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Prompted by the increasing interest in networks in many fields,
we present an attempt at unifying points of view and analyses of
these objects coming from the social sciences, statistics, probability
and physics communities. We apply our approach to the Newman–
Girvan modularity, widely used for “community” detection, among
others. Our analysis is asymptotic but we show by simulation and
application to real examples that the theory is a reasonable guide
to practice.

modularity | profile likelihood | ergodic model | spectral clustering

T he social sciences have investigated the structure of small
networks since the 1970s, and have come up with elaborate

modeling strategies, both deterministic, see Doreian et al. (1) for
a view, and stochastic, see Airoldi et al. (2) for a view and recent
work. During the same period, starting with the work of Erdös
and Rényi (3), a rich literature has developed on the probabilistic
properties of stochastic models for graphs. A major contribution
to this work is Bollobás et al. (4). On the whole, the goals of the
analyses of ref. 4, such as emergence of the giant component, are
not aimed at the statistical goals of the social science literature we
have cited.

Recently, there has been a surge of interest, particularly in the
physics and computer science communities in the properties of
networks of many kinds, including the Internet, mobile networks,
the World Wide Web, citation networks, email networks, food
webs, and social and biochemical networks. Identification of “com-
munity structure” has received particular attention: the vertices in
networks are often found to cluster into small communities, where
vertices within a community share the same densities of connect-
ing with vertices in the their own community as well as different
ones with other communities. The ability to detect such groups can
be of significant practical importance. For instance, groups within
the worldwide Web may correspond to sets of web pages on related
topics; groups within mobile networks may correspond to sets of
friends or colleagues; groups in computer networks may corre-
spond to users that are sharing files with peer-to-peer traffic, or
collections of compromised computers controlled by remote hack-
ers, e.g. botnets (5). A recent algorithm proposed by Newman and
Girvan (6), that maximizes a so-called “Newman–Girvan” mod-
ularity function, has received particular attention because of its
success in many applications in social and biological networks (7).

Our first goal is, by starting with a model somewhat less general
than that of ref. 4, to construct a nonparametric statistical frame-
work, which we will then use in the analysis, both of modularities
and parametric statistical models. Our analysis is asymptotic, let-
ting the number of vertices go to ∞. We view, as usual, asymptotics
as being appropriate insofar as they are a guide to what happens
for finite n. Our models can, on the one hand, be viewed as special
cases of those proposed by ref. 4, and on the other, as encompass-
ing most of the parametric and semiparametric models discussed
in Airoldi et al. (2) from a statistical point of view and in Chung and
Lu (8) for a probabilistic one. An advantage of our framework is
the possibility of analyzing the properties of the Newman–Girvan
modularity, and the reasons for its success and occasional fail-
ures. Our approach suggests an alternative modularity which is, in

principle, “fail-safe” for rich enough models. Moreover, our point
of view has the virtue of enabling us to think in terms of “strength
of relations” between individuals not necessarily clustering them
into communities beforehand.

We begin, using results of Aldous and Hoover (9), by introduc-
ing what we view as the analogues of arbitrary infinite population
models on infinite unlabeled graphs which are “ergodic” and from
which a subgraph with n vertices can be viewed as a piece. This
development of Aldous and Hoover can be viewed as a gener-
alization of deFinetti’s famous characterization of exchangeable
sequences as mixtures of i.i.d. ones. Thus, our approach can also be
viewed as a first step in the generalization of the classical construc-
tion of complex statistical models out of i.i.d. ones using covariates,
information about labels and relationships.

It turns out that natural classes of parametric models which
approximate the nonparametric models we introduce are the
“blockmodels” introduced by Holland, Laskey and Leinhardt
ref. 10; see also refs. 2 and 11, which are generalizations of the
Erdös–Rényi model. These can be described as follows.

