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Abstract

We study a regression model with a huge number of interacting
variables. We consider a specific approximation of the regression func-
tion under two assumptions: (i) there exists a sparse representation of
the regression function in a suggested basis, (ii) there are no interac-
tions outside of the set of the corresponding main effects. We suggest
an hierarchical randomized search procedure for selection of variables
and of their interactions. We show that given an initial estimator, an
estimator with a similar prediction loss but with a smaller number of
non-zero coordinates can be found.

1 Introduction

Suppose that we observe (Yi,Xi), i = 1, . . . , n, an i.i.d. sample from the
joint distribution of (Y,X), where Y ∈ R, and X = (X1, . . . ,Xd) ∈ X1 ×
· · · × Xd = X , with Xj being some subsets of finite-dimensional Euclidean
spaces. Our purpose is to estimate the regression function f(X) = E(Y |X)
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nonparametrically by constructing a suitable parametric approximation of
this function, with data-dependent values of the parameters. We consider
the situation where n is large, or even very large and the dimension d is also
large. Without any assumptions, the problem is cursed by its dimensionality
even when Xj = R for all j. For example, a histogram approximation has
p = 320 > 109 parameters when the number of variables is d = 20, and the
range of each is divided into the meager number of three histogram bins.

It is common now to consider models where the number of parameters p is
much larger than the sample size n. The idea is that the effective dimension
is defined not by the number of potential parameters p but by the (unknown)
number of non-zero parameters that can be much smaller than n. Methods
like thresholding in white noise model, cf. Abramovich, Benjamini, Donoho and Johnstone (2006)
or Golubev (2002), LASSO, LARS or Dantzig selector in regression, cf,
Tibshirani (1996), Chen, Donoho and Saunders (2001), Efron, Hastie, Johnstone and Tibshirani (2004)
Candes and Tao (2007), are used, and it is proved that if the vector of esti-
mated parameters is sparse (i.e., the number of non-zero parameters is rel-
atively small) then the model can be estimated with reasonable accuracy, cf.
Bunea, Tsybakov and Wegkamp (2007a); Bunea, Tsybakov and Wegkamp (2007b);
Candes and Tao (2007); Fu and Knight (2000); Greenshtein and Ritov (2004);
Meinshausen and Bühlmann (2006); Meinshausen and Yu (2006); Zhang and Huang (2006);
Zhao and Yu (2006). A direct selection of a small number of non-zero vari-
ables is relatively simple for the white noise model. There, each variable
is processed separately, and the parameters can be ordered according to
the likelihood that they are non-zero. The situation is more complicated in
regression problems. Methods like LASSO and LARS yield numerically effi-
cient ways to construct a sparse model, cf. Juditsky and Nemirovski (2000);
Nemirovski (2000); Osborne, Presnell and Turlach (2000b); Osborne, Presnell and Turlach (2000a);
Efron, Hastie, Johnstone and Tibshirani (2004); Turlach (2005). However,
they have their limits, and are not numerically feasible with too many pa-
rameters, as for instance in the simple example considered above.

Our aim is to propose a procedure that can work efficiently in such
situations. We now outline its general scheme. Consider a collection of
functions (ψi,j)i=1,...,d, j=0,1,...,L where ψi,j : Xi → R. For example, for fixed
i this can be a part of a basis (ψi,j)j=0,1,... for L2(Xi). For simplicity, we
take the same number L of basis functions for each variable. We assume
that ψi,0 ≡ 1. Consider an approximation fβ of regression function f given
by:

fβ(X) =
∑

j∈{0,1,...,L}d

βj

d∏

i=1

ψi,ji
(Xi)
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where j = (j1, . . . , jd) and βj are unknown coefficients. Note that fβ is
nothing but a specific model with interactions between variables, such that
all the interactions are expressed by products of functions of a single variable.
In fact, since ψi,0 ≡ 1, the multi-indices j with only one non-zero coefficient
yield all the functions of a single variable, those with only two non-zero
coefficients yield all the products of two such functions, etc. Clearly, this
covers the above histogram example, wavelet approximations and others.

The number of coefficients βj in the model is (L+1)d. The LASSO type
estimator can deal with a large number of potential coefficients which grows
exponentially in n. So, theoretically, we could throw all the factors into
the LASSO algorithm and find a solution. But p ∼ Ld is typically a huge
number. Although in the theory LASSO can handle that many variables, in
practice, it becomes numerically infeasible. Therefore, a systematic search
is needed.

