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Abstract: For i.i.d. samples of size n, the ordinary bootstrap (Efron (1979)) is known

to be consistent in many situations, but it may fail in important examples (Bickel,

Götze and van Zwet (1997)). Using bootstrap samples of size m, where m → ∞ and

m/n → 0, typically resolves the problem (Bickel et al. (1997), Politis and Romano

(1994)). The choice of m is a key issue. In this paper, we consider an adaptive rule,

proposed by Bickel, Götze, and van Zwet (personal communication), to pick m. We

give general sufficient conditions for first order validity of the rule, and consider its

higher order behavior when the ordinary bootstrap fails, and when it works. We

then examine the behavior of the rule in the context of setting confidence bounds

on high percentiles, such as the asymptotic expected maximum.
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1. Introduction

The non-parametric bootstrap with sample size n (Efron (1979)) is a power-

ful inferential tool, but in important situations it can fail (see Mammen (1992) for

a review). Bickel et al. (1997), Götze (1993), and Politis and Romano (1994)

revived a discussion of resampling smaller bootstrap samples, namely, instead

of resampling bootstrap samples of size n (referred to here as the n-bootstrap),

take bootstrap samples of size m, where m → ∞ and m/n → 0, with or with-

out replacement. Earlier papers, discussing the idea of smaller sample size, in-

clude Bickel and Freedman (1981), Bretagnolle (1983), Swanepoel (1986) and

Athreya and Fukuchi (1993).

The choice of m can be crucial, and two issues are involved. The first is

that the user does not know, a-priori, whether the bootstrap works or not, in

his case. The second is the choice of m, in case of n-bootstrap failure. Ear-

lier papers, discussing the choice of m, include Datta and McCormick (1995),

Hall, Horowitz and Jing (1995) and Politis, Romano and Wolf (1999).

In the independent case, Bickel, Götze, and van Zwet (personal communica-

tion) proposed a data dependent rule for selecting m in estimating the limit law
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of statistics. The study of this rule was independently begun by Sakov (1998) and

Götze and Rac̆kauskas (2001). Both sets of authors gave conditions for the rule

to select m, such that m/n → 0 and m → ∞, when the bootstrap is inconsistent.

Götze and Rac̆kauskas, using delicate analysis of the behavior of U-statistics

with kernels growing in n, focused on conditions under which the rule gives

“optimal” choices of m, that is, resulting in an approximation of the same order as

the one that could be obtained by an oracle, knowing the underlying distribution.

They verified their conditions in a number of classical examples, such as pivots

based on the minimum of U(0, θ) variables, and quadratic statistics, both finite

and infinite dimensional. Sakov (1998) also focused on quadratic statistics, but

under a different set of conditions. Sakov’s work was less general, but on the other

hand, she showed how the m out of n bootstrap could, in some situations, be

modified using extrapolation to give an approximation as good as the best other

available approximation, an impossibility even for the oracle (Bickel and Sakov

(2002a)).

In this paper, we formulate what we mean by failure of the bootstrap, in

terms of convergence of measure-valued random elements. This formulation is

more abstract than that of Götze and Rac̆kauskas but, we believe, it clarifies the

rationale of the rule. We then state and prove some elementary results on the

behavior of the rule when the n-bootstrap is consistent, and when it is not. This

is done under conditions that are plausible, but whose validation can be non-

trivial, as might be expected from the verifications in Götze and Rac̆kauskas.

Our major result is, in fact, the validation of these conditions for a class

of pivotal statistics, based on max(X1, . . . ,Xn), for setting a confidence bounds

on F−1(1 − 1/n). This is an example which, except for specific cases such as

the uniform distribution on (0, θ), does not fall within the scope of Götze and

Rac̆kauskas.

The paper is organized as follows. In Section 2, we motivate and describe a

rule for choosing m. The properties of the rule are discussed in Section 3. For

the case that the n-bootstrap is inconsistent, Subsection 3.1 gives rather general

criteria under which the chosen m, denoted by m̂, behaves properly, i.e., m̂/n → 0

and m̂ → ∞. For the case that the n-bootstrap works and is optimal in the sense

of Beran (1982), Subsection 3.2, shows that if the Edgeworth expansions exists,

then m̂/n → 1, as it should. For the case that n-bootstrap is inconsistent, but

Edgeworth or similar expansions are available, Subsection 3.3 shows that m̂ not

only behaves properly, but in fact gives essentially the best rates possible for

estimation of the limiting distribution of the statistics. In some cases, the rule

gives the best possible minimax rates for estimation of the limit in the sense

given in Bickel et al. (1997). The application to extrema is presented in Section

4. Section 5 presents some simulations supporting the asymptotics. An online
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supplement to the paper contains technical arguments, and may be found at

http://www3.stat.sinica.edu.tw/statistica/.

2. The Rule

Assume X1, . . . ,Xn are i.i.d. from a distribution F ∈ F , X1 ∈ Rd. Let

Tn = Tn(X1, . . . ,Xn;F ) be a random variable (rv) with cdf Ln(x) = P (Tn ≤
x). We assume a known rate of convergence of Tn to a non-degenerate limiting

distribution L, i.e., Ln
L⇒L. For simplicity, we suppress the dependence of Ln and

L on F . The goal is to estimate, or construct a confidence interval for, θn = γ(Ln)

for some functional γ. The bootstrap estimates Ln, and this estimate, in turn,

is plugged into γ to estimate θn.

