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Curse-of-dimensionality revisited:
Collapse of the particle filter in very large
scale systems

Thomas Bengtsson', Peter Bickel? and Bo Li**
Bell Labs, University of California, Berkeley, and Tsinghua University

Abstract: It has been widely realized that Monte Carlo methods (approxi-
mation via a sample ensemble) may fail in large scale systems. This work offers
some theoretical insight into this phenomenon in the context of the particle
filter. We demonstrate that the maximum of the weights associated with the
sample ensemble converges to one as both the sample size and the system di-
mension tends to infinity. Specifically, under fairly weak assumptions, if the
ensemble size grows sub-exponentially in the cube root of the system dimen-
sion, the convergence holds for a single update step in state-space models with
independent and identically distributed kernels. Further, in an important spe-
cial case, more refined arguments show (and our simulations suggest) that the
convergence to unity occurs unless the ensemble grows super-exponentially in
the system dimension. The weight singularity is also established in models with
more general multivariate likelihoods, e.g. Gaussian and Cauchy. Although pre-
sented in the context of atmospheric data assimilation for numerical weather
prediction, our results are generally valid for high-dimensional particle filters.

1. Introduction

With ever increasing computing power and data storage capabilities, very large
scale scientific analyses are feasible and necessary (e.g. [8]). One important appli-
cation area of high-dimensional data analysis is the atmospheric sciences, where
solutions to the general (inverse) problem of combining data and model quanti-
ties are commonly required. For instance, to produce real-time weather forecasts
(including hurricane and severe weather warnings), satellite radiance observations
of humidity and radar backscatter of sea surface winds must be combined with
previous numerical forecasts from atmospheric and oceanic models. To such ends,
recent work on numerical weather prediction is cast in probabilistic or Bayesian
terms [10, 21, 26], and much focus in the literature on the assimilation of data and
numerical models pertains to the sampling of high-dimensional probability density
functions (pdf) [1, 18, 25, 27]. Motivated by these sampling techniques, we inves-
tigate the dangers of naively using Monte Carlo approximations to estimate large
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scale systems. Specifically, in the context of the particle filter, we show that accurate
estimation of (truly) high-dimensional pdfs require ensemble sizes that essentially
grow exponentially with the system dimension.

Some recent work in numerical weather prediction has extended Kalman filter
solutions to work efficiently in Gaussian systems with degrees of freedom exceeding
108. One popular extension is given by the ensemble Kalman filter, a Monte Carlo
based filter version which draws samples from the posterior distribution of the at-
mospheric state given the data and the model [6, 11]. However, the task of sampling
in real-time from such high-dimensional systems is conceptually non-trivial: com-
putational resources limit sample sizes to several orders of magnitude smaller than
the system dimension. To address sampling errors associated with small ensembles,
various approaches leverage sparsity constraints to attenuate spurious correlations
[15, 17, 25]. Moreover, in the Gaussian case, for systems with a finite number of
dominant modes, moderate sample sizes are sufficient to accurately estimate pos-
terior means and covariances [12].

For longer forecast lead times, the involved dynamical models exhibit strongly
non-linear behavior and produce distinctly non-Gaussian forecast distributions (e.g.
Figure 2, [3]). In these situations, optimal filtering requires the use of more fully
Bayesian filtering methods to combine data and models. In the context of oceano-
graphic data assimilation, one such approach is considered by [27], who proposes a
sequential importance sampling algorithm to obtain posterior estimates of oceanic
flow structures. This method falls within the set of procedures typically referred to
as particle filters (e.g. [9]). Based on a finite set of sample points with associated
sample-weights, the particle filter seeks to propagate the probability distribution of
the unknown state forward in time using the system dynamics. Once new data is
available, Bayes theorem is used to re-normalize the weights based on how “close”
the associated sample points are to the data.

Although successfully applied to a variety of settings, particle filters often yield
highly varying importance weights and are known to be unstable even in low-
order models. Remedies to stabilize the filter include re-sampling (re-normalizing)
the involved empirical measure at regular time intervals [14, 19], marginalizing
or restricting the sample space [20, 22], and diversifying the sample (e.g. [13]).
However, these approaches serve to improve filter performance in low-dimensional
systems, but do not fundamentally address slow convergence rates when the particle
filter is applied in large scale systems. In particular, as noted by e.g. [27] and
[1], when applied to geophysical models of high dimension, sequential importance
sampling collapses to a point mass after a few (or even one!) observation cycles.
To shed light on the effects of dimensionality on filter stability, our work provides
necessary sample size requirements to avoid weight degeneracies in truly large scale
problems.