Since there is no way to know in advance which factors are significant,
we suggest a hierarchical selection: we build the model in a tree fashion. At
each step of the iteration we apply a LASSO type algorithm to a collection
of candidate functions, where we start with all functions of a single variable.
Then, from the model selected by this algorithm we extract a sub-model
which includes only K functions, for some predefined K. The next step of
the iteration starts with the same candidate functions as its predecessor plus
all the interactions between the K functions selected at the previous step.

Formally we consider the following hierarchical model selection method.
For a set of functions F with cardinality |F| ≥ K, let MSK be some pro-
cedure to select K functions out of F . We denote by MSK(F) the selected
subset of F , |MSK(F)| = K. Also, for a function f : X → R, let N(f) be
the minimal set of indices such that f is a function of (Xi)i∈N(f) only. The
procedure is defined as follows.

(i) Set F0 = ∪d
i=1{ψi,1, . . . , ψi,L}.

(ii) For m = 1, 2, . . . , let

Fm = Fm−1 ∪ {fg : f, g ∈ MSK(Fm−1),N(f) ∩ N(g) = ∅}.

(iii) Continue until convergence is declared. The output of the algorithm
is the set of functions MSK(Fm) for some m.

This search procedure is valid under the dictum of no interaction outside
of the set of the corresponding main effects: a term is included only if it is
a function of one variable or it is a product of two other included terms. If

3



this is not a valid assumption one can enrich the search at each step to cover
all the coefficients βj of the model. However, this would be cumbersome.

Note that |Fm| ≤ K2 + |Fm−1| ≤ mK2 + |F0| = mK2 + Ld. Thus,
the set Fm is not excessively large. At every step of the procedure we keep
for selection all the functions of a single variable, along with not too many
interaction terms. In other words, functions of a single variable are treated
as privileged contributors. On the contrary, interactions are considered with
a suspicion increasing as their multiplicity grows: they cannot be candidates
for inclusion unless their “ancestors” were included at all the previous steps.

The final number of selected effects is K by construction. We should
choose K to be much smaller than n if we want to fit our final model in the
framework of the classical regression theory.

One can split the sample in two parts and do model selection and es-
timation separately. Theoretically, the rate of convergence of the LASSO
type procedures suffers very little when the procedures are applied only to a
sub-sample of the observations, as long as the sub-sample size nMS used for
model selection is such that nMS/n converges slowly to 0. We can therefore,
first use a sub-sample of size nMS to select, according to (i)–(iii), a set of K
terms that we include in the model. The second stage will use the rest of the
sample and estimate via, e.g., standard least-square method the regression
coefficients of the K selected terms.

This paper has two goals. The first one, as described already, is suggest-
ing a method to build highly complex models in a hierarchial fashion. The
second purpose is arguing that a reasonable way to do model selection is
a two stage procedure. The first stage can be based on the LASSO, which
is an efficient way to obtain sparse representation of a regression model.
We argue, however, by a way of example in Section 2, that using solely the
LASSO can be an non-optimal procedure for model selection. Therefore,
in Section 3 we introduce the second stage of selection, such that a model
of a desired size is obtained at the end. At this stage we suggest to use
either randomized methods or the standard backward procedure. We prove
prediction error bounds for two randomized methods of pruning the result
of the LASSO stage. Finally, in Section 4 we consider two examples that
combine the ideas presented in this paper.

2 Model selection: an example

The above hierarchical method depends on a model selection procedure
MSK that we need to determine. For high-dimensional case that we are
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dealing with, LASSO is known to be an efficient model selection tool: it
is shown that under general conditions the set of non-zero coefficients of
LASSO estimator coincides with the true set of non-zero coefficients in
linear regression, with probability converging to 1 as n → ∞ (see, e.g.,
Meinshausen and Bühlmann (2006); Zhao and Yu (2006)). However, these
results depend on strong assumptions that essentially role off anything close
to multicolinearity. These conditions are often violated in practice when
there are many variables representing a plentitude of highly related one to
another demographic and physical measurements of the same subject. They
are also violated in a common statistical learning setup where the variables
of the analysis are values of different functions of one real variable (e.g.,
different step functions). Note that for our procedure we do not need to re-
tain all the non-zero coefficients but just to extract the K “most important”
ones. To achieve this, we first tried to tune the LASSO in some natural way.
However, this approach failed.

