a complete
basis for representing η(.) in P. Then, we expect most estimated coefficients
of the fj(x) to be small but not necessarily 0. This choice of λ does not lead
to what is known as consistency, which is defined by: If η(x) has (sparsest)
representation

η(x) =
∑

{βjfj(x) : j ∈ S} ,

then the β̂j of the estimated η̂ are 6= 0 iff j ∈ S. On the other hand, the
choice of λ which does lead to consistency does not yield the best minimax
prediction risks - see for instance Atkinson (1980) and Yang (2005) for a
discussion. However, nothing prevents us from first optimizing for prediction
and then doing model selection or vice versa, see Fan and Lv (2008) for
instance. These questions are still being explored. We believe the practical
question is different. With Box (1979) we agree that,

“All models are false but some models are useful”.

Our real interest is in determining which “factors” among X1, ...,Xd are
“important”. A possibly more fruitful but yet unexplored point of view is
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to isolate all models of dimension at most m whose predictive power is close
to optimal and then study the factors which appear in these.

Bickel and Li (2007) studied the theoretical effect on nonparametric re-
gression if the high dimensional vector of covariates satisfies our notion of
SD. They noted that, if the manifold is unknown, employing local linear
or higher order regression methods using the d dimensional covariates but
choosing the bandwidth by cross validation or some other data determined
way yields the same minimax risks as if X ∈ R

m rather than X ∈ R
d.

But see also Niyogi (2007). This result can be thought of as the nonlinear
analogue of the observation that for prediction collinearity of predictive vari-
ables is immaterial since the p in (2.7) is the dimension of the linear space
of predictors.

To what extent does SD appear? One way of checking is to construct
a nonparametric estimate of dimension suitably defined. There are many
notions of dimension and a number of estimates have been proposed in the
physics and dynamical systems literature. Levina and Bickel (2005) devel-
oped a simple estimate of dimension at a point which can be extended to
estimating manifold dimension when it is an integer. We will present this
estimate in Section 4 and study some conjectures they made. Although the
estimate was applied successfully to some examples in their paper, its practi-
cal applicability requires a lot of further exploration. In line with our theme
we have applied it to the famous handwritten ZIP code digits (of apparent
dimension 256) example (see table 2). Here is a table of estimated dimension

Table 2.Estimated dimension of the ZIP code digits of apparent dimension 256.

Digit 0 1 2 3 4 5 6 7 8 9

Dimension 9 8 11 12 9 11 9 8 11 9

3 Covariance Matrix Estimation

In the regression context sparsity and approximate sparsity are relatively
easy to define. This is not so evident when we are interested in covariance
matrices. Our model here is

X1, ...,Xn i.i.d., E(X1) = µ, V ar(X1) ≡ E(X1 − µ)(X1 − µ)T ≡ Σ.

Estimating Σ is important for a number of purposes, for example, prin-
cipal component analysis (PCA), linear or quadratic discriminant analysis
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(LDA/QDA), inferring independence and conditional independence (graph-
ical models), implicit estimation of linear regression, Σ−1

XXΣXY with X

regressors and Y the response.

Through recent results in random matrix theory a major pathology of
the empirical covariance matrix has been pointed out. The eigenstructure
is inconsistent for i.i.d. component models as soon as p

n → c > 0 - see
Johnstone and Lu (2008) for a review.

We have implicitly noted in the previous section that when used in re-
gression, i.e., least squares, using the empirical covariance matrix is a part
of least squares which breaks down even for prediction. Bickel and Levina
(2004) point out the breakdown of LDA when p

n → ∞.

These problems do not simply emerge because we use the empirical co-
variance matrix, as the minimax results of the previous section suggest. The
issue is again that, without sparsity assumptions, estimation of large covari-
ance matrices is hopeless. A number of notions of sparsity are discussed in
Bickel and Levina (2008)(i)(ii). The simplest is permutation invariant spar-
sity where,

A) Each row of Σ is sparse or sparsely approximable in operator norm,
e.g., Si = {j : σij 6= 0} and |Si| ≤ s for all i

or

B) Each row of Σ−1 is sparsely approximable.