This work is outlined as follows. The next section formulates the problem of using
ensemble methods for approximation purposes in large scale systems, and provides
motivating simulations illustrating the potential difficulties of high-dimensional es-
timation. Our main developments are then presented in Section 3 where we give
general conditions under which the maximum of the sample weights in the (likeli-
hood based) particle filter converges to one if the ensemble size is sub-exponential in
the cube root of the system dimension. The convergence is established in a Gaussian
context, but is also argued for observation models with independent and identically
distributed (iid) kernels. The validity of the weight collapse in the case when the
ensemble grows sub-exponentially in the system dimension (as suggested by the
simulations) is discussed as an extension to the multivariate Cauchy kernel and
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its apparent slower collapse. In Section 4, for completeness, in a Gaussian context,
we show that the particle filter behaves as desired if the ensemble size is super-
exponential in the system dimension. A brief discussion in Section 5 concludes our
work.

2. Model setting and motivation

This section gives the model setting and describes the Monte Carlo estimation prob-
lem under consideration. To illustrate the difficulty of high-dimensional estimation,
we also provide motivating examples that describe the weight singularity.

2.1. Model setting

The statistical context in which we motivate our work is as follows. Consider a set
of n sample points X = {X1,..., X,,}, where X; € R and both the sample size
n and system dimension d are “large”. We assume that the sample X is drawn
randomly from the prior (or proposal) distribution p(X). New data Y is related
to the state X by the conditional density p(Y|X). For concreteness, a functional
relationship Y = f(X) + ¢ is assumed, and ¢ is taken to be independent the state
X. The goal is to estimate posterior expectations using the importance ratio: i.e.,
for some function h(-), we want to estimate

and use .
Bh(X)Y) =3 h(Xi)z%

as an estimator. Based on this formulation, the weights attached to each ensemble
member

p(Y]X;)
> =1 p(Y]X5)

are the primary objects of our study. As mentioned, in large scale analyses, the
weights in (1) are highly variable and often produce estimates E(-) which are col-
lapsed onto a point mass with maxz(w;) =~ 1. For high-dimensional systems, this
degeneracy is pervasive and appears to hold for a wide variety of prior and likeli-
hood distributions.

Next we illustrate the degeneracy of the sample weights as the dimension of X
and Y grows large.

(1) w; =

2.2. Motivating examples

To illustrate the weight collapse of the particle filter we simulate weights from (1) for
both a Gaussian and a Cauchy distributional setting. These densities were chosen
to parallel the work of [27], which attempts to address particle filter collapse by
modeling the observation noise using a heavy-tailed distribution.

In our simulations, the d x 1 observation vector Y is related to the unobserved
state variable X through the model Y = HX + ¢. Here, the observation operator
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H is set equal to the d x d identity matrix, denoted I;, and the proposal (i.e.
forecast) distribution is taken as zero-mean Gaussian with covariance cov(X) = I,
denoted X ~ N(0, I). These choices for H and cov(X) allow us to straightforwardly
manipulate the system dimension, and to study the behavior of the maximum
weight for various choices of d and n. For the Gaussian case we let € ~ N(0, Iy),
while for the Cauchy case we investigate two scenarios. First, the components of
e =[e1,...,eq)T are taken as 4id Cauchy, where each component has location and
scale parameters set equal to zero and one, respectively. Second, ¢ is taken as
multivariate Cauchy, again with location and scale parameters equal to zero and
one.

In each simulation run of the maximum weight, an observation Y is drawn from
p(Y) and a random sample of n particles Xi,..., X, is obtained from p(X) =
N(0,1;). Then, given Y, the sample particles are re-weighted according to (1) and
the maximum weight, denoted w,), is determined. To evaluate the dependence of
W(py on d and n, we vary the system dimension at three levels, and let the Monte
Carlo sample size increase polynomially in d at a rate of 2.5, i.e. we set n = d°.
For the Gaussian setting, we let d = 10,50, 100 and obtain n = 316, 17676, 100000,
while, for the Cauchy settings, where convergence to unity was observed to be
slower, the maximum dimension is increased to d = 400. Thus, for the Cauchy
simulations, we set d = 10, 50,400, and get n = 316, 17676, 3200000. Our setup
results in nine simulation sets each for the three distributional settings, and each
set is based on 400 independent draws of wy).