We start with an example. We use this example to argue that although
the LASSO does select a small model (i.e., typically many of the coordinates
of the LASSO estimator are 0), it does a poor job in selecting the relevant
variables. A naive approach for model selection when the constraint applies
to the number of non-zero coefficients, is to relax the LASSO algorithm until
it yields a solution with the right number of variables. We believe that this
is a wrong approach. The LASSO is geared for L1 constraints and not for
L0 ones. We suggest another procedure in which we run the LASSO until
it yields a model more complex than wished, but not too complex, so that
a standard model selection technique like backward selection can be used.
This was the method considered in Greenshtein and Ritov (2004) to argue
that there are model selection methods which are persistent under general
conditions.

We first recall the basic definition of LASSO. Consider the linear regres-
sion model

y = Zβ0 + ε

where y = (Y1, . . . , Yn)′ ∈ Rn is the vector of observed responses, Z ∈
Rn×p is the design matrix, β0 ∈ Rp is an unknown parameter and ε =
(ξ1, . . . , ξn)′ ∈ Rn is a noise. The LASSO estimator β̂L of β0 is defined as a
solution of the minimization problem

min
β: ‖β‖1≤T

‖y − Zβ‖2 (1)

where T > 0 is a tuning parameter, ‖β‖1 is the ℓ1-norm of β and ‖ · ‖ is the
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empirical norm associated to the sample of size n:

‖y‖2 = n−1
n∑

i=1

Y 2
i .

This is the formulation of the LASSO as given in Tibshirani (1996). Another
formulation, given below in (8), is that of minimization of the sum of squares
with L1 penalty. Clearly, (1) is equivalent to (8) with some constant r
dependent on T and on the data, by the Lagrange argument. The standard
LARS-like algorithm of Efron et al. (2004), which is the algorithm we used,
is based on gradual relaxation of the constraint T of equation (1), and solves
therefore simultaneously both problems. The focus of this paper is the
selection of a model of a given size. Hence we apply the LARS algorithm
until we get for the first time a model of a prescribed size.

Example 2.1 We consider a linear regression model with 100 i.i.d. observa-
tions of (Y,Z1, . . . , Z150) where the predictors (Z1, . . . , Z150) are i.i.d. stan-
dard normal, the response variable is Y =

∑150
j=1 βjZj+ξ =

∑10
j=1

10
25+j2Zj+ξ,

and the measurement error is ξ ∼ N(0, σ2), σ = 0.1.
Note that we have more variables than observations but most of the βj

are zero.
Figure 1a presents the regularization path, i.e. the values of the coeffi-

cients of β̂L as a function of T in (1). The vertical dashed lines indicate the
values of the T for which the number of non-zero coefficients of β̂L is for the
time larger than the mark value (multiple values of 5). The legend on the
right gives the value of the 20 coefficients with the highest values (sorted by
the absolute value of the coefficient).

Figure 1b presents a similar situation. In fact, the only difference is
that the correlation between any two Zi’s is now 0.5. Again, the 10 most
important variables are those with non-zero true values.

Suppose we knew in advance that there are exactly 10 non-zero coef-
ficients. It could be assumed that LASSO can be used, stopped when it
first finds 10 non-zero coefficients (this corresponds to T ≈ 0.5 in Figure 1
b). However, if that was the algorithm, then only three coefficients with
non-zero true value, β3, β8, and β10, were included together with some 7
unrelated variables. For T ≈ 2 the 10 largest coefficients do correspond to
the 10 relevant variables, but along with them many unrelated variables are
still selected (8 variables in Figure 1b), and moreover this particular choice
of T cannot be known in advance if we deal with real data.
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3 Randomized selection

The approach to design the model selector MSK that we believe should be
used is the one applied in the examples of Section 4. It acts as follows: run
the LASSO for a large model which is strictly larger than the model we want
to consider, yet small enough so that standard methods for selecting a good
subset of the variables can be implemented. Then run one of such methods,
with given subset size K: in the examples of Section 4 we use the standard
backward selection procedure. We do not have a mathematical proof which
is directly relevant to such a method. We can prove, however, the validity
of an inferior backward method which is based on random selection (with
appropriate weights) of the variable to be dropped at each stage. We bound
the increase in the sum of squares of the randomized method. The same
bounds are applied necessarily to the standard backward selection.