Each allows estimation of the inverse but the conditions are different. See
El Karoui (2008) for a more general notion. Note the interpretations of A),
B) in the Gaussian case where,

A) Xi ⊥ Xj for all j ∈ Sc
i

or

B) Xi ⊥ Xj | Xk, k 6= j, j ∈ Sc
i where Si ≡ {j : σij 6= 0}.

If sparsity is present as in the regression case, regularization can lead to
excellent performance. A forthcoming issue of the Annals of Statistics will
contain a number of papers including some of those cited as well as others
relating to the area.
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One salient feature of all approaches is that in the presence of sparsity,
log p

n → 0 is enough for interesting and very compelling conclusions for general
problems. This is an area of continuing research which may shed light on the
sparsity issues in regression as well. For instance, it is appealing to estimate
the inverse covariance matrix of X taking advantaging of potential sparsity
and estimate the covariances of X and Y sparsely and put them together
in a sparse version of least squares.

Even more than in regression, the order in which things are done may
also matter. Is it good to first estimate the covariance matrix sparsely and
then look at its eigenstructure and inverses or aim at each feature of the
matrix separately? Approaches of this type may be found in d’Aspremont
et al (2007) and Johnstone and Lu (2008) and El Karoui (2007) .

There are two topics we have not touched on which are of key importance
and need much additional work

1. The choice, in practice, of regularization parameters for methods that
take advantage of sparsity. Theoretical order of magnitude is well
understood, but is of little value in this choice. We have great faith
in V fold cross validation - see Bickel and Levina (2008)(ii) for one
analysis.

2. Bayesian methods. There is clearly an intimate link between regu-
larization in both regression and covariance estimation and Bayesian
methods. But in high dimensional situations which Bayesian meth-
ods are trustworthy from a frequentist point of view remains to be
explored.

4 Some Results on Dimension Estimation

Levina and Bickel (2005) proposed the following estimator for the “true”
dimension of a high dimensional dataset

m̂k =
1

n

n
∑

i=1

m̂k(Xi)

where m̂k(x) is defined as

m̂k(x) =
[ 1

k − 1

k−1
∑

j=1

log
Rk

Rj
(x)

]−1
, (W (x))−1
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and Rj(x) is the j−th nearest neighbor distance to x ∈ R
m.

Here m̂k(x) is a local estimate of dimension and may be more useful
than the global estimate m̂k. We will state and prove three theorems about
estimation of the “true” dimension m where X1, ...,Xn are a sample of d
dimensional observations, which however take their values with probability
1 in a flat smooth manifold of dimension m, and have a smooth density with
respect to Lebesgue measure on R

m. What we mean by this is explained
in the statement of Theorem 4.1 on local dimension estimation below. All
theorems can be viewed as proving corrected versions of conjectures in Levina
and Bickel (2005).

Our first theorem deals with the local estimate. The idea of the proof is
to establish the result for the case X is uniformly distributed locally on the
manifold and the manifold is locally described as an affine transformation
of the m-cube. For the uniform case, we can first apply the delta method
and then employ some known distributional results. The next theorem deals
with the more difficult global behavior which we carefully establish only for
the uniform. We only make a second moment calculation and use a theorem
of Chatterjee for distributional results. The main observation is that the co-
variance contribution occurs only if k-th nearest neighbor spheres intersect
which means that the corresponding centers are no more than O((k/n)

1

m )
apart. But that event occurs with probability O( k

n). The rest of the ar-
gument rests upon scaling two such spheres, one centered at 0, and their
intersection by a common factor. A stronger distributional result due to
Yukich (2008) was brought to our attention. His proof is both more elegant
and more general. Nevertheless, we believe our more special method which
yields both order bounds as k, n → ∞ and local results is worth considering.

