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Abstract

This paper treats the problem of detecting periodicity in a sequence of photon arrival times,
which occurs, for example, in attempting to detect gamma-ray pulsars. A particular focus is on
how auxiliary information, typically source intensity, background intensity, and incidence angles
and energies associated with each photon arrival should be used to maximize the detection
power. We construct a class of likelihood-based tests, score tests, which give rise to event
weighting in a principled and natural way, and derive expressions quantifying the power of the
tests. These results can be used to compare the efficacies of different weight functions, including
cuts in energy and incidence angle. The test is targeted toward a template for the periodic
lightcurve, and we quantify how deviation from that template affects the power of detection.

1 Introduction

From a sequence of photon arrival times 0 ≤ t1 < t2 < · · · tN < T , we wish to test the hypothesis
that some of the photons come from a periodic source (for example, a gamma-ray pulsar) versus the
null hypothesis that they come from a background plus a source that does not vary in time. The
background emission rate is assumed to be constant in time. Associated with each event is auxiliary
information, such as the incidence angle and the measured energy; we denote these variables by
z. Ignoring this information is clearly wasteful, and in fact it would typically be used, at least
in the form of cuts in energy and incidence angle. The value of z associated with an event (an
arrival) provides information about the relative likelihood that photon was from the source or the
background, and it seems intuitively that the event should be correspondingly weighted in some
manner. (Note that cuts corresponds to weights that are zero or one.) A main thrust of this paper
is to derive in a principled way how this information can best be used to enhance detection power.
We derive expressions which quantify the efficiency of any weighting function and the form of the
optimal function.

Unless the periodic light curve is known, there is no universally optimal test, since a test that
is most powerful against one light curve will not be most powerful against another. This statement
also applies to tests that attempt to adapt to the form of the lightcurve. Any test implicitly or
explicitly commits to a finite dimensional class of targets. Generally, the light curve of the source
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is unknown, so we consider testing against a template, a probability density function ν0(t) on [0, 1],
extended periodically, with Fourier series

ν0(t) = 1 + η
∑
n 6=0

αne
2πint (1)

for η ≥ 0. If η = 0, the source intensity is constant in time. Defining ντ (t) = ν0(t+ τ)

ντ (t) = 1 + η
∑
n6=0

αne
2πint+2πinτ , (2)

We model the arrival times as the superposition of independent background and source processes,
a Poisson process with rate function

λ(t|θ, τ, µ, f) = µc(t)[(1− θ) + θντ (φ(t))], 0 ≤ θ ≤ 1 (3)

where c(t) denotes the sensitivity of the instrument at time t. Here θ is the proportion of flux from
source; the phase function is φ(t) = ft, or if drift is taken into consideration, φ(t) = ft + ḟ t2/2.
Within this framework, different hypotheses can be tested. We focus on testing the null hypothesis
H : η = 0 versus the alternative K : η > 0. That is, we are concerned with a situation in which
the presence of a source is not in doubt, but its periodicity is in question. Testing whether there is
any source at all corresponds to testing H2 : θ = 0 against K2 : θ > 0.

This paper extends some results of Bickel et al. (2007), with more extensive considerations of
event weighting. In the next section we derive a test which makes use of the information contained
in both the arrival times, tj , and the associated variables, zj , in a principled way, by appropriately
weighting the arrival times. In Section 3, we show how the detection power of the test depends
on the weights. Expressions derived there allow comparison of power when ideal weights are used
and using approximate weights, such as simple cuts. We will also see the price paid for mismatch
between the template and the actual light curve and for mismatch of the specified frequency and
the actual frequency. Section 4 contains some illustrative examples. Some technical details are
deferred to an Appendix.