In a possibly (at least conceptually) infinite population (of ver-
tices) there are K unknown subcommunities. Unlabeled individ-
uals (vertices) relate to each other through edges which for this
paper we assume are undirected. This situation leads to the follow-
ing set of probability models for undirected graphs or equivalently
the corresponding adjacency matrices {Aij : i, j ≥ 1}, where Aij =
1 or 0 according as there is or is not an edge between i and j.

1. Individuals independently belong to community j with
probability πj, 1 ≤ j ≤ K ,

∑K
j=1 πj = 1.

2. A symmetric K ×K matrix {Pkl : 1 ≤ k, l ≤ K} of probabil-
ities is given such that Pab is the probability that a specific
individual i relates to individual j given that i ∈ a, j ∈ b.
The membership relations between individuals are estab-
lished independently. Thus 1 − ∑

1≤a,b≤K πaπbPab is the
probability that there is no edge between i and j.

The Erdös–Rényi model corresponds to K = 1.
We proceed to define Newman–Girvan modularity and an alter-

native statistically motivated modularity. We give necessary and
sufficient conditions for consistency based on the parameters of
the block model, properties of the modularities, and average
degree of the graph. By consistency we mean that the modular-
ities can identify the members of the block model communities
perfectly. We also give examples of inconsistency when the con-
ditions fail. We then study the validity of the asymptotics in a
limited simulation and apply our approach to a classical small
example, the Karate Club and a large set of Private Branch
Exchange (PBX) data. We conclude with a discussion and some
open problems.
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Random Graph Models
Consider any probability distribution P on an infinite undirected
graph, or equivalently a probability distribution on the set of all
matrices ||Aij : i, j ≥ 1|| where Aij = 1 or 0, Aij = Aji for all
i, j pairs, and Aii = 0 for all i, thus excluding self relation. If the
graph is unlabeled, it is natural to restrict attention to P such that
||Aσiσj || ∼ P for any permutation σ of {1, 2, 3, . . .}. Hoover (see
ref. 9) has shown that all such probability distributions can be
represented as,

Aij = g(α, ξi, ξj, λij)

where α, {ξi} and {λij} are i.i.d. U(0, 1) variables and

g(u, v, w, z) = g(u, w, v, z)

for all u, v, w, z. The variables ξ correspond to latent variables,
λ being completely individual specific, ξ generating relations
between individuals and α a mixture variable which is unidenti-
fiable even for an infinite graph. Note that g is unidentifiable and
the ξ and λ could be put on another scale, e.g. Gaussian. We note
that, this point of departure was also recently proposed by Hoff
(12) but was followed to a different end.

It is clear that the distributions representable as,

Aij = g(ξi, ξj, λij) [1]

where λij = λji, are the extreme points of this set and play the
same role as sequences of i.i.d. variables play in de Finetti’s theo-
rem. Since given ξi and ξj, the λij are i.i.d., these distributions are
naturally parametrized by the function

h(u, v) ≡ P[Aij = 1|ξi = u, ξj = v].
As Diaconis and Janson (13) point out h(., .) does not uniquely
determine P but if h1 and h2 define the same P, then there exists
ϕ : [0, 1] → [0, 1] which is: measure preserving, i.e. such that ϕ(ξ1)
has a U(0, 1) distribution; and h1(u, v) = h2(ϕ(u), ϕ(v)).

Given any h corresponding to P, let

P[Xij = 1|ξi = u] = g(u) =
∫ 1

0
h(u, v)dv.

It is well known (see section 10 of ref. 14) that there exists
a measure preserving ϕg such that, g(ϕg(v)) is monotone non
decreasing.

Define

hCAN (u, v) = h(ϕg(u), ϕg(v)).

We claim that

gCAN (u) ≡
∫ 1

0
hCAN (u, v)dv = F−1(u)

where F is the cdf of gCAN (ξi), and hCAN is unique up to sets
of measure 0. To see this note that if h corresponds to P and
g(u) ≡ ∫ 1

0 h(u, v)dv is non decreasing, then since F is deter-
mined by P only, g(u) = F−1(u). But g(ϕg(u)) = gCAN (u) and
ϕg(u) = g−1gCAN (u) = u.