Theorem 1. Let Um×1 be a r.v. in R
m. If Um×1 ∼ f with f twice con-

tinuously differentiable. Xd×1 = TU τ
m×1 where T = (T1, ...,Td)

τ . Ṫ(u) ,

||∂Ti
∂uj

||d×m. Assume Ṫ is of rank m for all u ∈ R
m, and T is twice continu-

ously differentiable with
∣

∣

∣

∣

∂Ti(u)

∂ua∂ub

∣

∣

∣

∣

≤ M

for all u, i, a, b. Then if k → ∞, k(1+ m
4

)/n → 0, n → ∞ for all x0 ∈ TR
m,

√
k(m̂k(x0) − m) ⇒ N (0,m2).
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Here are some preliminaries. Let x0 = T(u0). Then, note

T(u) − x0 = Ṫ(u0)(u − u0) + O(|u − u0|2). (4.1)

We claim that w.l.o.g. we may take

Ṫ = (e1, ...,em) , E

where ej are the coordinate vectors in R
d. Consider the mapping, S(u) =

T(A−1(u)) where Am×m is such that,

Ṫ(u0) = EA.

By assumption A is nonsingular.

If we now redefine X = S(AU), then we have

Ṡ(A(u0)) = E

and AU has density g(ν) = |det(A)|−1f(A−1ν) which satisfies the same
conditions as f .

Proof. Our proof is of a fairly standard type. We note that

Sk , m̂−1
k (x0) =

1

k − 1

k−1
∑

j=1

log
Rk

Rj
(x0)

given Rk(x0) is the mean of k − 1 i.i.d. variables whose distribution is that
of |T(U) − x0| given |T(U) − x0| < Rk(x0).

Let Z(r) have the distribution of − log |T(U)−x0|
r given |T(U)− x0| < r.

To establish the theorem, we need to establish

E (V ar(Z(Rk)|Rk))
p−→ σ2 (4.2)√

k
(

E(Z(Rk)|Rk) − m−1
) p−→ 0 (4.3)

and σ2 + τ2 = 1
m2 .

We need

Lemma 4.1. Under the conditions of the theorem,

L (Z(Rk)|Rk) ⇒ E( 1
m) (4.4)

in probability where ⇒ denotes weak convergence.
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Proof. Let S(u0, t) be the t sphere around u0 in R
m. Then, for 0 ≤

t ≤ 1, let At = {u : |T(u) − x0| ≤ tr}. Then

S
(

u0, tr(1 − O(r2))
)

⊂ At ⊂ S
(

u0, tr(1 + O(r2))
)

(4.5)

since

|u − u0|
(

1 − O(|u − u0|2)
)

≤ |T(u) − x0| ≤ |u − u0|
(

1 + O(|u − u0|2)
)

by (4.1). But, then

∫

At

f(u)du =

∫

At

[

f(u0) + ḟ(u0)(u − u0) + (u − u0)
T Tf̈(u∗)(u − u0)

]

du

(4.6)
where ḟ and f̈ are the differentials of f .

By (4.1) we can argue from (4.5) and (4.6) that, for r → 0, if V (S) is
the volume of S,

∫

At

f(u)du = f(u0)V (S(u0, tr)) + O(r2)V (S(u0, tr)) . (4.7)

Arguing similarly for
∫

S(u0,tr) f(u)du, we conclude that

∫

At
f(u)du

∫

A1
f(u)du

=
V (S(u0, tr))

V (S(u0, r))
(1 + O(r2)). (4.8)

But the first term in (4.8) is just the uniform distribution on S(0, r) in R
m

and thus (4.8) implies that

P[Z(r) > z] = e−mz(1 + O(r2)), z > 0.

Since, for Q uniform on S(0, r), − log V (S(0,Q))
V (S(0,r)) = −m log Q

r is well known to
have a standard exponential distribution, the lemma follows. 2

To complete the proof of (4.2) we need only show that, say

EZ4(Rk) = Op(1).