Histograms of the maximum weight w(,) for the Gaussian setting are displayed
in Figure 1. The effect of changing the dimension is represented column-wise, and
the effect of changing the Monte Carlo sample size is given row-wise. Each plot also
depicts the corresponding sample mean maximum weight E(w(n)) as a vertical line.
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Fic 1. Sampling distribution of w(y,) for the Gaussian case. The nine plots show histograms of
W(yn) with system dimension varied column-wise (d =10,50,100) and sample size varied row-wise
(n = 10%:5,502-5,1002-3). The vertical line in each plot depicts EA(w(m)‘ Each histogram is based
on 400 simulations.
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FIG 2. Sampling distribution of w(,) for e iid Cauchy (top panel), and e multivariate Cauchy
(bottom panel). In each panel, the system dimension d is varied column-wise (d = 10,50,400),
and the sample size is varied row-wise (n = 1025, 502'5,4002'5). The wvertical line in each plot
depicts E(w(n)). Each histogram is based on 400 simulations.

As indicated, for a fixed sample size (i.e. within a row), the distribution of wy,) is
dramatically shifted to the right, and we see that w(,) approaches unity as d grows.
Moreover, the same singularity is evident along the diagonal from the lower left
(d = 10,n = 316) to the upper right (d = 100, = 100000) histogram. Hence, even
as n grows at a polynomial rate in d, w,) still approaches unity.

The histograms in the two panels of Figure 2 show the simulation results for the
Cauchy settings. As in the previous figure, the effect of changing the dimension is
given column-wise, and the effect of varying the ensemble size is given row-wise. Also
depicted is the sample mean maximum weight E(w(n)) as a vertical line. For the
1id Cauchy case, displayed in the top panel, for fixed n, the sampling distribution of
W(y) is clearly shifted to the right as d increases. Moreover, similarly to the Gaussian
results, the weight singularity is again evident in the histograms along the diagonal
where the sample size grows as n = d2®. As with the #d setting, the histograms
of wy,) for the multivariate Cauchy case (bottom panel) also demonstrate weight
collapse. However, as can be seen, the convergence is slower. The reasons for the
apparent slower collapse will be discussed in Section 3.3.
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To shed light on the illustrated weight collapse, we next present a formal study
of the behavior of the maximum importance weight. Specifically, the next section
develops conditions under which the maximum weight w(,) converges to unity.

3. The singularity of the maximum weight for models with iid kernels

In this section, we make precise the reasons for the previously described weight
collapse. The primary focus is on situations where the likelihood p(Y|X) is based
on iid components (or iid blocks) and the proposal distribution p(X) is Gaussian.
Our basic tool, given below in Lemma 3.1, gives reasonable conditions under which
the maximum weight based on the general form in (1) converges to unity as d and
n grow to infinity.

Our main insight is that, for large d, p(Y|X;) is often well approximated by the
form

(2) p(Y|X:) ~ exp{—(ud + oVdZ;)}(1 + 0,(1)),

where Z; follows the standard normal distribution and where 1 and o are positive
constants. The justification of this form is highlighted by the developments in Sec-
tions 3.1 — 3.3, and the conditions under which (2) produces weight collapse are
made precise below in Lemma 3.1. Note that, with Z;) representing the i:th order
statistic from an ensemble of size n, the maximum weight w(,) behaves as

1
1+ 22:2 e—a\/E(Z(z)—Zu)) ’

W(n) ~

Thus, to establish weight collapse, it suffices to show that the denominator in the
above expression converges to unity for large d. The following lemma gives the
strong version of (2), which is needed for our conclusion, and formalizes the con-
vergence.

Lemma 3.1. Let S;,i =1,...,n, be independent random variables with cumulative
distribution function (cdf) G4(-) satisfying

Ga(s) = (1 +0(1))®(s)

over a suitable interval, where ®(-) is the cdf of a standard normal distribution

Speczﬁcally, we assume there exist two sequences aﬁld and oy, 4, where both oznd

and ay, 4 tend to 0 as n and d go to infinity, such that, for s € [—d", d"] with
0<7]<1/6 we have

3) (1+ ap ) ®(s) < Gals) < (1+ayy g)®(s).
Let Sy < -+- < Sy be the ordered sequence of Sy, ..., Sy, and define, for some
0>0,Tha=> 7, e~oVaA(Sw—Sm), Then, if 82 — 0,

d2n
E(Tn7d|5’(1)) = Op(l).