For any positive integer m, let the bootstrap sample, X∗
1 , . . . ,X∗

m, be a sam-

ple drawn from the empirical cdf, F̂n, and denote the m-bootstrap version of Tn

by T ∗
m = Tm(X∗

1 , . . . ,X∗
m; F̂n), with bootstrap distribution L∗

m,n(x) ≡ P ∗(T ∗
m ≤

x) = P (T ∗
m ≤ x|F̂n).

We say that the bootstrap ‘works’, if L∗
m,n converges weakly to L in proba-

bility for all m,n → ∞ and, in particular, for m = n.

When the bootstrap does not ‘work’ then, under minimal conditions, using

a smaller bootstrap sample size rectifies the problem, i.e., although L∗
n,n does not

have the correct limiting distribution, L∗
m,n, with ‘small’, but “not too small”, m

does (Bickel et al. (1997), Politis and Romano (1994)).

For any m < n, bootstrap samples may be drawn with or without re-

placement. If it is done without replacement (known as subsampling), then

L∗
m,n

L⇒L under minimal conditions, as shown in Politis and Romano (1994) and

Götze (1993). If the resampling is done with replacement (what we call the

m-bootstrap), then this limit holds if, in addition to the minimal conditions,

Tm is not affected much by the order of
√

m ties (Bickel et al. (1997)). Thus,

subsampling is more general than the m-bootstrap since fewer assumptions are

required. However, the m-bootstrap has the advantage that it allows for the

choice of m = n. In particular, if the n-bootstrap works and is known to be

second order correct for some pivotal roots, the selection rule for m includes the

particular case m/n → 1 (Section 3.2). In that case, unlike subsampling, the

m-bootstrap enjoys the second order properties of the n-bootstrap. Since in all

situations of interest, so far, the conditions for consistency of the m-bootstrap

are satisfied, we consider only the sampling with replacement case.

Using a smaller bootstrap sample requires a choice of m. To motivate the

rule, we use the following example (Bickel et al. (1997), Sakov (1998)). Let

Xi be i.i.d. with mean µ, and variance σ2. Consider the null hypothesis that

µ = 0 with the usual test statistic Tn =
√

nX̄n (the subscript on X̄n indicates

the sample size). An alternative for using the usual normal quantile in setting a
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critical value is to use the bootstrap distribution of
√

n(X̄∗
n − X̄n), i.e., resample

the residuals Xi − X̄n. This is a special case of resampling the residuals in

regression through the origin (Freedman (1981)). Suppose that, instead, we

use the bootstrap distribution of T ∗
n =

√
nX̄∗

n, the direct, and naive, bootstrap

version of Tn. Then, using a quantile of this distribution is inconsistent, as we

discuss below. Consider the bootstrap distribution of T ∗
m =

√
mX̄∗

m. When m is

fixed, say m = k, the bootstrap distribution is

L∗
k,n(x) =

1

nk

n
∑

i1=1

· · ·
n

∑

ik=1

1

(√
k

∑k
l=1 Xil

k
≤ x

)

,

where 1(A) denotes the indicator function of A. L∗
k,n is a function of the data

only, and is a V -statistic. As n → ∞, L∗
k,n → Lk, and the limit depends on k

(Serfling (1980)). The only distribution for which the limit is the same for all

k is the normal distribution (Kagan, Linnik and Rao (1973)), and this case is

discussed in Sakov (1998).

On the other hand, when m,n → ∞,
√

m(X̄∗
m − X̄n)

L⇒N(0, σ2) (Bickel

and Freedman (1981)). Hence,
√

mX̄∗
m behaves like N(

√
mX̄n, σ2). As m/n →

λ ≥ 0,
√

mX̄n =
√

m/n
√

nX̄n
L⇒N(0, λσ2). Thus, the limiting distribution of√

mX̄∗
m can be thought of as a random probability distribution, with randomness

coming from the marginal distribution of the original sample. Denote the limit

by Lλ ≡ N(
√

λσZ, σ2), where Z ∼ N(0, 1). The limit is degenerate and equal

to the desired N(0, σ2) iff λ = 0 (i.e., when m/n → 0). For λ > 0, the limit is

non-degenerate and depends on λ. Furthermore, λ 7→ Lλ is 1 − 1.

Loosely speaking, it follows that when m is in the “right range” of values,

the bootstrap distributions for different possible samples are ‘close’ to each other;

when m is “too large” or fixed, the bootstrap distributions (or processes) are dif-

ferent. This suggests looking at a sequence of values of m and their corresponding

bootstrap distributions. A measure of discrepancy, between these distributions,

should show large discrepancies when m is “too large” or fixed. The discrepancies

should be small when m is of the “right order”.

In essentially all examples considered so far, the failure of the n-bootstrap

is of the following type: L∗
n,n, viewed as a probability distribution on the space

of all probability distributions, does not converge to a point mass at the correct

limit L, but rather converges (in a sense to be made precise in Appendix A) to

a nondegenerate distribution, call it L1, on that space. If m → ∞, m/n → λ,

0 < λ < 1, one gets convergence to a non-degenerate distribution, Lλ, which is

typically different from L1. We expect that L0 = L. This behavior suggests the

following adaptive rule for choosing m.
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1. Consider a sequence of m’s of the form

mj =
[

qjn
]

, for j = 0, 1, 2, . . . , 0 < q < 1, (1)

where [α] denotes the smallest integer ≥ α.