But if k/n → 0 evidently Rk
p−→ 0 and (4.8) implies that all moments of

Z(Rk) are uniformly bounded. Finally for (4.3) we need to show not only
that

E(Z(Rk)|Rk)
p−→ 1

m
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but that the difference is o(k− 1

2 ). But again (4.8) yields this since our argu-
ment shows that

E(Z(Rk)|Rk) = 1
m + Op(R

2
k). (4.9)

Again by (4.8) ER2
k = ( k

n)
2

m (1 + o(1)). Therefore

√
k

[

E(Z(Rk)|Rk) − 1
m

]

= op(1)

if ( k
n)

2

m k
1

2 → 0 which is our assumption. We have established (4.3) and the
theorem is proved. 2

Discussion. Theorem 4.1 is unsatisfactory in two aspects

1. If m is an integer as is used in the proof then convergence at this rate is
not too informative but rather exponential rate convergence theorems
are suitable. However, this is mitigated if we note that we can define
local dimension at x ∈ R

d in a set S by dimension = γ iff

lim
t→0

λ(Bt(x) ∩ S)

tγ
→ c > 0

where Bt(x) is a ball of radius t centered at x and λ is Lebesgue
measure (Volume). It would seem that if we obtain a set of local
dimension γ at Tm×d(u0) by mapping a set of local dimension γ at
u0 in R

m,m ≥ γ to R
d with T as before then our results should hold.

Unfortunately it is not clear that local dimension in this sense is related
to any of the global notions of dimension, see e.g. Falconer (1990).

2. We have no guidance on the choice of k from the result. A possible
approach which has given plausible answers in some examples is to
choose k so as to minimize the difference between m̂k(x) and the em-
pirical standard deviation of the log Rk

Rj
(x) which by our result provides

another consistent estimate of m−1.

We will establish

Theorem 4.2. Under the conditions of Theorem 4.1, if m̂k , 1
n

∑n
i=1 m̂k(Xi),

then

(i)

m̂k − m = Ωp

[

(

k
n

)
1

2

]

if k(1+ m
4

)/n → 0, k3/n → ∞, n → ∞.
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(ii) There exists a polynomial in m of order 1
k , P (m,L, k), such that

m̂k − m − P (m,L, k) = Ωp

[

(

k
n

)
1

2

]

if k(1+ m
4

)/n → 0, k(2L+1)/n → ∞, n → ∞.

Here A = Ωp(B) means A = Op(B) and B = Op(A).

Discussion.

1. This result has the same unsatisfactory aspects as Theorem 4.1 in that
it is not too instructive for integer dimensions. Although there are
well-established notions of fractal dimensions for sets, we do not know
how our estimate will behave.

2. Levina and Bickel (2005) had conjectured that m̂k−m was asymptoti-
cally normal with variance of order n−1 for suitable kn. This conjecture
appears to be true only for k bounded. We sketch a proof after that of
Theorem 4.2. Asymptotic normality may hold at scale ( k

n )
1

2 in general
but we have not shown this.

3. The same lack of guidance on k holds although we may obviously adopt
our local variance based estimate to the global case and apply the same
principle as that of Theorem 4.1.

We finally state

Theorem 4.3. If k ≤ K < ∞ for all K and the condition on T and f
of Theorem 4.1 hold, then

√
n
(

m̂k −
k − 1

k − 2
m

)

⇒ N (0, σ2(m)).

Discussion

1. As we indicated earlier, we really would like large deviation theorems.
Although asymptotic normality does not establish this it at least sug-
gests that global integer dimensions can be established with probability
going to 0 exponentially in n. We conjecture that it is not too hard to
prove exponential in k convergence for local dimension.
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2. In those cases, as in dynamical systems, where it seems plausible that
observations have global fractal dimension, we conjecture that our
methods should be fruitful if our definition of local definition is replaced
by local ball covering dimension - e.g., partition a k-th nearest neigh-
bor d-cube of side L into ρ−d cubes of side ρL. For each little cube Bj ,
let ρ̂j be the fraction of the k nearest neighbors contained in this cube.
Now estimate m̂ ,

∑

log ρ̂j/ log(ρL) and let k → ∞, k/n → 0, ρ → 0
sufficiently slowly that ρk → ∞. Unfortunately we expect that the
speed of convergence of such an estimate to be (ρk)−

1

2 so that large
number of observations would be needed.