There is a reparametrization of hCAN (we drop the CAN sub-
script in the future) which enables us to think of our model in
terms more familiar to statisticians.

Let

ρ = P(Edge) =
∫ 1

0

∫ 1

0
h(u, v)dudv.

Then the conditional density of (ξi, ξj) given that there is an edge
between i and j is w(u, v) = ρ−1h(u, v). This parametrization also
permits us to decouple ρ ∝ E(Degree) of the graph from the inho-
mogeneity structure. It is natural finally to let ρ depend on n but

w(·, ·) to be fixed. If λn ≡ E(Degree) → ∞, we have what we may
call the “dense graph” limit. If λn = Ω(1), we are in the case most
studied in probability theory where, for instance, λn = 1 is the
threshold at which the so called “giant component” appears. This
is the situation Bollobas et al. focus on.

As we have noted, block models are of this type. Here we can
think of the reparametrization as being ρ,π, ||Sab|| = ||ρ−1Pab||,
or ||Wab|| ≡ ||ρ−1Pabπaπb||. The models studied by Chung and
others (8) given by,

h(u, v) ∝ a(u)a(v) [2]

also fall under our description. The mixture model of Newman
and Leicht (15) where, given communities 1, · · · , K ,

P[Xij = 1|i ∈ s, j ∈ r] = θriθsj

is not of this type, since it is not invariant under permutations.
It can be made invariant by summing over all permutations of
{1, · · · , n}, but is then generally not ergodic. Such models can
be developed from our framework by permitting covariates Zi
depending on vertex identity or Zij depending on edge identity.
Newman and Leicht’s example where the communities are WEB
pages falls under this observation. From a statistical point of view,
these models bear the same relation to our models as regression
models do to single population models.

Block models or models where

h(u, v, θ) ∝
Kn∑

k=1

θkak(u)ak(v)

for known functions {ak} can be used to approximate general h.
The latent eigenvalue model of Hoff (12) is of this type, but with
ak which are extremely rough and unidentifiable since the aj(ξ) are
independent, and for which no unique choice exists. We can think
of the canonical version of the block model as corresponding to a
labeling 1, · · · , K of the communities in the order W1 ≤ · · · ≤ WK
where Wj = ∑

k Wjk, which is proportional to the expected degree
of a member of community j. The function h(·, ·) then takes value
Pab on the (a, b) block of the product partition in which each axis
is divided into consecutive intervals, of lengths π1, · · · , πK . Each
corresponding vertical slice exhibits the relation pattern for that
community with the diagonal block identifying the members of
the community. The nonparametric h(·, ·) gives the same intuitive
picture on an arbitrarily fine scale. We note that, as in nonpara-
metric statistics, to estimate h or w, regularization is needed. That
is, we need to consider Kn → ∞ at rates which depend on n and
λn to obtain good estimates of h or w by using estimates of θ above
or of block model parameters. We will discuss this further later.

Newman–Girvan and Likelihood Modularities
The task of determining K communities corresponds to find-
ing a good assignment for the vertices e ≡ {e1, · · · , en} where
ej ∈ {1, · · · , K}. There are Kn such assignments. Suppose that
the distribution of A follows a K block model with parame-
ters π = (π1, · · · , πK ) and P = ||Pab||K×K . The observed A is
a consequence of a realization c = (c1, · · · , cn) of n indepen-
dent Multinomial(1, π) variables. Evidently we can measure the
adequacy of an assignment through the matrix

R(c, e) = ||Rab||K×K ,

where Rab = n−1 ∑n
i=1 I(ci = b, ei = a), the fraction of b mem-

bers classified as a members if we use e. It is natural to ask for
consistency of an assignment e, that is, e = c, i.e.