2 Score test

Let fB(z) denote the probability density function of z for a background event and fS(z) the density
function for a source event. We base a test on the likelihood function, assuming that the zj are
independent of the arrival times:

L = µN
N∏
j=1

c(tj)[(1− θ)fB(zj) + θfS(zj)ντ (φ(tj))] exp
(
− µ

∫ T

0
c(t)[(1− θ) + θντ (φ(t))]dt

)
(4)

A score test (Lehman and Romano, 2006) of H versus K is formed by evaluating the derivative of
the log likelihood at η = 0:

S(τ) =
n∑
j=1

(
θfS(zj)

(1− θ)fB(zj) + θfS(zj)
(ντ (φ(tj))− 1)

)
− µθ

∫ T

0
c(t)[ντ (φ(t))− 1]dt (5)
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If φ(T ) � 1 and c(t) varies slowly and is nonzero over a substantial fraction of [0, T ], the second
term is neglible. We will make this assumption throughout.

Let
wj =

θfS(zj)
(1− θ)fB(zj) + θfS(zj)

(6)

This is the probability that photon j is from the source, given zj . For a very weak source (small
θ), an approximation to (6) gives wj ∝ fS(zj)/fB(zj). If z = (E,ϕ), energy and incidence angle,
we can write

fB(z) = fB(E)fB(ϕ|E) (7)
fS(z) = fS(E)fS(ϕ|E) (8)
w(z) = w(E)w(ϕ|E) (9)

The optimal weight function is then

wopt(E,ϕ) =
θfS(E)fS(ϕ|E)

θfS(E)fS(ϕ|E) + (1− θ)fB(E)fB(ϕ|E)
(10)

For a weak source (small θ), we have the approximation

wopt ∝
fS(E)fS(ϕ|E)
fB(E)fB(ϕ|E)

(11)

The function fS(ϕ|E) is the point spread function of incidence angle at energy E. The background
would normally be assumed to be spatially uniform, from which fB(ϕ|E) would follow. The optimal
weight function also depends on the ratio of the energy spectra of source to background, which
potentially provides valuable information, but might be unknown in practice. In the latter case
one could use a weight function,

w(E,ϕ) =
θfS(ϕ|E)

θfS(ϕ|E) + (1− θ)fB(ϕ|E)
(12)

or for small θ
w(E,ϕ) =

fS(ϕ|E)
fB(ϕ|E)

(13)

The test statistic (5) depends on the data through

N∑
j=1

wj(ντ (φ(tj)− 1) =
N∑
j=1

wj
∑
n 6=0

αne
2πinφ(tj)+2πinτ (14)

=
∑
n6=0

αnAne
2πinτ (15)

where An =
∑

j wj exp(2πinφ(tj)). To eliminate the dependence of the test statistic on the phase,
τ , we use

∫ 1
0 |S(τ)|2dτ . By Parseval’s theorem∫ 1

0

∣∣∣∑
n6=0

αnAne
2πinτ

∣∣∣2dτ =
∑
n 6=0

|αn|2|An|2 (16)
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Unless the source is weak, the statistic depends upon θ, which may be approximately known from
other analyses, or may be estimated by maximum likelihood under the null hypothesis. In the
latter case, the log likelihood is

`(θ) = N logµ+
N∑
j=1

log c(tj) +

N∑
j=1

log[(1− θ)fB(zj) + θfS(zj)]− µ
∫ T

0
c(t)dt. (17)

The log likelihood depends on θ only through the third term, which can be easily maximized
numerically, if fB(z) and fS(z) are known. The final test statistic either uses the value of θ known
a priori or the maximum likelihood estimate:

QT =
1
T

∑
n6=0

|αn|2|An|2 (18)

The score test is an attractive alternative to a generalized likelihood ratio test. To compute the
likelihood ratio test, the likelihood (4) would have to be maximized both under H and K, and the
latter would entail estimating the parameters θ, η and τ .

Beran (1969) showed that this test, in an unweighted form, was locally most powerful invariant
for testing uniformity of a distribution on the circle. In the case |αn| = 0, n > 1 and wj = 1, this
is Rayleigh’s test (Rayleigh, 1919). If |αn| = 1, n ≤ m and |αn| = 0, n > m and wj = 1, this is
the Z2

m test of Buccheri et al. (1983). De Jager et al. (1989) proposed the H-test, which chooses
m adaptively.