Proof of Theorem 4.2. Consider the expansion,

m̂k(X) − m − W (X) − µ

µ2
=

2L−1
∑

j=2

(W (X) − µ)j(−1)j

µj+1
+

(W (X) − µ)2L

µ2L+1

.(4.10)

To prove Theorem 4.2 for the uniform case, we will argue for (i) that the
expectation of the first term on the right of (4.10) for L = 1 is O( 1

k ) and

then compute the variance of m̂−1
k0

, 1
n

∑n
i=1 W (Xi), and show that

n
k V ar(m̂−1

k0
) → σ2(m) > 0.

We can then conclude that (i) holds for all m and k such that k3

n → ∞.

The other requirement on k comes when we do not have a uniform dis-
tribution.

More generally, for part (ii), we will argue that the right centering is

P (m,L, k) =
2L−1
∑

j=2

E(W (X1) − µ)j

µj+1
.

Note that P (m,L, k) = O(k−1) as claimed by using the central moments of
the Gamma distribution.

We begin our argument for part (i) with the fundamental

Proposition 4.1. Suppose Θ is bounded and f is uniform on Θ and T

is the identity. Then

kV ar(W (X)) = 1
m2 (1 + o(1)) (4.11)

n
k Cov(W (X1),W (X2)) = σ2(m)(1 + o(1)). (4.12)



Sparsity and the possibility of inference 15

We first prove (4.11). (4.12) requires a series of lemmas. For (4.11), as

we noted before, n(
Rj

Rk
)m, 1 ≤ j ≤ k−1 are distributed as the order statistics

of a sample of size k − 1 from U(0, 1). Thus (k − 1)W (X) has a Gamma
distribution with parameters k − 1 and m and (4.11) is immediate. For
(4.12), we will use the following standard formula. Let X1,X2 be random
variables and Y be a random vector. Then

Cov(X1,X2) = E[Cov(X1,X2)|Y] + Cov((EX1|Y), (EX2|Y)).

Let A denote the event (X1 = x1,X2 = x2, Rk(X1) = r1, Rk(X2) = r2)
and let

A1 = {(x1,x2) : S(x2, r2) ∩ S(x1, r1) = ∅}
A2 = {(x1,x2) : S(x2, r2) ∩ S(x1, r1) 6= ∅}.

Write

Cov(W (X1),W (X2)) = E[Cov(W (X1),W (X2))|A]

+ Cov(EW (X1)|A, EW (X2)|A).

Write the first term as

E[Cov(W (X1),W (X2)).1A1
|A] + E[Cov(W (X1),W (X2)).1A2

|A]

= I1 + I2.

Denote c = πm/2

Γ[m/2+1] , the volume of a unit sphere in R
m.

Lemma 4.2. I1 = 0.

Proof. Given A, we can write

W (X1) =d
1

k − 1

k−1
∑

i=1

log
r1

‖ V 1
i − x1 ‖ (4.13)

W (X2) =d
1

k − 1

k−1
∑

i=1

log
r2

‖ V 2
i − x2 ‖ (4.14)

where =d denotes equal in distribution, for V 1
1 , ...,V 1

k−1 and V 2
1 , ...,V 2

k−1

i.i.d. uniform on spheres S(x1, r1) and S(x2, r2) respectively. Since the two
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sequences of random variables V 1
1 , ...,V 1

k−1 and V 2
1 , ...,V 2

k−1 are conditionally
independent on set A1,

Cov(W (X1),W (X2)).1A1
|A

= E
[(

W (X1) − EW (X1)|A
)(

W (X2) − EW (X2)|A
)

.1A1
| A

]

= E

[( 1

k − 1

k−1
∑

i=1

log
r1

‖ V 1
i − x1 ‖ − µ

)

.1A1
|A

]

.