R(c, e) = diag(f(c))
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where fa(e) = n−1na(e) and na(e) = ∑n
i=1 I(ei = a). The

Newman–Girvan modularity QNG(e, A) is defined as follows. Let
{i : ei = k} denote e-community k, i.e. as estimated by e. Define

Okl(e, A) =
∑

1≤i, j≤n

AijI(ei = k, ej = l)

to be the block sum of A. Obviously, Okk is twice the number of
edges among nodes in the k-th e-community and for k 
= l, Okl is
the number of edges between nodes in the k-th e-community and
nodes in the l-th e-community. Let Dk(e, A) = ∑K

l=1 Okl(e, A).
It is easy to verify that Dk is the sum of degrees for nodes in
the k-th e-community. Let L = ∑K

k=1 Dk be twice the number of
edges among all nodes. Then the Newman–Girvan modularity is
defined by

QNG(e, A) =
K∑

k=1

Okk

L
−

(
Dk

L

)2

.

The Newman–Girvan algorithm then searches for the member-
ship assignment vector e that maximizes QNG. Notice that if edges
are randomly generated uniformly among all pairs of nodes with
given node degrees, then the number of edges between the kth
e-community and lth e-community is expected to be L−1DkDl .
Therefore, the Newman–Girvan modularity measures the frac-
tion of the edges on the graph that connect vertices of the same
type (i.e. within-community edges) minus the expected value of
the same quantity on a graph with the same community divisions
but random connections between the vertices (6). Newman (16)
contrasts and compares his modularity with spectral clustering,
another common “community identification” method which we
will also compare to the likelihood modularity below. We seek
conditions under which the official N-G assignment

ĉ = arg max QNG(e, A)

is consistent with probability tending to 1. Before doing so we
consider alternative modularities.

For fixed e, the conditional, given {nk(e)}K
1 , log-likelihood of

A is 1
2

∑
1≤a,b≤K (Oab log(Pab) + (nab − Oab) log(1 − Pab)), where

nab = nanb if a 
= b, naa = na(na − 1). If we maximize over P, we
obtain by letting τ(x) = x log x + (1 − x) log(1 − x),

QLM (e, A) = 1
2

∑
a,b

nabτ

(
Oab

nab

)

which we call the likelihood modularity. This is not a true like-
lihood but a profile likelihood where we treat e as an unknown
parameter. We will argue below that the profile likelihood is opti-
mal in the usual parametric sense if λn

log n → ∞. But so are all other
consistent modularities as defined below. However, we expect that
if λn

log n is bounded and certainly if λn = Ω(1), the most important
case, this is false. We are deriving optimal and computationally
implementable procedures for this case.

We write general modularities in the form,

Q(e, A) = Fn

(
O
μn

,
L
μn

, f(e)
)

where μn = E(L) = n(n − 1)ρn and the matrix O(e, A) is
defined by its elements Oab(e, A), f(e) = ( n1(e)

n , · · · , nK (e)
n )T , and

Fn : M×R+×G → R where M is the set of all nonnegative K×K
symmetric matrices and G is the K simplex. Note that both QNG

and QLM can be written as such up to a proportionality constant.
It is easy to see that if the K block model holds,

E(O(e, A)|c)
E(L)

= R(c, e)SRT (c, e) [3]

where, by definition, RT 1 = f(c), R1 = f(e), 1 = (1, · · · , 1)T , and
Sab = ρ−1

n P(A12 = 1|c1 = a, c2 = b). Note that W ≡ D(π)SD(π),
where D(v) ≡ diag(v) for v K × 1.

We define asymptotic consistency of a sequence of assignments
ĉ by

P[ĉ = c] → 1 [4]

as n → ∞.
We will assume that there exists a function F : M×R

+×G → R

such that Fn is approximated by F evaluated at the conditional
expectation given c of the argument of Fn. Suppose first Fn ≡ F.
It is intuitively clear from [3] that if ĉ → c, then R(c, ĉ) → D(π).
Then, since f(c) → π, the following condition is natural.

I. F(RSRT , 1, R1) is uniquely maximized over R = {R : R ≥
0, RT 1 = π} by R = D(π), for all (π, S) in an open set Θ.

This means c with f(c) = π is the right assignment for the limiting
problem. Note that since F is not concave in R, this is a strong
condition.