Suppose that we have an arbitrary estimator β̃ with values in Rp, not
necessarily the LASSO estimator. We may think, for example, of any esti-
mator of parameter β0 in the linear model of Section 2, but our argument is
not restricted to that case. We now propose a randomized estimator β̂ such
that:

(A) the prediction risk of β̂ is on the average not too far from that of β̃,

(B) β̂ has at most K non-zero components,

(C) large in absolute value components of β̂ coincide with those of β̃.

Definition of the randomization distribution. Let I be the set of non-zero
coordinates of the vector β̃ = (β̃1, . . . , β̃p). We suppose that its cardinality
K̃ = |I| ≥ 2. Introduce the values

pi = min{1, c(K̃ − 1)|β̃i|/‖β̃‖1}, i ∈ I,

where c ≥ 1 is a solution of
∑

i∈I pi = K̃−1. Such c exists since the function

t 7→ p̄i(t) ≡ min{1, t(K̃ − 1)|β̃i|/‖β̃‖1}

is continuous and non-decreasing, limt→∞
∑

i∈I p̄i(t) = K̃ and
∑

i∈I p̄i(1) ≤

K̃ − 1. From
∑

i∈I pi = K̃ − 1 we get

∑

i∈I

(1 − pi) = 1, (2)
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so that the collection {1−pi}i∈I defines a probability distribution on I that
we denote by P∗. Note that there exists a pi not equal to 1 (otherwise we
have

∑
i∈I pi = K̃), in particular, we have always pi < 1 for the index i

that corresponds to the smallest in absolute value β̃i. On the other hand,
pi > 0 since β̃i 6= 0 for i ∈ I. Therefore, 0 < pi < 1 for at least two indices
i corresponding to the two smallest in absolute values coordinates of β̃.

Definition of the randomized selection procedure. Choose i∗ from I at
random according to distribution P∗: P∗(i∗ = i) = 1 − pi, i ∈ I. We
suppose that the random variable i∗ is independent of the data y. Define
a randomized estimator β∗ = (β∗1 , . . . , β

∗
p) where β∗i∗ = 0, β∗i = β̃i/pi for

i ∈ I \ {i∗}, and β∗i = 0 for i 6∈ I. In words, we set to zero one coordinate
of β̃ chosen at random, and the other coordinates are either increased in
absolute value or left intact. We will see that on the average we do not loose
much in prediction quality by dropping a single coordinate in this way.

We then perform the same randomization process taking β∗ as initial
estimator and taking randomization independently of the one used on the
first step. We thus drop one more coordinate, etc. Continuing iteratively
after K̃ −K steps we are left with the estimator which has exactly the pre-
scribed number K of non-zero coordinates. We denote this final randomized
estimator by β̂. This is the one we are interested in.

Denote by E∗ the expectation operator with respect to the overall ran-
domization measure which is the product of randomization measures over
the K̃ −K iterations.

Theorem 3.1 Let Z ∈ Rn×p be a given matrix. Suppose that the diagonal
elements of the corresponding Gram matrix Z′Z/n are equal to 1, and let β̃
be any estimator with K̃ ≥ 3 non-zero components. Then the randomized
estimator β̂ having at most K < K̃ non-zero coordinates has the following
properties.

(i) For any vector f ∈ Rn,

E∗ ‖f − Zβ̂‖2 ≤ ‖f − Zβ̃‖2 + ‖β̃‖2
1

(
1

K − 1
−

1

K̃ − 1

)
.

(ii) Let β̃(j) be the coordinates of β̃ ordered by absolute value: |β̃(1)| ≥

|β̃(2)| ≥ · · · ≥ |β̃(p)|. Suppose that |β̃(k)| > ‖β̃‖1/(K̃ − 1) for some

k. Then the estimator β̂ coincides with β̃ in the k largest coordinates:
β̂(j) = β̃(j), j = 1, . . . , k.
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(iii) Suppose that |β̃(k+1)| = 0 and |β̃(k)| > ‖β̃‖1/(K̃− 1) for some k. Then

β̂ keeps all the non-zero coordinates of β̃.