We now consider the distribution of QT when there is no periodicity (η = 0). Let β1 =∫
w(z)fB(z)dz and ζ1 =

∫
w(z)fS(z)dz be the expected values of the weight of background and

source events and let β2 =
∫
w2(z)fB(z)dz and ζ2 =

∫
w2(z)fS(z)dz. The average value of a weight

is E(W ) = (1−θ)β1 +θζ1 and E(W 2) = (1−θ)β2 +θζ2. Let µ0 = µT−1
∫ T
0 c(t)dt. In the Appendix

we argue that

EHQT ' [(1− θ)β2 + θζ2]µ0

∑
n6=0

|αn|2 (19)

V arH(QT ) ' [(1− θ)β2 + θζ2]2µ2
0

∑
n6=0

|αn|4 (20)

Also 2|An|2/(µ0T [(1− θ)β2 + θζ2]) has approximately a chi-square distribution with two degrees of
freedom. The An are approximately independent so that QT approximately has the distribution of
a weighted sum of independent chi-square random variables. The scaling of the chi-square random
variables can be estimated as follows: observe that since µ0T is the expected number of events in
[0, T ],

∑
w2
j ' µ0TE(W 2). Thus

µ0T [(1− θ)β2 + θζ2] '
∑
j

w2
j (21)
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3 Power

We next consider properties of the test statistic QT when there is a periodic source, i.e. η > 0. Let
the pulse shape of the source be

γ(t) =
∑
n6=0

γne
2πint (22)

As an indication of the detection power of the test, we can use the signal to noise ratio. Let
EH(QT ) and EK(QT ) respectively denote the expected values of the test statistic QT when there
is and is not a periodic component, and let σH denote the standard deviation of QT under the null
hypothesis of no periodic component. If the phase function φ(t) is correctly identified (e.g. if f
and ḟ are correctly specified) we show in the Appendix that

EK(QT )− EH(QT )
σH

' θ2Tµ0E(w)

∑
n 6=0 |γn|2|αn|2

[
∑

n6=0 |αn|4]1/2
(23)

Here the efficiency of the weighting function enters as

E(w) =
ζ2
1

(1− θ)β2 + θζ2
=

[E(W | source)]2

E(W 2)
(24)

This expression holds for any weight function. Since a weight function need only be defined up
to a constant of proportionality, the denominator provides a normalization. The optimal weight
function is that given by the score test, (6), in which case it follows from a short calculation that

E(wopt) =
1
θ

∫
θfS(z)

(1− θ)fB(z) + θfS(z)
fS(z)dz (25)

which is the ratio of the average probability of a source event given z to the marginal probability of
a source event. The efficacy of weighting depends in this way on the degree to which z discriminates
between background and source, or on how correlated it is with the optimal weight function, since
after some algebra,

E(w) =
[E(WWopt)]2

E(W 2)
(26)

where the expectations are taken with respect to the marginal density of Z, (1− θ)fB(z) + θfS(z).
In the case of no weighting, w(z) = 1, E = 1.

From (23), the detection threshold for a weak signal is θ of the order T−1/2. The expression
also quantifies how the power depends upon the match of the template {|αn|2} to the source profile
{|γn|2}. Maximal power is achieved when |αn|2 ∝ |γn|2. So for detection of periodicity of a given
source, the best detection-statistic has the same spectrum as the source in question. Because the
latter is unknown, a template could be based on known sources (see Section 4 for an example).

This result assumes that φ(t) is very accurately specified. In the case φ(t) = f0t+ ḟ0t
2/2, and

approximate values are used, f = f0 +∆/T and ḟ = ḟ0 +∆/T 2, ∆ < 1, the sum in the numerator of
(23) becomes

∑
n6=0 |γn|2|αn|2(1−O((n∆)2)). Thus, accurate specification is especially important

for higher harmonics to contribute to the power. This depends on the rate of decay of γn and on
that of αn, which for practical reasons would be zero for sufficiently large n.
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Figure 1: Left panel: smoothed light curves, computed from single EGRET viewing periods, for
the Crab, Geminga, and Vela pulsars. Right panel: normalized coefficients |An|2 for each pulsar.