2. For each mj, find L∗
mj ,n (in practice this is done by Monte-Carlo).

3. Let ρ be some metric consistent with convergence in law, and set

m̂ = argmin
mj

ρ
(

L∗
mj ,n, L∗

mj+1,n

)

.

If the difference is minimized for a few values of mj , then pick the largest

among them. Denote the j corresponding to m̂ by ̂.

4. The estimator of L is L̂ = L∗
m̂,n. Estimate θ by θ̂n = γ(L̂), or use the quantiles

of L̂ to construct confidence interval for θ.

Our discussion, and proofs, are for the case ρ(F,G) = supx |F (x) − G(X)|, the

Kolmogorov sup distance (KS). Götze and Rac̆kauskas (2001) consider more gen-

eral metrics of the form ρ(P,Q) = sup{|P (h) − Q(h)| : h ∈ H}, where H is a

Donsker class of functions and P (h) ≡ EP (h(X)). The results of Sections 3.1

and 3.2 are valid for this generalization also, but are not formally pursued since

simulations using other ρ, such as the Wasserstein metrics, for our application to

extrema did not show substantial differences. However, Götze and Rac̆kauskas

(2001) obtained better results for Tn =
√

nX̄n. One of us, Sakov (1998), success-

fully used metrics based on quantiles of P and Q in applications to the bump

test for multimodality (Silverman (1981)).

Throughout the paper we assume the data are i.i.d. The idea of subsampling

can be extended to time series. However, in order to maintain the dependence

structure, the time series is first divided into blocks of size b, and then, instead of

sampling individual observations, blocks are sampled. The block size, b, should

satisfies the same conditions as m, i.e., b → ∞ and b/n → 0. This suggests that a

similar data-dependent rule to choose b may work, although we have not pursued

this. For more information see Politis et al. (1999).

3. General Behavior of the Rule

3.1. Order of m̂ when the n-bootstrap is inconsistent

Recall that Tn is the rv of interest with exact cdf Ln, and T ∗
m is its bootstrap

version with bootstrap distribution L∗
m,n. For a given m, the bootstrap distri-

bution is a stochastic process whose distribution depends on F̂n. To study the

behavior of such objects carefully, we introduce the following framework. On a

single large probability space (Ω,A, P ) we suppose that we can define:

(a) X1, . . . ,Xn, . . . i.i.d. F on Rd;
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(b) X∗
jk j ≥ 1, k ≥ 1 such that the conditional distribution of X∗

1n,X∗
2n, . . ., given

(X1, . . . ,Xn), is that of i.i.d. variables with common distribution F̂n.

We represent the laws of rv by their distribution functions, viewed as elements of
the Skorokhod space D(R̄), where R̄ = [−∞,+∞]. Thus, L∗

m,n is a measurable

map from Ω to D(R̄). In Appendix A, we define what we mean when saying that

L∗
m,n converges in law to (a random) L in probability.

If m is fixed, say m = k, and Tn does not depend on F , then

Vk ≡ L∗
k,n(x) =

1

nk

n
∑

i1=1

· · ·
n

∑

ik=1

1
(

Tk(Xi1 , . . . ,Xik ;F ) ≤ x
)

.

Vk is a V -statistic whose kernel has finite moments of all orders, and hence a

limiting distribution that is the expected value of the kernel (Serfling (1980)).

In general, it is reasonable to expect that Tk(X1, . . . Xk; F̂n) will behave like
Tk(X1, . . . Xk;F ), where F can now be treated as fixed. In Theorem 1, we build

this into the assumptions.

For m → ∞ and m/n → λ (0 < λ ≤ 1), define

Un(λ) =

{

L∗
[nλ]+1,n, 0 < λ ≤ 1 − 1

n

L∗
n,n, 1 − 1

n < λ ≤ 1
, (2)

which can be viewed as a stochastic process Un : (0, 1] ×Ω → D(R̄). With these

notations, here are our assumptions.

(A.1) If m = k fixed, then L∗
k,n

L⇒Lk as n → ∞, where Lk(x) = P (Tk(X1, . . .,

Xk;F ) ≤ x).

(A.2) Ln
L⇒L as n → ∞, where L is a continuous cdf. Viewed as a random

distribution function, L is fixed with probability 1 and belongs to C(R̄),
the continuous functions on R̄.

(A.3) For m → ∞ and m/n → 0, L∗
m,n

L⇒L in probability (see Bickel et al.

(1997) for conditions, and Appendix A for meaning).

(A.4) For Lk defined in assumption (A.1), the map k 7→ Lk is 1 − 1.

(A.5) For all (λ1, . . . , λl), where l ≥ 1, (Un(λ1), . . . , Un(λl))
L⇒(U(λ1), . . ., U(λl))

in probability, where U : [0, 1)×Ω → C(R̄), U is continuous from the right

at λ = 0, and Un(λn)
L⇒U(0+) as λn → 0. That is, if ρ is the product

Skorokhod metric on D(R̄)×· · ·×D(R̄), then for suitable Ũn, U (as in (a),

(a’) of Appendix A)

ρ

(

(

Ũn(λ1), . . . , Ũn(λl)
)

,
(

U(λ1), . . . , U(λl)
)

)

p→ 0.

(A.6) P (λ 7→ U(λ) is 1 − 1) = 1 for λ on [0, 1].
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If assumptions (A.5) and (A.6) hold, then the n-bootstrap is inconsistent. To
see that, note that by assumption (A.5), U(0) = L with probability 1. However,

if the n-bootstrap works then U(0) = U(1) = L, which contradicts (A.6).