Proof. It is easy to see that E∗(β∗i ) = β̃i for all i and, for any vector f ∈ Rn,

E∗ ‖f − Zβ∗‖2 = ‖f − Zβ̃‖2 +
1

n
trace(Z′ZΣ∗)

= ‖f − Zβ̃‖2 +
1

n

n∑

i=1

z′iΣ
∗zi

≤ ‖f − Zβ̃‖2 +

p∑

j=1

β̃2
j

1 − pj

pj

(3)

where zi are the rows of matrix Z and Σ∗ = E∗[(β∗ − β̃)(β∗ − β̃)′] is the
randomization covariance matrix. We used here that Σ∗ is of the form

Σ∗ = diag

(
β̃2

j

1 − pj

pj

)
− (Bβ̃)(Bβ̃)′ with B = diag

(
1 − pi

pi

)
,

and the diagonal elements of Z′Z/n are equal to 1, by assumption of the
theorem.

Recall that c ≥ 1, and therefore |β̃j | ≥ ‖β̃‖1/(K̃ − 1) implies pj = 1.
Hence,

∑

j∈I

β̃2
j

1 − pj

pj
=

∑

0<|β̃j |<‖β̃‖1/(K̃−1)

β̃2
j

1 − pj

pj

≤
‖β̃‖1

c(K̃ − 1)

∑

0<|β̃j |<‖β̃‖1/(K̃−1)

|β̃j |(1 − pj)

≤
‖β̃‖2

1

(K̃ − 1)2

∑

j∈I

(1 − pj)

=
‖β̃‖2

1

(K̃ − 1)2

(4)

where we used (2). Thus, the randomized estimator β∗ with at most K̃ − 1
non-zero components satisfies

E∗ ‖f − Zβ∗‖2 ≤ ‖f − Zβ̃‖2 +
‖β̃‖2

1

(K̃ − 1)2
. (5)
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Note also that β∗ has the same ℓ1 norm as the initial estimator β̃:

‖β∗‖1 = ‖β̃‖1 (6)

In fact, the definition of β∗ yields

‖β∗‖1 − ‖β̃‖1 =




∑

j∈I

|β̃j |

pj
−

|β̃i∗ |

pi∗



−
∑

j∈I

|β̃j |

=
‖β̃‖1

c(K̃ − 1)

∑

pj<1

(
1 − c(K̃ − 1)

|β̃j |

‖β̃‖1

)
−

‖β̃‖1

c(K̃ − 1)

=
‖β̃‖1

c(K̃ − 1)

∑

j∈I

(
1 − pj

)
−

‖β̃‖1

c(K̃ − 1)

= 0,

in view of 2.
Using (5) and (6) and continuing by induction we get that the final

randomized estimator β̂ satisfies

E∗ ‖f − Zβ̂‖2 ≤ ‖f − Zβ̃‖2 +

K̃−K∑

j=1

‖β̃‖2
1

(K̃ − j)2

≤ ‖f − Zβ̃‖2 + ‖β̃‖2
1

(
1

K − 1
−

1

K̃ − 1

)
.

This proves part (i) of the theorem. Part (ii) follows easily from the defi-
nition of our procedure, since pj = 1 for all the indices j corresponding to
β̃(1), . . . , β̃(k) and the ℓ1 norm of the estimator is preserved on every step of
the iterations. The same argument holds for part (iii) of the theorem. �

Consider now the linear model of Section 2. Let β̃ be an estimator of
parameter β0. Using Theorem 3.1 with f = Zβ0 we get the following bound
on the prediction loss of the randomized estimator β̂:

E∗ ‖Z(β̂ − β0)‖
2 ≤ ‖Z(β̃ − β0)‖

2 + ‖β̃‖2
1

(
1

K − 1
−

1

K̃ − 1

)
. (7)

We see that ifK is large enough and the norm ‖β̃‖2
1 is bounded, the difference

between the losses of β̃ and β̂ is on the average not too large. For β̃ = β̂L

we can replace ‖β̃‖2
1 by T 2 in (7).
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As β̃ we may also consider another LASSO type estimator which is some-
what different from β̂L described in Section 2:

β̃ = arg min
β∈Rp

{
‖y − Zβ‖2 + r‖β‖1

}
, (8)

where r = A
√

(log p)/n with some constant A > 0 large enough. As shown
in Bickel, Ritov and Tsybakov (2007), for this estimator, as well as for the
associated Dantzig selector, under general conditions on the design matrix Z
the ℓ1 norm satisfies ‖β̃‖2

1 = ‖β0‖
2
1 + op(s

√
(log p)/n) where s is the number

of non-zero components of β0. Thus, if β0 is sparse and has a moderate ℓ1
norm, the bound (7) can be rather accurate.