E

[( 1

k − 1

k−1
∑

i=1

log
r2

‖ V 2
i − x2 ‖ − µ

)

.1A1
|A

]

= 0.

Therefore I1 = E[Cov(W (X1),W (X2)).1A1
|A)] = 0. 2

Consider the case A2, the two spheres S(x1, r1) and S(x2, r2) intersect
(see Figure 1 below).

Figure 1: Given X1 = x1,X2 = x2, Rk(X1) = r1, Rk(X2) = r2, the two
spheres S(X1, Rk(X1)) and S(X2, Rk(X2)) intersect.

Lemma 4.3. Let gm(r1, r2,∆) be the volume of the intersection of two
spheres S(0, r1) and S(x, r2) where r1 ≥ r2. Let

∆ = |x|, ρ =
r1

r1 + r2
≥ 1

2
, γ =

∆

r1 + r2
.

Then
(i) gm(r1, r2,∆) = d(m)(r1 + r2)

mhm(ρ, γ), for d(m) a universal constant,
on the set

C , {(ρ, γ) : 2ρ − 1 ≤ γ ≤ 1}
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and
(ii)

{

hm = 0, for γ ≥ 1
hm = (1 − ρ)mcm, for γ ≤ 2ρ − 1

since γ > 1 is equivalent to ∆ ≥ r1 + r2 which means that the spheres are
tangent or disjoint, while γ ≤ 2ρ − 1 is equivalent to ∆ + r2 ≤ r1 which
means that the smaller sphere is contained in the larger.

Proof. By definition

gm(r1, r2,∆) =

∫

...

∫

S(0,r1)∩S(x,r2)
dx.

Without loss of generality assume x = (∆, 0, ..., 0) and change to polar
coordinate (r, ϕ1, ..., ϕm−1)























x1 = r sin ϕ1... sin ϕm−2 cos ϕm−1

x2 = r sin ϕ1... sin ϕm−2 sinϕm−1

· · · · · ·
xm−1 = r sin ϕ1 cos ϕ2

xm = r cos ϕ1

where (r, ϕ1, ..., ϕm−1) ∈ [0,∞) × [0, π) × [0, π) × [0, 2π). Then

gm(r1, r2,∆) =

∫

T
rm−1

m−2
∏

i=1

(sin ϕi)
m−i−1drdϕ

where

T =

{

r2 ≤ r2
1, r2 − 2∆r

m−2
∏

i=1

(sin ϕi)
m−i−1 + ∆2 ≤ r2

2

}

.

Change variables to

v =
r

r1 + r2
.

Then

gm(r1, r2,∆) = (r1 + r2)
m

∫

U
vm−1

m−2
∏

i=1

(sin ϕi)
m−i−1dvdϕ

where

U =

{

v2 ≤ ρ2, v2 − 2γv

m−2
∏

i=1

(sin ϕi)
m−i−1 + γ2 ≤ (1 − ρ)2

}

.
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The result follows. 2

We continue with the proof. Let

Zj = cnRm
j /k, j = 1, 2

∆ = |X1 − X2|.

Let Pv,t,d be the conditional distribution of the data given, Z1 = t, Z2 =

v,∆ = ( k
ncd)

1

m , ∆0. Let

N12(r1, r2) =
∑

i6=1,2

1 (Xi ∈ S(X1, r1) ∩ S(X2, r2))

N̄12(r1, r2) =
∑

i6=1,2

1
(

Xi ∈ S(X2, r2) ∩ S̄(X1, r1)
)

N̄21(r1, r2) =
∑

i6=1,2

1
(

Xi ∈ S(X1, r1) ∩ S̄(X2, r2)
)

.

where S̄ denotes complement. Note that the distribution of N12, N̄12, N̄21

depend on ∆ as well as R1, R2.