Theorem 1. Let m̂ be the m chosen by the rule. If assumptions (A.1)−(A.6)

hold, then m̂
p→∞, and m̂/n

p→ 0.

The proof is given in Appendix 2.1 of the online supplement.

3.2. Choice of m when the n-bootstrap works

This section is motivated by examples like the t statistic, and
√

n(X̄ − µ),

for which the n-bootstrap works (Bickel and Freedman (1981), Singh (1981)). In
such cases, using bootstrap samples of size m < n, in general, causes a loss in

efficiency (Bickel et al. (1997)). The conditions under which the rule picks m,
such that there is no loss in efficiency, involve Edgeworth expansions. Suppose

that

Ln(x) = P (Tn ≤ x) = A0(x;F ) + n− 1

2 A1(x;F ) + o
(

n− 1

2

)

, (3)

L∗
m,n(x) = P ∗(T ∗

m ≤ x) = A0(x; F̂n) + m− 1

2 A1(x; F̂n) + op

(

m− 1

2

)

. (4)

We write Xn = Ωp(Yn) iff Xn = Op(Yn), and Yn = Op(Xn). Assume that

‖A0(·; F̂ n) − A0(·;F )‖ = Ωp

(

n− 1

2

)

(5)

‖A1(·; F̂n) − A1(·;F )‖ = op(1), (6)

where A1(F ) 6= 0, and ‖ · ‖ is the norm used in our rule. Define

κ∗
n(F ) = inf

j
‖L∗

mj ,n(·) − Ln(·)‖, κ̂∗
n(F ) = ‖L∗

m̂,n(·) − Ln(·)‖. (7)

Our focus, in this subsection, is on the behavior of m when the n-bootstrap is

consistent (which follows from equations (3)−(5)).

Theorem 2.
(a) If assumptions (A.1)−(A.4), and (3)−(6) are fulfilled, then

κ̂∗
n(F ) = Ωp

(

n− 1

2

)

and κ∗
n(F ) = Ωp

(

n− 1

2

)

. (8)

As a consequence, κ̂∗
n(F )/κ∗

n(F ) = Ωp(1), for all F ∈ F .

(b) Further assume that A0(·;F ) does not depend on F , that op(1) in (6) is

Ωp(n
−1/2), and that op(n

−1/2) in (3) is Op(n
−1). Then,

κ∗
n(F )

κ̂∗
n(F )

p→ 1 and κ̂∗
n(F ) = Op(n

−1). (9)
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Part (a) of the theorem corresponds to statistics like
√

n(X̄ − µ) where the
m-bootstrap, with m chosen by the rule, behaves equivalently to the n-bootstrap,
and both commit errors of order n−1/2. Part (b) corresponds to statistics like the
t, where the n-bootstrap produces coverage probabilities which differ by O(n−1)
from the nominal ones, and our conclusion (for ‖ · ‖∞) is that the m̂-bootstrap
achieves the same performance.

The proof is given in Appendix 2.2 of the online supplement.

Corollar 1. Under the conditions of Theorem 2, m̂/n
p→ 1.

3.3. Optimality of m̂ when the n-bootstrap is inconsistent

When the n-bootstrap is inconsistent, it is natural to ask the following.
(i) Does m̂ achieve the optimal rate for the m-bootstrap? Using (7), the question

becomes: do we have κ̂∗
n(F )/κ∗

n(F ) = Ωp(1) for all F ∈ F?
(ii) If so, does m̂ also achieve the minimax rate for estimating Ln, for a suitable

norm? This question can be framed as follows. Assume ρn = infδ maxF (EF

(‖δ(X1, . . . ,Xn) − Ln‖)) → 0, where δ ranges over all possible estimates of
Ln. Then, does EF (‖L∗

m̂(·) − Ln(·)‖)/ρn = Ω(1)?
Götze (1993) addresses the first question, for a class of smooth functionals T (F̂n)
and certain norms, obtaining an affirmative answer. We briefly address this
question here. Both questions will be addressed in Section 4.2, in the context of
extrema.

The basic requirement for addressing (i) is the existence of an Edgeworth type
expansion for Ln and L∗

m,n. Assume (3) holds, A0(x; F̂n) = A0(x;F ) + Op(n
−γ),

and A1(x; F̂n) = A1(x;F ) + Ωp(1). The expansion for L∗
m,n is assumed to satisfy

L∗
m,n(x) = A0(x; F̂n)+ m− 1

2 A1(x; F̂n) + Ωp(m
βn−γ) + op

(

m− 1

2 + mβn−γ
)

. (10)

The difference between (10) and (4) is the term of order mβn−γ . If β ≥ γ, then
the n-bootstrap is inconsistent. Here is an example where such a term arises.
The Edgeworth expansion of

√
nX̄n, if µ = 0, has the form (3), but the bootstrap

distribution of
√

mX̄∗
m has an expansion with β = γ = 1/2. This term arises

from the difference Φ(x) − Φ(−√
mX̄n + x), and is the bias of the bootstrap

distribution; it is of order Ωp(
√

mX̄n) = Ωp(
√

m/n).

Theorem 3.
1. Assume (3) and (10) hold and β ≥ γ, then

inf
m

‖L∗
m,n(·) − Ln(·)‖ = Ωp

(

n− 1

2
γ( 1

2
+β)−1

)

. (11)

2. If m̂ is chosen by the rule, then

‖L∗
m̂,n(·) − Ln(·)‖ = Ωp

(

n− 1

2
γ( 1

2
+β)−1

)

. (12)
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3. If mopt is the m which minimizes (11), then mopt/m̂ = Ωp(1).