Furthermore, Theorem 3.1 can be readily applied to nonparametric re-
gression model

y = f + ε

where f = (f(X1), . . . , f(Xn))′ and f is an unknown regression function. In
this case Zβ = fβ(X) is an approximation of f(X), for example as the one
discussed in the Introduction. Then, taking as β̃ either the LASSO estima-
tor (8) or the associated Dantzig selector we get immediately sparsity oracle
inequalities for prediction loss of the corresponding randomized estimator
β̂ that mimic (to within the residual term O(‖β̃‖2

1/K)) those obtained for the
LASSO in Bunea, Tsybakov and Wegkamp (2007a); Bickel, Ritov and Tsybakov (2007)
and for the Dantzig selector in Bickel et al. (2007).

It is interesting to compare our procedure with the randomization device
usually referred to as the “Maurey argument”. It is implemented as a tool to
prove approximation results over convex classes of functions Barron (1993).
Maurey’s randomization has been used in statistics in connection to con-
vex aggregation Nemirovski (2000), pages 192–193 (K-concentrated aggre-
gation), and Bunea, Tsybakov and Wegkamp (2007a), Lemma B.1.

The Maurey randomization can be also applied to our setting. Define
the estimator β̂M as follows:

(i) choose K < K̃; draw independently at random K coordinates from I
with the probability distribution {|β̃i|/‖β̃‖1}i∈I ,

(ii) set the jth coordinate of β̂M equal to

β̂Mj =






‖β̃‖1kj/K if β̃j > 0,

−‖β̃‖1kj/K if β̃j < 0,

0 if j 6∈ I
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where kj ≤ K is the number of times the jth coordinate is selected at
step (i).

Note that, in general, none of the non-zero coordinates of β̂M is equal to the
corresponding coordinate of the initial estimator β̃. The prediction risk of
β̂M is on the average not too far from that of β̃ as the next theorem states.

Theorem 3.2 Under the assumptions of Theorem 3.1 the randomized esti-
mator β̂M with at most K < K̃ non-zero coordinates satisfies

E∗ ‖f − Zβ̂M‖2 ≤ ‖f − Zβ̃‖2 +
‖β̃‖2

1

K
. (9)

Proof. Let η1, . . . , ηK be i.i.d. random variables taking values in I with
the probability distribution {|β̃i|/‖β̃‖1}i∈I . We have kj =

∑K
s=1 I(ηs = j)

where I(·) is the indicator function. It is easy to see that E∗(β̂Mj) = βj and

the randomization covariance matrix Σ∗ = E∗[(β̂M − β̃)(β̂M − β̃)′] has the
form

Σ∗ =
‖β̃‖1

K
diag|β̃i| −

1

K
|β̃||β̃|′ (10)

where |β̃| is the vector of absolute values |β̃i|. Acting as in (3) and using
(10) we get

E∗ ‖f − ZβM‖2 = ‖f − Zβ̃‖2 +
1

n

n∑

i=1

z′iΣ
∗zi

≤ ‖f − Zβ̃‖2 +
‖β̃‖1

K

∑

j∈I

|β̃j |

which yields the result. �

The residual term in (9) is of the same order of magnitude O(‖β̃‖2
1/K)

as the one that we obtained in Theorem 3.1. In summary, β̂M does achieve
the properties (A) and (B) mentioned at the beginning of this section, but
not the property (C): it does not preserve the largest coefficients of β̃.

Finally, note that applying (5) with f = y we get an inequality that links
the residual sums of squares (RSS) of β∗ and β̃:

E∗ ‖y − Zβ∗‖2 ≤ ‖y − Zβ̃‖2 +
‖β̃‖2

1

(K̃ − 1)2
. (11)
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The left hand side of (11) is bounded from below by the minimum of the
RSS over all the vectors β with exactly K̃−1 non-zero entries among the K̃
possible positions where the entries of the initial estimator β̃ are non-zero.
Hence, the minimizer β∗∗ of the residual sums of squares ‖y−Zβ‖2 over all
such β is an estimator whose RSS does not exceed the right hand side of
(11). Note that β∗∗ is obtained from β̃ by dropping the coordinate which
has the smallest contribution to R2. Iterating such a procedure K̃−K times
we get nothing but a standard backward selection. This is exactly what we
apply in Section 4. However, the estimator obtained by this non-randomized
procedure has neither of the properties stated in Theorem 3.1since we have
only a control of the RSS but not necessarily of the prediction loss, and
the ℓ1 norm of the estimators is not preserved from step to step, on the
difference from our randomized procedure.