4 Examples

4.1 Template

To illustrate the effect of the template choice, {|αn|2}, we phased photon arrival times from Crab,
Geminga, and Vela for single EGRET viewing periods. We calculated the corresponding coefficients,
|An|2 (with no weighting). For pedagogical illustration, we normalized them and regard them as
the coefficients |γn|2 (22) of the sources. These coefficients are plotted in Figure 1. It is interesting
that in all cases the coefficient |γ2|2 is largest.

The template {|αn|2} will be most powerful for a particular source if |αn|2 ∝ |γn|2, which is
of course not possible in practice. To illustrate the effects of suboptimal templates, we evaluated
percent efficiency for sequences |αn| = 1, n ≤ m and |αn| = 0, n > m, for m = 1, 2, . . . , 10 (the
Z2
m test). (By “efficiency” we mean the percentage of the signal to noise ratio (23) that is attained

relative to that attained by the optimal template, |αn|2 ∝ |γn|2.) The results are displayed in
Table 1. As would be expected from Figure 1, the efficiency increases initially with m, and then
decreases. Considerable gains in power would result from using two to five harmonics, since the
signal to noise ratios increase by factors of two to three. For example, one would expect that a
8.9σ result using the first three coefficients for Crab would only be a 2.8σ result using the Rayleigh
test. We also experimented with using the average of the three sources as a template, cutting off
after five and ten terms. Those results are shown in Table 2. (The first five average coefficients
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are 0.35, 0.77, 0.43, 0.17, 0.26.) Very little is gained in going from five to ten non-zero coefficients,
and the computational savings would be substantial, since we would need |n∆| < 1 for the highest
harmonic. For example, if one were using ten harmonics the ”natural” Fourier frequencies k/T
would have to be oversampled by a factor of at least ten and all ten harmonics would have to be
calculated.

Table 1: Relative efficiencies for m = 1, 2, . . . , 10.

number of coefficients 1 2 3 4 5 6 7 8 9 10
Crab 28 65 89 83 88 84 80 78 74 70

Geminga 23 82 67 71 66 63 59 57 54 52
Vela 42 67 86 79 87 80 84 79 79 77

Table 2: Relative efficiencies obtained from using the first five and first ten average coefficients as
the template.

number of terms 5 10
Crab 96 97

Geminga 85 85
Vela 89 93

4.2 Weight function

Consider a source which emits photons at rate α and a background whose rate is ρ per unit area and
suppose that photons are collected in a disc of radius R (rather than a spherical cap, for simplicity).
Then

µ = πR2ρ+ α (27)

θ =
α

πR2ρ+ α
(28)

fB(ϕ|E) =
2ϕ
R2

, 0 ≤ ϕ ≤ R (29)

Let β = 2πρ/α, a measure of the strength of the background relative to the source. Then the
denominator of (24) is

E(W 2) =
α

πR2ρ+ α

[ ∫
w2(E)fS(E)

∫
w2(ϕ|E)fS(ϕ|E)dϕdE +

β

∫
w2(E)fB(E)

∫
ϕw(ϕ|E)dϕdE

]
(30)

The factor α/(πR2ρ + α) when combined with the factor θ2µ0 in (23) is proportional to α. The
optimal weight function is then

wopt(E,ϕ) =
fS(E)fS(ϕ|E)

fS(E)fS(ϕ|E) + βϕfB(E)
(31)
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which depends on the energy spectra through their ratio.

If the psf is bivariate circular Gaussian with standard deviation σ(E), then ϕ, the distance to
the origin, has the probability density function

fS(ϕ|E) =
ϕ

σ(E)
exp(− ϕ2

2σ2(E)
) (32)

(This assumes that σ(E)� R, otherwise the density truncated at R has to be normalized to have
unit area.) Then the optimal weight function is

wopt(E,ϕ) =
fS(E)

fS(E) + βσ(E) exp(ϕ2/2σ2(E))fB(E)
(33)

If photons are not differentially weighted according to the ratio of the energy spectra, one has the
weight function

w(E,ϕ) =
1

1 + βσ(E) exp(ϕ2/2σ2(E))
(34)