The proof is given in Appendix 2.3 of the online supplement.

4. Confidence Bounds for Extrema

Our main example is setting confidence bounds for extrema. Assume X1, . . .,

Xn is an i.i.d. sample from a distribution F , with density f in the domain of

attraction of G for the maximum. That is, if X(n) = max(X1, . . . ,Xn), there

exist normalizing constants an > 0, and bn ∈ R (depending on F ) such that,

P (an(X(n) − bn) ≤ x) = Fn
( x

an
+ bn

)

→ G(x), (13)

for all x in the support of G. In that case, G must be one of the three types (for

example, David (1981) and Reiss (1989)):

G(x) = exp(−x−γ), x ≥ 0, γ > 0 (I),

G(x) = exp(−(−x)γ), x ≤ 0, γ > 0 (II),

G(x) = exp(−e−x) (III).

By type of G, we refer to the location-scale family generated by G. Denote by

ω(F ) the supremum of the support of F . From (5.1.8)–(5.1.11) and P.5.3 in Reiss

(1989), it follows that an and bn can be chosen to be:

a−1
n (F ) =











bn, for type I

ω(F ) − bn, for type II, bn(F ) = F−1
(

1 − 1
n

)

.

(nf(bn))−1, for type III

(14)

von Mises gave simple sufficient conditions on F to belong to the domain of

attraction of G. We consider a slightly specialized form of these conditions (Reiss

(1989, p.159)): If F ′′ = f ′ exists, then for γ > 0,

lim
x↑ω(F )

[

1 − F

f

]′

(x) =







γ−1, (I)

−γ−1, (II)

0, (III)

. (15)

We refer to these conditions as (vM)(I)−(III), respectively. The original von

Mises conditions (which are more tedious to work with, and harder to check

directly) are implied by (15). We prove our results under the specialized form,

since all common examples satisfy them.

Our goal is to set an upper confidence bound on bn defined in (14). If G

and an are known, we could use X(n) − a−1
n G−1(α). If G is unknown, a natural

alternative is to bootstrap the distribution of an(X(n)−F−1(1−1/n)), and replace
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G−1(α) by the α-th quantile of the bootstrap distribution of an(X∗
(n) − F̂−1

n (1−
1/n)). Unfortunately, the n-bootstrap fails (Athreya and Fukuchi (1993)). Here

is the m-bootstrap derivation. Denote by X(k,n) the k-th order statistic of a

sample of size n, and by X∗
(k,m) the k-th order statistic of a bootstrap sample of

size m. If we apply our paradigm to

Tn = an

(

X(n,n) − F−1
(

1 − 1

n

))

, (16)

we are led to consider the bootstrap distribution of

T ∗
m = am

(

X∗
(m,m) − F̂−1

n

(

1 − 1

m

))

= am

(

X∗
(m,m) − X([n− n

m
],n)

)

, (17)

where m → ∞, and m/n → 0. Denote the α-th quantile of this distribution by

Ĝ∗−1
m (α), and use X(n) − a−1

n Ĝ∗−1
m (α) as an upper confidence bound for bn(F ).

We propose to use m̂ as the choice of m. The success of this strategy, in the

sense of Theorem 1, is discussed in the following section.

4.1. Order of m̂

Theorem 4. Suppose F satisfies (15), and the search for m̂ is restricted to

j such that mj = [qjn] and [n/mj ] are distinct integers, as j varies. Then

L∗
m̂,n(x) → G(x), where G is the limit law of Tn (convergence as defined in

Appendix A).

Proof. We show that assumptions (A.1)−(A.6) of Section 3.1 hold. The theorem

then follows from Theorem 1.

Condition (A.1) is immediate by continuity of x → T ∗
m.

Condition (A.2) is the classic result of von Mises (Reiss (1989)).

Condition (A.3): This condition is established if, for m → ∞ and m/n → 0,

the bootstrap distribution of T ∗
m is shown to converge weakly in probability to

the same limiting distribution as Tn. Write,

T ∗
m = am(X∗

(m,m) − bm) − am

(

X([n− n
m

],n) − bm

)

.

Athreya and Fukuchi (1993) showed that am(X∗
(m,m) − bm) converges weakly to

the desired limit. In Lemma 1 (Appendix 3.1 in the online supplement), we show

that the right hand side is op(1), and (A.3) follows.

Condition (A.4): Bickel and Sakov (2002b) showed that if F satisfies (vM)(I)−
(III), then (A.4) is valid unless F is an extreme value distribution, in which case

L1(F ) = L2(F ) = · · · . The condition follows from this result. In the exceptional
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case that F is itself one of the three types, we need only show m̂/n
p→ 0, which

requires conditions (A.5) and (A.6), since m̂ staying bounded poses no problems.

Condition (A.5): The proof of this condition uses the Poisson approximation to

the Binomial distribution, and is given in Appendix 3.2 of the online supplement.

Condition (A.6) follows from Lemma 5 (Appendix 3.3 of the online supple-

ment).

4.2. Optimality of m̂

Here is a class of situations where (3) and (10) hold for an(X(n,n) − bn).

Suppose F satisfies the conditions of Theorem 5.2.11 (p. 176) of Reiss (1989).