Lemma 4.4. Under Pv,t,d,

N12(R1, R2) − kp(v, d)
√

kp(1 − p)
and

N̄12(R1, R2) − kvt√
kvt

and
N̄21(R1, R2) − kt√

kt

are asymptotically independent N (0, 1). Here

p , p(v, d) = Fgm(r0
1 , r

0
2,∆) = Fd(m)hm

(

1
2 , d

1

m

)

(1 + o(1))

when r0
1 = [kt/(cn)]

1

m , r0
2 = [kvt/(cn)]

1

m .

Proof. Without loss of generality we can assume X1 = 0.

Now given X = 0 and r0
1 as above, the k − 1 points in the interior of

S(0, r0
1) other than X2 are distributed uniformly and independently. There-

fore conditionally N12(r
0
1 , r

0
2) is Binomial(k − 2, π12) where

π12 =

Volume of

[

S

(

X2,
(

vt k
nc−1

)
1

m

)

∩ S(0, r0
1)

]

k
n t

where the denominator is the volume of S(0, r0
1). By Lemma 4.3, π12 =

Fgm(r0
1 , r

0
2,∆

0).
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Further, N̄12 is independent of N12 and follows a Binomial
(

n − k − 2, k
nvt + o(1)

)

distribution. Thus

N12(R1, R2) − kp(v, d)
√

kp(1 − p)
and

N̄12(R1, R2) − kv√
kv

are asymptotically independent N (0, 1). The same argument applies to N̄21.
2

Let v = v0(d) be the unique solution of

v + p(v, d) = 1.

The solution exists, since p(v, d) increases strictly from 0 to 1 as v increases,
by the definition of π12. Call the solution v0(d).

Lemma 4.5. Let W (X1) and W (X2) be as defined in (4.13) and (4.14).
Let A(d) be the event |X1 − X2| = ∆0. Let D = cn

k |X1 − X2|m. Then,

n.E[Cov(W (X1),W (X2)) |A(d)]

= F.E[hm(1
2 ,D)κ0(v0(D))](1 + o(1)) (4.15)

where D is uniformly distributed on (0, 1) and κ(v0(d)) is the covariance of
(log A1, log A2) where A1 = |X| and A2 = |X − ∆| and X is uniform on

the intersection of S(0, 1) and S(∆, v0(d)) with |∆| = d
1

m .

Proof. Note that,

Cov
(

(W (X1),W (X2)) | ∆ = ∆0, Z1 = t, Z2 = v,N12

)

= k−2N12Cov(log A1, log A2) (4.16)

Since given A(s), if V 1
i is in S(X1, r

0
1)∩ S̄(X2, r

0
2) and V 2

i in S(X2, r
0
2) then

the points are independent and the same holds if (X1, r
0
1) and (X2, r

0
2) are in-

terchanged, and given membership in S(X1, r1)∩S(X2, r2) and (∆, R1, R2).
The variables clearly have the identical distribution.

Note that

E(N12 | A(d)) = kp(v, d) = kFd(m)hm

(

1
2 , d

1

m

)

(1 + o(1)) (4.17)

by Lemma 4.4.

Finally note that

P

[

|X2 − X1| ≤
(

dc−1 k

n

)
1

m

]

= d
k

n
, 0 ≤ dm < 2. (4.18)
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Since for dm > 2, π12 = 0, we conclude that (4.15) holds provided that the
variables defined by (4.15) are uniformly integrable. To see this note that
E[|W (X1)|4 | D] is clearly bounded since D only provides information about
one point in S(X1, R1). 2

Lemma 4.6. Under the assumptions of Lemma 4.5,

Cov[E(W (X1) | A(Dm)), E(W (X2) | A(Dm))] = λ(m)
k

n
(1 + o(1))

for a suitable λ(m).

Proof. Let A(d, t, v) be the event

Z1 = t, Z2 = vt, |X1 − X2| =

(

k

nc
d

)
1

m

.

Then,

E[W (X1) | A(d, t, v),N12, N̄12, N̄21]

=
N̄12

k
E[− log Q1(d)] +

N12

k
E[− log Q2(d)] +

N̄21

k
E[− log Q3(d)]

where Q1 is uniform over S(0, 1) ∩ S̄(∆, v) with |∆| = d
1

m , Q2 is uniform
over S(0, 1) ∩ S(∆, v), and Q3 is uniform over S̄(0, 1) ∩ S(∆, v).