For (π, S) to be identifiable uniquely, we clearly also need that:

II. S does not have two identical columns (Two communi-
ties cannot have identical probabilities of being related to
other communities and within themselves) and π has all
entries positive (Each community has some members).

We also need a few more technical conditions of a standard
type.

III. a) F is Lipschitz in its arguments. b) The directional deriv-
atives ∂2F

∂ε2 (M0+ε(M1−M0), r0+ε(r1−r0), t0+ε(t−t0))|ε=0+
are continuous in (M1, r1, t) for all (M0, r0, t0) in a neigh-
borhood of (W , 1, π). c) Let G(R, S) = F(RSRT , 1, R1).
Assume that on R, ∂G((1−ε)D(π)+εR,S

∂ε
|ε=0+ < −C < 0 for all

(π, S) ∈ Θ.

Theorem 1. Suppose F, S and π satisfy I–III and ĉ is the maximizer
of Q(e, A). Suppose λn

log n → ∞. Then, for all (π, S) ∈ Θ,

limitn→∞
log P(ĉ 
= c)

λn
≤ −sQ(π, S) < 0.

The proof is given in SI Appendix.
We note that Snijders and Nowicki (11) established a related

result, exponential convergence to 0 of the mis-classification prob-
ability for λn = Ω(n) using node degree K-means clustering for
K = 2.

Let F(c, e) ≡ F(R(c, e)SRT (c, e), fT (c)Sf(c), f(e)). In the gen-
eral case it suffices to show,

limitn→∞
P

(
sup{|Q(e, A) − F(c, e)| : e} ≤ δΔn

)
λn

≤ −γ [5]

for all δ > 0, some γ > 0, where

Δn = inf{|F(c, e) − F(c, c)| : |e − c| ≥ 1}
and |e − c| = ∑n

i=1 1(ei 
= ci). We show in SI Appendix that QNG
and QLM satisfy I and III and Eq. 5 for selected (π, S) for QNG and
all (π, S) for QLM .

An immediate consequence of the theorem is:
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Corollary 1: If the conditions of Theorem 1 hold and,

Ŵ ≡ L−1O(ĉ, A),

π̂ =
{

1
n

n∑
i=1

I(ĉi = a) : a = 1, · · · , K

}
,

then,
√

n(π̂ − π) ⇒ N (0, D(π) − ππT ),
√

n(Ŵ − W ) ⇒ S · (πηT + ηπT ) − 2(πT Sη)W ,

η = N (0, D(π) − ππT ),

with A · B denoting point-wise product. The limiting variances are
what we would get for maximum likelihood estimates if ĉ = c, i.e. we
knew the assignment to begin with. So consistent modularities lead
to efficient estimates of the parameters.

This follows since with probability tending to 1, ĉ = c.
To estimate w(·, ·) in the nonparametric case we need K →

∞, and w(·, ·) and π(·) smooth. We approximate by WK ∼
K−2||w(aK−1, bK−1)||, πK (a) ∼ K−1π(aK−1), where w(·, ·), WK
are canonical and the modularity defining FK , FK (·, ·, ·) is of
order K−2. We have preliminary results in that direction but their
formulation is complicated and we do not treat them further here.

Consistency of N-G, L-M
We show in SI Appendix using the appropriate FNG, FLM that the
likelihood modularity is always consistent while the Newman–
Girvan is not. This is perhaps not surprising since N-G focuses
on the diagonal of O. In fact, we would hope that N-G is consis-
tent under the submodel {(ρ, π, W ) : Waa >

∑
b
=a Wab for all a},

which corresponds to Newman and Girvan’s motivation. We have
shown this for K = 2 but it surprisingly fails for K > 2. Here is a
counterexample. Let K = 3, π = (1/3, 1/3, 1/3)T and

P =
⎡
⎣.06 .04 0

.04 .12 .04
0 .04 .66

⎤
⎦ .