Then (3) holds with β = 1/2, and α specified in Reiss (the power in (3) is

now α rather than 1/2) for the Hellinger norm and, hence, also the smaller L∞

norm. To see that (10) holds, consider m = Ω(nr) for some 0 < r < 1. Set,

C(ǫ) = {x : F (x/am + bm) ≥ ǫ} for ǫ arbitrarily small, and x(m) = x/am + bm.

Then,

‖L∗
m,n(·) − Lm(·)‖

= sup
x

{
∣

∣

∣
F̂m

n (x(m)) − Fm(x(m))
∣

∣

∣
: x ∈ C(ǫ)

}

+ o
(

mn− 1

2

)

= Ωp

(

mn− 1

2

)

.(18)

The argument for (18) is as follows. First,

sup
x

{

m ·
∣

∣

∣
log(F̂n(x(m))) − log(F (x(m)))

∣

∣

∣
: x ∈ C(ǫ)

}

= Ωp

(

m sup
x

{

|F̂n(x) − F (x)| : x ∈ C(ǫ)
}

)

= Ωp

(

mn− 1

2

)

,

and sup{|F̂m
n (x(m)) − Fm(x(m))| : x 6∈ C(ǫ)} = op(ǫ

m) = op(mn−1/2).

From (18) and (3):

L∗
m,n(x) − Ln(x) = (L∗

m,n(x) − Lm(x)) + (Lm(x) − Ln(x))

= A1(x;F )(m−α − n−α) + op(m
−α) + Ωp

(

mn− 1

2

)

= Op(m
−α) + Ωp

(

mn− 1

2

)

.

Hence (10) holds, with β = 1, γ = 1/2, and α as above, for ‖ · ‖ = ‖ · ‖∞.

Götze and Rac̆kauskas (2001) note this result for the standard uniform distribu-

tion.

The answer to question (ii) of Section 3.3 is more complicated. Here is

what follows in a special case. Suppose we are dealing with a type II limit

with ω(F ) < ∞ unknown. Suppose that F has support on [0, 1], and is such that
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0 < f(1−) < ∞ and |f ′(1−)| ≤ M < ∞. Then it is well known that the minimax
rate for estimating f(1), using root mean square error, is n−1/3. However, since
β = 1, γ = 1/2, and α = 1, the m-bootstrap, with m̂ chosen as above, can only
yield a rate of n−1/4.

This is a consequence of using ‖·‖∞ as our measure of departure. If, instead,
we use the norm ‖g‖ ≡ sup{|g(x)| : |x| ≤ M} for M < ∞, it may be shown that
we obtain a rate of n−1/3 for ‖Lm̃,n(·) − Ln(·)‖, where m̃ is selected using this
norm. This implies that a better estimate of Ln, even for the original ‖ · ‖∞,
is to estimate f(1−) using Lm̃,n, and then plug the resulting estimate into the
limiting exponential distribution.

From a statistical point of view, there is an unfortunate general conclusion.
We can design a pivot an(F̂n)(X(n,n) − F−1(1 − 1/n)) that has a limiting dis-
tribution, independent of F , in the domain of attraction of a particular type of
extremal law. However, unlike what happens with pivots such as the t statistic,
the m̂-bootstrap distribution of this pivot is not, theoretically, a better approxi-
mation to the law of the pivot than the limit is.

4.3. Comments

Throughout the paper we assume that the rate of convergence is known.
Consider the case when it is unknown, but is of the form an ∼ cnα for some α ≥ 0,
c > 0. Bertail, Politis and Romano (1999) and Politis et al. (1999) estimate α
using the m out of n bootstrap, and we applied it to the current problem of
extrema (as a preliminary stage, before applying our rule; see Section 5). In the
context of extrema, this form covers many important cases, e.g., the exponential,
the uniform, the generalized Pareto, etc. However, it does rule out cases like
the Gaussian, where an =

√
2 log n. In principle, the approach can be extended

to such a functional form for an, but in practice this is difficult (Bertail et al.
(2004)).

Subsampling, or the m out of n bootstrap without replacement, is also an
option here (Politis et al. (1999)). For the extrema problem we expect that
typically m̂/

√
n → 0, in which case sampling with and without replacement are

the same with probability tending to 1.

5. Simulations
5.1. Choice of m

We begin by illustrating, qualitatively, that m̂ behaves as we expect. Recall
that m̂ minimizes the successive differences ∆̂j = ‖L∗

mj ,n(·)−L∗
mj+1,n(·)‖. Ideally,

we would like to use m which minimizes the exact differences ‖L∗
mj ,n(·)−Ln(·)‖.

In the simulation, we replace Ln by its limit, L, and plot ∆j = ‖L∗
mj ,n(·)−L(·)‖,

as well as ∆̂j, as functions of mj . Three examples of n-bootstrap failure, and
one example when it works, are shown in Figure 1:
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Figure 1. Choice of m using the rule.

1. The extrema problem when F is exponential and an is known.

2. The extrema problem when F is the Gumbel distribution. Here an is un-

known; it is estimated using the approach of Bertail et al. (1999) (for details

see Section 5.2).

3. If F is the Uniform(0, θ) distribution, the n-bootstrap fails to estimate the

distribution of the maximum (Bickel and Freedman (1981)).

4. For the t-statistic, the n-bootstrap works (Bickel and Freedman (1981), Singh

(1981)).

The sample size is indicated above each plot. Here and later, the number of

bootstrap samples is 1,000, and q = 0.75.