The decay of this weight function depends on the parameter ξ = βσ(E). If this parameter is
very large (weak source/strong background/large σ), w(ϕ) ∝ exp(−(ϕ2/2σ2(E))). Numerical ex-
ploration shows that there is little difference among the functions for ξ ≥ 1, but if ξ = 0.1 and
ξ = 0.01, the weights decay substantially more slowly. For example, if ξ = 1 a 2σ incidence angle
is given weight (relative to that of a photon that is directly on source) of about 0.1 and a 3σ angle
is given approximately zero weight. In comparison, for ξ = 0.01 a 2σ angle receives weight about
0.9, a 3σ angle receives weight about 0.5 and a 5σ angle receives weight approximately 0.

5 Conclusion and Discussion

We have presented a class of tests that depend on two features: a template for the form of the
periodic light curve and a function that differentially weights arrival times. We have suggested using
a template constructed as the average of those of known sources, but one could choose the template
adaptively, for example by considering the maximum of the test statistic over the light curves from
the known sources. The power of such a test would be more difficult to analyze explicitly, as would
be the power of the H-test. From general theory we know that any test will not be uniformly most
powerful, but will perform better in certain “directions” than others. Janssen (2000) shows that
in testing for uniformity any test can achieve high power for at most a finite dimensional family of
alternatives. This can be seen quite clearly in expressions we have developed to quantify the power
of the test (23).

Ideally, the weight given to a photon arrival should be proportional to the probability that the
photon came from the source, given its measured energy, incidence angle, and any other available
information. The optimal weight function can only be approximated in practice. It depends on the
ratio of the energy spectra of the source and background, which may not be accurately known for
a faint source. It depends, through fS(ϕ|E), on the source location, which may also be subject to
uncertainty. The efficiency of any weight function, w(z), has the conceptually simple form (24).

The score test was derived under some assumptions that may not strictly hold in practice. We
assume that the photon arrival process is Poisson, which does not take into account instrument
dead time following the arrival of a photon. We also assume that the distribution of z does not
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depend on the arrival time. This does not take into account possible dependence between energy
and the phase of the source (see Fierro et al. 1998) Nonetheless, the form of the statistic QT is
such that it is sensitive to periodic sources, even when the assumptions upon which it was derived
do not strictly hold.

The score test was derived to discriminate between a periodic source and background which
is not time varying. From the nature of the construction, it is clear that a similar test could be
derived to take into account a background intensity which varies in time in a known way, perhaps
for example a known nearby pulsar.
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7 Appendix

Here we sketch arguments supporting the assertions about the distribution of the test statis-
tic QT under the null and alternative hypotheses. We assume that φ(T ) � 1 and that c(t)
varies slowly and is nonzero over a substantial fraction of [0, T ]. In particular we assume that∣∣∣ ∫ T0 exp(2πinφ(t))c(t)dt

∣∣∣2 is negligible compared to
∫ T
0 c(t)dt, which is true, for example, if c(t) is

constant.

7.1 Null distribution

Let W (t) =
∑N

j=1wjδ(t− tj). Under the null, all events are background and

E
1√
T
An = E

1√
T

∫ T

0
e2πinφ(t)dW (t) (35)

=
(1− θ)β1 + θζ1√

T

∫ T

0
e2πinφ(t)λ(t)dt (36)

=
(1− θ)β1 + θζ1√

T
µ

∫ T

0
e2πinφ(t)c(t)dt (37)

' 0 (38)

The approximation holds under the assumptions above about φ(t) and c(t). Similarly, the real and
imaginary parts of T−1/2An are approximately uncorrelated. To calculate E|An|2 we use

E[dW (t)dW (s)] = λ(t)[(1− θ)β2 + θζ2]δ(s− t)dsdt
+λ(s)λ(t)[θ2ζ2

1 + 2θ(1− θ)ζ1β1 + (1− θ)2β2
1 ]dsdt (39)
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Then

E|An|2 =
∫ T

0

∫ T

0
e2πinφ(t)e−2πinφ(s)E[dW (s)dW (t)] (40)

= [(1− θ)β2 + θζ2]
∫ T

0
λ(t)dt+ [θζ1 + (1− θ)β1]2

∣∣∣∣∫ T

0
e2πinφ(t)λ(t)dt

∣∣∣∣2 (41)

The first term is dominant. The limiting chi-squared approximation follows from a central limit
theorem argument about the distribution of the linear statistic T−1/2An.