As n → ∞, with true labeling, QNG approaches 0.033. How-
ever, the maximum QNG, about 0.038, is achieved by merging
the first two communities. That is, two sparser communities are
merged. This is consistent with an observation of Fortunato and
Barthelemy (17).

If for the profile likelihood we maximize only over e such that
Ŵaa(e) >

∑
b
=a Ŵab(e) for all a, we obtain ĉ which is consis-

tent under the submodel above, and in the Karate Club example
performs like N-G.

Computational Issues
Computation of optimal assignments using modularities is, in prin-
ciple, NP hard. However, although the surface is multimodal, in
the examples we have considered and generally when the signal
is strong, optimization from several starting points using a label
switching algorithm (19) works well.

Simulation
We generate random matrices A and maximize QNG, QLM to obtain
node labels respectively, where QLM is maximized using a label
switching algorithm. To make a fair comparison, the initial label-
ing for QNG and QLM is to randomly choose 50% of the nodes with
correct labels and the other 50% with random labels. For spectral
clustering, we adopt the algorithm of (18) by using the first K eigen-
vectors of D(d)−1/2AD(d)−1/2, where d = (d1, · · · , dn)T and di is
the degree of the i-th node. We generate the P matrix randomly
by forcing symmetry and then add a constant to diagonal entries

Fig. 1. Empirical comparison of Newman–Girvan, likelihood modularities
and spectral clustering (18), where K = 3, the number of nodes n varies
from 200 to 1500, and the percent of correct labeling is computed from 100
replicates of each simulation case. Here π, P are given in the text.

such that I holds. The π is generated randomly from the simplex.
To be precise, the values for Fig. 1 are π = (.203, .286, .511)T and

P = bn−1 log n ·
⎡
⎣.43 .06 .13

.06 .34 .17

.13 .17 .40

⎤
⎦ ,

where n varies from 200 to 1,500 and b varies from 10 to 100. Obvi-
ously, Fig. 1 says that the likelihood method exhibits much less
incorrect labeling than Newman–Girvan and spectral clustering.
This is consistent with theoretical comparison.

Data Examples
We compare the L-M and N-G modularity algorithms below
with applications to two real data sets. To deal with the issue of
non-convex optimization, we simply use many restarting points.

Zachary’s “Karate Club” Network. We first compare L-M and N-G
with the famous “Karate Club” network of ref. 20, from the social
science literature, which has become something of a standard test
for community detection algorithms. The network shows the pat-
terns of friendship between the members of a karate club at a
US university in the 1970s. The example is of particular interest
because shortly after the observation and construction of the net-
work, the club in question split into two components separated
by the dashed line as shown in Figs. 2 and 3 as a result of an
internal dispute. Fig. 2 Left shows two communities identified by
maximizing the likelihood modularity where the shapes of the ver-
tices denote the membership of the corresponding individuals,
and similarly the right panel shows communities identified by N-
G. Obviously,the N-G communities match the two sub-divisions
identified by the split save for one mis-classified individual. The
L-M communities are quite different, and obviously one com-
munity consists of five individuals with central importance that
connect with many other nodes while the other community con-
sists of the remaining individuals. Although not reflecting the split
this corresponds to other plausible distinguishing characteristics
of the individuals. However, if we force the constraint that within-
community density is no less than the density of relationship to all
other communities, the submodel we discussed, then we obtain two
L-M communities that match the split perfectly. The same parti-
tions as ours with and without constraint have also been reported
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Fig. 2. Zachary’s karate club network. Communities were identified by maximizing the likelihood modularity (Left) and by maximizing the Newman–Girvan
modularity with K = 2 (Right), where the shapes of vertices indicate the membership of the corresponding individuals. The dashed line cuts the nodes into
two groups which are the “known” communities that the club was split into.

by Rosvall and Bergstrom using a data compression criterion (21),
which is closely related to L-M. We note that, as is usual in cluster-
ing, there is no ground truth, only features which can be validated
ex post fact. It is interesting to note that, if instead of K = 2, we put
K = 4, as in Fig. 3, it is evident for both modularities that merg-
ing the communities on either side of the eigenvector split, gives
the “correct” Karate Club split. This suggests that the standard
policy mentioned by Newman (16) of increasing the number of
communities by splitting is not necessarily ideal since in this case
the “misclassified” individual of Fig. 2 would never be “correctly”
classified.