As can be seen, there are two (‘typical’) types of curves: when the n-

bootstrap fails, and when it works. When it fails, the successive differences

go down drastically and then increase. On the other hand, when it works, the

differences drop down and then remain pretty constant. This reflects the fact

that, when the n-bootstrap works, once m is large enough there will not be large

differences, to first order, between bootstrap distributions at increasing sample



980 P. J. BICKEL AND A. SAKOV

sizes. Thus, the rule also provides a diagnostic for n-bootstrap failure. Note that

the two curves, in each plot, are not always close to each other, but both achieve

their minimum for about the same m, as our analysis in Section 3.3 concludes.

For more plots see Sakov (1998) and Götze and Rac̆kauskas (2001).

5.2. Coverage when m is chosen by the rule

We evaluate the coverage of a confidence bound of a parameter, by construct-

ing 1,000 bounds, and checking how many of them cover the true parameter. The

desired level is 95%.

Extrema - known rate

In Table 1, an upper bound for bn = F−1(1 − 1/n) is shown, following the

approach of Section 4. Four distributions were considered: exponential, normal

and Gumbel (domain of attraction is type III), and uniform (domain of attraction

is type II). The an are taken from Embrechts, Klüppelberg and Mikosch (1997).

For all but the exponential distribution, F−1(1 − 1/n) is different from the bn

given in Embrechts et al. (1997). However, this is only a location change of the

limiting distribution. The coverage, mean, SD, and median of the chosen m over

the 1,000 repetitions are given for sample sizes of 500 and 1,000. The coverages,

for sample size 10,000, were 0.935, 0.926, 0.933 and 0.945, for the exponential,

normal, Gumbel, and uniform, respectively.

Extrema - unknown rate

Table 2 is similar, but when an is unknown and of the form an = nα, for some

α. In each repetition, α is estimated using the approach of Bertail et al. (1999),

and then an and am in (16) and (17), are replaced by nα̂ and mα̂, respectively.

To estimate α, the method which is based on ranges is used (see Bertail et al.

(1999) for details. We used I = 15, J = 50, and quantiles between (0.75, 0.95)

and (0.05, 0.25)). Note that an, for the normal distribution, does not have the

desired form. The mean and SD of the α’s over 1,000 repetitions are given in

Table 2.

Table 1. Coverage for bn, known an

Distribution Exponential Normal Gumbel Uniform

n 500 1000 500 1000 500 1000 500 1000

Coverage 0.92 0.93 0.92 0.94 0.92 0.93 0.92 0.92

∆n(b̄n) 0.24 0.22 0.16 0.14 0.22 0.21 0.005 0.002

Mean 17 19 27 32 17 17 25 22

m̂ SD 11 12 17 21 10 9 48 30

Median 15 17 21 31 15 13 15 17
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Table 2. Coverage for bn, unknown an

Distribution Exponential Normal Gumbel

n 500 1000 10,000 500 1000 10,000 500 1000 10,000

Coverage 0.84 0.85 0.88 0.82 0.86 0.88 0.8 0.84 0.88

Mean 17 18 40 17 19 40 16 17 33
m̂ SD 10 12 28 10 12 31 9 11 26

Median 16 14 32 16 14 32 12 14 24

α̂ Mean -0.02 -0.01 0 0.18 0.16 0.13 0.02 0.01 0
SD 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Distribution Uniform

n 500 1000 10,000

Coverage 0.89 0.92 0.92

Mean 17 19 39
m̂ SD 12 12 28

Median 16 18 32

α̂ Mean 0.94 0.94 0.98
SD 0.1 0.1 0.1

Precision of the upper bound

We briefly explore precision when an is known, for the cases in Table 1. Our

precision measure is ∆n(b̄n) ≡ (Med(b̄n) − bn)/bn.

The exponential and the normal, with sample size 500, may be roughly com-

pared to the results in Breiman, Stone and Kooperberg (1990). The figures are

of the same order of magnitude. Breiman et al. (1990) has the only previous

careful analysis of a nonparametric method for setting upper confidence bounds,

to the best of our knowledge. Their method involves the fit of a power transfor-

mation family, followed by parametric fitting of an extreme value family to the

tail of the data. There are two tunable parameters: the fraction of data used

in estimating the tail parameter, and a parameter called tail heaviness. They

carried out extensive simulations and, to some extent, tuned the parameter to

these. For n = 500, they obtained ∆n ranging roughly from 0.05 to 0.1 for the

normal, and between 0.2 to 0.4 for the exponential. Unfortunately, they consid-

ered a coverage of 0.9, while we considered a coverage of 0.95. However, actual

coverage is about the same. Moreover, in the normal case they are estimating

the 0.999 percentile, while we estimate the 0.998 percentile. In one respect their

task is easier than ours, estimating at the 90% rather than 95% level, where we

expect ∆n to be larger. On the other hand, for the Gaussian, their task is a

bit harder because of the higher percentile they are estimating. That the results

are qualitatively similar is encouraging. As a final comment on this comparison,

their method has one significant advantage over our present method. By spec-

ifying parametric tails they are able to get bounds for extreme F−1(1 − c/n),
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Table 3. Three other cases

Case µ, known SD µ, unknown SD θ

Distribution Exponential Normal Normal Uniform

n 100 500 100 500 100 500 1000 100 500 1000

Coverage 0.922 0.93 0.953 0.961 0.952 0.951 0.947 0.912 0.926 0.936

Mean 54 195 37 132 58 188 315 10 14 15
m̂ SD 29 156 29 149 27 154 298 6 8 8

Median 57 159 24 67 57 119 178 8 12 11

for c < 1. Our method could be coupled with extrapolation, as was done in

Bickel and Sakov (2002a), but we leave that to future work.