E(W (X2) | A(d, t, v)) has the same expression as E(W (X1) | A(d, t, v))
but with N̄12 and N̄21 switched. By Lemma 4.4

N12

k
→p p(d, v(d)),

N̄12

k
→p v(d),

N̄12

k
→p v(d).

Hence, using uniform integrability as before,

E[W (X1) | A(Dm)] = f(Dm)(1 + op(1)) = E[W (X2) | A(Dm)].

Thus

ECov[E(W (X1) | A(Dm)), E(W (X2) | A(Dm))].1A(Dm)

= E[V ar(f(Dm)(1 + op(1))).1A(Dm)]

= k
nλ(m)(1 + o(1))

again using (4.18) and the fact that f is continuous and f(d) = 0, d ≥ 2. 2
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A similar calculation applies to the variances of the individual terms in
(4.10). This completes the proof of (ii) for the case T is identity on the
first m coordinate vectors. To show that the results remain valid if T is as
specified and k(1+ m

4
)/n → 0, we simply apply the bounds of (4.5), (4.6) to

the joint density of (X1,X2,X) when computing covariances. For instance,

if B(s) =
{

|T (U1) − T (U2)| ≤ (c−1s k
n)

1

m

}

P
[

|T (U) − T (U1)| ≤ (c−1 k
n)

1

m , |T (U) − T (U2)| ≤ (c−1v0(s)
k
n)

1

m

∣

∣ B(s)

= π(s, v0(s))
(

1 + O
[

( k
n)

2

m
]

)

since we can replace |T (U)−T (Uj)| by |(T (U)−x0)− (T (Uj)−x0)|. The
theorem follows. 2

Finally we sketch the proof of Theorem 4.3.

Proof of Theorem 3. We note that

m̂k(Xi) = h(Xi : Nk(Xi))

where Nk(Xi) is the set of neighbors up to the k-th of Xi. Therefore we can
apply Theorem 3.4 of Chatterjee (2006) to establish Theorem 4.3 provided
we can show that

E(m̂k) = m

(

k − 1

k − 2

)

and (4.19)

V ar(m̂k) → σ2(m). (4.20)

Since
[

1
(k−1)mm̂k(Xi)

]−1
has a Gamma(k − 1, 1) distribution, (4.19) is im-

mediate.

We can similarly compute

V ar(m̂k(Xi)) = m2
[ (k − 1)2

(k − 2)(k − 3)
− (k − 1)2

(k − 2)2

]

= m2 (k − 1)2

(k − 2)2
1

k − 3
.

We are left to check that,

nCov(m̂k(X1), m̂k(X2)) ∼ γ(m,k)
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for suitable γ. Decomposing as before it is clear we need only be concerned
with

E
[

U(X1)U(X2)
∣

∣A(s)
]

and E
[

U(X1)
∣

∣A(s)
]

(4.21)

Given A2 and A(s), X2 = X1+(s
c

k
n)

1

m V where V has a uniform distribution
on S(0, 2). By Lemma 4.3, π(s, v(s)) = Fhm(v, s). If we now define

W = Z

(

s

c

k

n

)− 1

m

for Z uniform on S(0, r1)∩S(1, r2), then W has a distribution which depends
on s only.

Using this rescaling, the quantities in (4.21) depend only on the distri-
bution of V and Nk(r2). Therefore for k bounded, the quantities in (4.21)
depend on s and not on n to first order. But

P
[

∪ {A(t) : t ≤ s}
]

=
s

2

k

n

for 0 ≤ s ≤ 2. From

nV ar(m̂k) = V ar(m̂k(X1)) + 2(n − 1)Cov
[

m̂k(X1), m̂k(X2)
]

,

the theorem follows in the uniform case. The general case is argued as in The-
orem 4.2 again taking advantage of the boundedness of k. 2
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