4 Examples

We consider here two examples of application of our method. The first one
deals with simulated data.

Example 4.1 We considered a sample of size 250 from (Y,X1, . . . ,X10),
where X1, . . . ,X10 are i.i.d. standard uniform, Y = β11(1

8 < X1 ≤ 1
4) +

β21(1
8 < X2 ≤ 1

2)1(1
8 < X3 ≤ 3

8 )1(1
8 ≤ X4 ≤ 5

8) + ε, where 1(·) denotes
the indicator function and ε is normal with mean 0 and variance such that
the population R2 is 0.9. The coefficients β1 and β2 were selected so that
the standard deviation of the second term was three times that of the first.

We followed the hierarchical method (i)–(iii) of the Introduction. Our
initial set F0 was a collection of L = 32 step functions for each of the ten
variables (d = 10). The jump points of the step functions were equally
spaced on the unit interval. The cardinality of F0 was 279 (after taking care
of multicolinearity). At each step we run the LASSO path until K̃ = 40
variables were selected, from which we selected K = 20 variables by the
standard backward procedure. Then the model was enlarged by including
interaction terms, and the iterations were continued until there was no in-
crease in R2.

The first step (with single effects only) ended with R2 = 0.4678, and
the correlation of the predicted value of Y with the true one was 0.4885.
The second iteration (two way interactions) ended with R2 = 0.6303 and
correlation with the truth of 0.6115. The third (three and four ways inter-
actions were added) ended with R2 = 0.7166 and correlation of 0.5234 with
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the truth. The process stopped after the fifth step. The final predictor had
correlation of 0.5300 with the true predictor.

The LASSO regularization path for the final (fifth) iteration is presented
in Figure 2. The list of 20 terms included in the model is given in the legend
where ik denotes the the kth step function of variable i. The operator ×
denotes interaction of variables. We can observe that the first 12 selected
terms are functions of variables 1 to 4 that are in the true model. Some
of the 20 terms depend also on two other variables (8 and 10) that do not
belong to the true model.

Example 4.2 (The Abalone Data) The abalone data set, taken from
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/abalone/,
gives the age of abalone (as determined by cutting the shell and counting
the number of rings) and some physical measurements (sex, length, diame-
ter, height, whole weight, weight of meat, gut weight, and shell weight after
being dried). The data was described initially by Nash, et al in 1994. We
selected at random 3500 data points as a training set. The 677 remaining
points were left as a test bed for cross-validation.

We used as a basic function of the univariate variable the ramp function
(x − a)1(x > a). The range of the variables was initially normalized to
the unit interval, and we considered all break points a on the grid with
spacing 1/32. However, after dropping all transformed variables which are
in the linear span of those already found, we were left with only 17 variables.
We applied the procedure with LASSO which ends with at most K̃ = 60
variables, from which at most K = 30 were selected by backward regression.

The first stage of the algorithm ends with R2 = 0.5586 (since we started
with 17 terms and we were ready to leave up to 30 terms, nothing was
gained in this stage). The second stage, with all possible main effects and
two-way interactions, dealt already with 70 variables and finished with only
slightly higher R2 (0.5968). The algorithm stopped after the fifth iteration.
This iteration started with 2670 terms, and ended with R2 = 0.5779. The
correlation of the prediction with the observed age of the test sample was
0.5051. The result of the last stage is given in Figure 3. It can be seen
that the term with the largest coefficient is that of the whole weight. Then
come 3 terms involving the meat weight, and its interaction with the length.
The shell weight which was most important when no interaction terms were
allowed, became not important when the interactions were added.

14
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Figure 1: Selecting variables. Coefficients vs. L1
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Figure 2: The final path of the LASSO algorithm for the simulation of
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Figure 3: The final path of the LASSO algorithm for the abalone data set.
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