Other parameters

In Table 3, estimated coverage is reported in three more cases.

Case 1: An upper bound for µ, when σ = 1, is X̄n − zα/
√

n; the n-bootstrap

works (Singh (1981), Bickel and Freedman (1981)). We use the rule to choose m,

and then replace the normal quantile by the bootstrap quantile of
√

m(X̄∗
m−X̄n).

The distributions considered were the normal, and the exponential (shifted to

have a 0 mean).

Case 2: An upper bound for µ, when σ is unknown, is X̄n − tn−1,αsn/
√

n;

the n-bootstrap works (Singh (1981), Bickel and Freedman (1981)), and the t-

quantile is replaced by the quantile of the bootstrap distribution of
√

m(X̄∗
m −

X̄n)/s∗m.

Case 3: An upper bound for θ, when the data follows the uniform distribution

on (0, θ), is X(n) − log(α)/n (the bound is based on n(θ − X(n))). This is a

classical example of n-bootstrap failure (Bickel and Freedman (1981)). Using the

bootstrap, the exponential quantile is replaced by the quantile of the bootstrap

distribution of m(X(n) − X∗
(m)).

5.3. Choices of q, metric, and smoothing

In the simulations presented, q = 0.75 at (1). In Sakov (1998), experiments

with q = 0.5 gave, qualitatively, the same answers. In the set-up of Table 1, for

the exponential and normal with n = 1, 000, coverage and precision for bn are

about the same for q = 0.75, 0.65, 0.6, 0.5. For selected cases in the table, we

made comparison on the 95% as well as the 90% bound, and again the effect of

the choice of q was negligible.

It may be argued that, based on theoretical grounds, a metric based on com-

parison of the appropriate quantiles of the bootstrap distributions is preferable

to the KS distance. We noted, in Section 3.3, that a restricted KS distance

should also give better results for the upper confidence bound of the upper end
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of the support in the case of bounded Lipschitz densities. In the simulation pre-

sented, we have concentrated on the KS distance. In addition, we studied the

Wasserstein (W) metric, with p = 1 and 2, as well as a quantile-based metric.

In simulation the cdf was evaluated on a finite grid over a bounded interval, so

the KS distance is actually a restricted KS distance, as is the W metric. When

using the W metric, with p = 1 and 2, coverage was about 1−2% smaller than

the coverage achieved using the KS distance for the exponential distribution.

For the normal distribution, the coverage using the W metric was about 3−4%

lower. We also picked m to minimize the distance between the 5th quantile of

the bootstrap distributions. Here the coverage was about 1−1.5% lower than the

coverage using the KS distance (for the exponential, normal and uniform distri-

butions). The claim of Section 3,3, that an order-grounds-restricted KS distance

should do better, was confirmed, but only for sample sizes of at least 1,000.

We also explored the effect of smoothing the curve whose minima we find,

before locating them. We did this for the KS distance, and found that differences

in coverage were less than 1%.

All in all, these variants did not make any substantial differences in perfor-

mance for the sample sizes considered.
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Appendix

A. Convergence in law in probability

We say that L∗
m,n converges in law to (a random) L in probability, provided

the following hold.

(i) There are maps L̃∗
m,n : Ω → D(R̄), m,n ≥ 1.

(ii) There is a map L : Ω → C(R̄) (C(R̄) are the continuous functions on R̄

endowed with the sup norm) such that

(a) the distributions of {L∗
m,n}m≥1, and {L̃∗

m,n}m≥1 agree for all n, i.e., for

any k, j1, . . . , jk,

P

(

(

L∗
j1,n, . . . , L∗

jk,n

)−1
)

(·) = P

(

(

L̃∗
j1,n, . . . , L̃∗

jk,n

)−1
)

(·),

or

(a′) ‖L∗
m,n(·) − L̃∗

m,n(·)‖∞ = op(1) as m,n → ∞, and

(b) if ρ is the Skorokhod (or Prohorov) metric,

ρ
(

L̃∗
m,n, L

)

p→ 0, as m,n → ∞. (19)
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It is possible to combine (a) and (a’) into a single condition but with no gain in

simplicity.

Since L is continuous with probability 1, (19) implies that

‖L̃∗
m,n(·) − L(·)‖∞

p→ 0. (20)

We use an extension of these notions by considering Tn(·) whose values them-

selves lie in Rk, or generally a separable metric function space (F , d). For in-

stance, consider Tn(F̂n, F ) ≡ √
n(F̂n − F ). Then by the law L∗(Tm(F̂ ∗

m, F̂n)),

we mean a measurable map from Ω to the space of probability distributions on

D(R̄), endowed with the Prohorov metric. Similarly, L is a measurable map from

Ω to the space of all probabilities on C(R̄). Definition (19) for convergence in

law of L∗(Tm(F̂ ∗
m, F̂n)) in probability carries over, save that ρ is replaced by the

Prohorov metric, and (20) is no longer relevant. In principle, we can consider

Tn(·, ·) taking values in l∞(F), where F is a set of functions on Rd, and formu-

late results, as in van der Vaart and Wellner (1996), dropping the measurability

requirements, but we do not pursue this.
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