7.2 Power

To evaluate EKQT we need to calculate E[dW (t)dW (s)]. First, for s = t, the event is either with
probability θ from source or with probability (1− θ) from background. Thus

E[dW (s)dW (t)] = µc(t)[θζ2γ(φ(t)) + (1− θ)β2]dt, s = t (42)

For s 6= t there are three possibilities: both events are from source, both are from background, or
one is from source and one is from background.

E[dW (t)dW (s)] = µ2c(s)c(t)[θ2ζ2
1γ(φ(t))γ(φ(s)) + (1− θ)2β2

1 +
θ(1− θ)ζ1β1(γ(φ(s)) + γ(φ(t))]dsdt, s 6= t (43)

We initially assume that the phase φ(t) is properly specified, i.e. that f and ḟ are identified.
E|An|2 contains contributions of all the terms in (42) and (43). Some analysis shows that the
leading order comes from the first term in (43), leading to

µ2θ2

∣∣∣∣∫ e−2πinφ(t)c(t)γ(φ(t))dt
∣∣∣∣2 = µ2θ2

∣∣∣∣∣∑
k

∫
γkc(t)e−2πinφ(t)e2πikφ(t)dt

∣∣∣∣∣
2

(44)

' µ2θ2|γn|2
[ ∫ T

0
c(t)dt

]2
(45)

Thus, under the alternative

EKQT ' µ2θ2ζ2
1

[
∫ T
0 c(t)dt]2

T

∑
n6=0

|γn|2|αn|2 (46)

The approximation for frequency misspecification, ∆ 6= 0, follows from Taylor series expansions,
noting that the first derivatives vanish at ∆ = 0, since that point is a maximum.

References

[1] R. Beran (1969). Asymptotic theory of a class of tests for uniformity of a circular distribution.
Annals of Statistics, 40: 1196-1206

[2] P. Bickel, B. Kleijn, and J. Rice (2007). On detecting periodicity in astronomical point processes.
Challenges in Modern Astronomy IV. ASP Conference Series, G, J. Babu, and E. Feigelson
(eds.), Volume 371.

10



[3] R. Buccheri, K. Bennet, G. Bignami, J. Bloeman, V. Boriakoff, P. Caraveo, W. Hermsen,
G. Kanbach, R. Manchester, J. Masnou, H. Mayer-Hasselwander, M. Ozel, J. Paul, B. Sacco,
L. Scarsi, and A. Strong (1983). Search for pulsed γ-ray emission from radio pulsars in the
COS-B data. Astronomy and Astrophysics, 128:245.

[4] O. C. De Jager. J. Swanepol, and B. Raubenheimer (1989). A powerful test for weak period
signals with unknown light curve shape in sparse data. Astronomy and Astrophysics, 221:180–190.

[5] J. M. Fierro, P. F. Michelson, P.L. Nolan, and D. J. Thompson (1998). Phase-resolved stud-
ies of the high-energy gamma-ray emission from the Crab, Geminga, and Vela pulsars. The
Astrophysical Journal, 494: 734-746.

[6] A. Jannsen (2000) Global power functions of goodness-of-fit tests. Annals of Statistics, 28:
239-253.

[7] E. Lehmann and J. Romano (2006). Testing Statistical Hypotheses. Springer.

[8] Lord Rayleigh (1919). On the problem of random vibration and flights in one, two, and three
dimensions. Philosophical Magazine (6), 37: 321-347.

11


	Introduction
	Score test
	Power
	Examples
	Template
	Weight function

	Conclusion and Discussion
	Acknowledgments
	Appendix
	Null distribution
	Power