Private Branch Exchange. Our second example is of a telephone
communication network where connections are made among the
internal telephones of a private business organization, a so called
PBX. PBXs are differentiated from “key systems” in that users of
key systems usually select their own outgoing lines, while PBXs
select the outgoing line automatically. Our data contains 621

individuals. Fig. 4 Left shows the results of community detection
by L-M, where the adjacency matrix is plotted but the nodes are
sorted according to the membership of the corresponding individ-
uals identified by maximizing the likelihood modularity. Similarly,
the right panel of Fig. 4 shows the communities identified by N-
G, where the maximum Newman–Girvan modularity is 0.4217.
Note that the identified communities by L-M have sizes 323, 81,
78, 97, 41, and 1, respectively. The communities are ordered sim-
ply by their average node degrees, essentially the order for hCAN .
Interestingly, the last L-M community has only one node that
communicates with almost everyone else, nodes in the second
community only communicate with internal nodes, nodes in the
fourth community and the sixth community, but not with others;
Similarly, the third community only communicates with the fifth
and sixth communities, and so on. In other words, communica-
tion between communities is sparse. However, the communities
identified by N-G are quite different with only the fifth commu-
nity heavily overlapping with a community identified by L-M. This

Fig. 3. Zachary’s karate club network. Communities were identified by maximizing the likelihood modularity (Left) and by maximizing the Newman–Girvan
modularity with K = 4 (Right), where the shapes of vertices indicate the membership of the corresponding individuals. The dashed line cuts the nodes into
two groups which are the known communities that the club was split into.
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Fig. 4. Private branch exchange data. (Left) The adjacency matrix where the nodes are sorted according to the membership of the corresponding individuals
identified by maximizing L-M. (Right) Same as Left, but with individuals identified by maximizing N-G with K = 6. The colors on the within-community edges
are used to differentiate the communities for both L-M and N-G.

difference appears to be caused by the nodes in the 5th and 6th
L-M communities which have many more between-community
connections than within-community connections while N-G more
or less maximizes within-community connections. We have ver-
ified that the group communicating with all others is a service
group.

Discussion
1. As we noted, under our conditions the usual statistical

goal of estimating the parameters π and P is trivial, since,
once we have assigned individuals to the K communities
consistently, the natural estimates, Ŵ and π̂, are not just
consistent but efficient. However, in the more realistic
case where λn = Ω(1), or even just λn = Ω(log n), this
is no longer true. Elsewhere, we shall show that, indeed,
estimation of parameters by maximum likelihood and
Bayes classification of individuals (no longer perfect) is
optimal.

2. A difficulty faced by all these methods, modularities or
likelihoods, is that if K is large, searching over the space
of classifications becomes prohibitively expensive. In sub-
sequent work we intend to show that this difficulty may

be partly overcome by using the method of moments to
first estimate π and P, and then study the likelihood in a
neighborhood of the estimated values.

Open Problems
1. A fundamental difficulty not considered in the literature

is the choice of K . From our nonparametric point of view,
this can equally well be seen as, how to balance bias and
variance in the estimation of w(·, ·). We would like to argue
that, as in nonparametric statistics, estimating w(·, ·) with-
out prior prejudices on its structure is as important an
exploratory step in this context as, using histograms in
ordinary statistics.

2. The linking of this framework to covariates depending on
vertice or edge identity is crucial, permitting relationship
strength to be assessed as a function of vector variables.

3. The links of our approach to spectral graph clustering and
more generally clustering on the basis of similarities seem
intriguing.
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