A proof of the lemma is provided in the Appendix.
An 1mmed1ate implication of this result is weight collapse, i.e. if

log n
27

— 0, we

have w(,,) £

With the normality condition (3) valid for n < 3,
effectively, whenever 103” — 0; rather than, as shown above, for 1;’52 — 0. Unfor-

tunately, unless Gy4(s) = ®(s), our proof is valid only for n < % However, using

our conclusion would hold,
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more refined arguments in conjunction with Lemma 2.5 of [23] one can show that,
under the conditions of Lemma A.1 (see Appendix), only 155?; — 0 is required
for collapse. Furthermore, using specialized arguments, we can show that in the
Gaussian prior-Gaussian likelihood setting, 105” — 0 is the necessary condition for
collapse. We do not describe these arguments in detail, but focus instead on Lemma
3.1 which can be applied more broadly.

We next turn our attention to high-dimensional, linear Gaussian systems.

3.1. Gaussian case

We assume a data model given by Y = HX + ¢, where Y is a d X 1 vector, H is a
known d x ¢ matrix, and X is a ¢ X 1 vector. Both the proposal distribution and
the error distribution are Gaussian with p(X) = N(ux,Xx) and p(e) = N(0,%.),
and the noise ¢ is taken independent of the state X. Since the data model can be
pre-rotated by X, 1 2, we set X, = Iz without loss of generality (wlog). Moreover,
since EY = FHX, we can replace X; by (X; — EX;) and Y by (Y — EY) and
leave p(Y|X) unchanged. Hence, wlog we also set ux = 0. Moreover, define, for
conformable A and B, the inner product (A, B) = AT B (where the superscript
denotes matrix transpose) and let | A]|? = (4, A).
With p(Y|X) ~ N(HX, I;), the weights in (1) can be expressed as

exp(—||Y — HX;||?/2)
Siexp(— Y — HX[?/2)

To establish weight collapse for high-dimensional Gaussian p(Y|X) and p(X),
we show that, under reasonable assumptions, the exponent in (4) satisfies the con-
ditions of Lemma 3.1.

Let d’ = rank(H). With A2,... )2, the singular values of cov(HX), define the
d' x d" matrix D = diag(A1, ..., Aa). Then, with @ an orthogonal matrix obtained
by the spectral decomposition of cov(HX), define the d’ x 1 vector V such that

QTHX = DV.

(4) w; =

Note that V; corresponding to X; is N(0, Iy ). Since @ is orthogonal, we can write

d
(5) IY — HX;|* = |Q"Y — DV;||* = ZA2 Y e
j=d’'+1

where, conditional on Y, [Wi,..., W;a|T is N(& 1), and where €, is the j:th

component of the observation noise vector €. The mean vector & = [y, ..., ua]” is
given by
(6) (=D7'Q"Y =V + D',

where V' and &’ are independent N (0, Iy ).
Now, for i = 1,...,n, define

ZJ T NWE = (1+p43))
(29 A1+ 2u2))

Note that the second term in (5) is constant for every X;, and will not influence
the weight w;.
We assume,

(7) S; =



Curse-of-dimensionality revisited 323

Al. There is a positive constant 0 such that § < Ay, -+, Ay < 3; and

A2 03 =235 Aj(1+2u3) — 0% > 0.

With these assumptlons, Lemma A.2 of the Appendix establishes that the uni-
form normality condition given by (3) holds for the standardized terms defined in

(7). The result is valid for any 0 < 7 < 1/6 and is based on Theorem 2.5 of [23].
Note that, from (6) and (7), we can write

|V — HX;|? < oVd'Si(1 4 o(1 ZAQHMJ

where o(1) is independent of the subscript i.
We can now state the following proposition.
Proposition 3 2. Under assumptions Al and A2, if 1;’,%2 — 0 with 0 <n < 1/6,

we have wy) 1.

Proposition 3.2 follows by Lemma A.2 (Appendix) and Lemma 3.1.

The above result implies that, unless n grows super-exponentially in d’'/3, we
have weight collapse. However, as we show in Section 4, the weight singularity is
avoided when d’ is bounded, or, more generally, when logn/d’ — oco. To establish
the exact boundary of collapse in the Gaussian setting, a closer analysis of the
chi-squared distribution (c.f. |Y — HX;||?) with d’ degrees of freedom is needed. In
particular, using the Poisson sum formula for the tails of the gamma distribution, it
can be argued that collapse occurs if logn/d" — 0. Essentially, with G4(s) = ®(s)
and for suitable o2, we can show

[2logn
E(Tn,d|5(1)) ~ Wa

in probability. As mentioned, we do not describe the specifics of this argument, but
focus instead on the more general result of Lemma 3.1.

Next we turn our attention to settings where both the observation and state
vectors consist of #d components.

3.2. General iid kernels

It may be speculated that the weight singularity can be ameliorated by the use
of a heavy-tailed kernel. However, we argue that, as long as the components of
the observation noise are itd and H is the identity matrix, we still expect weight
collapse for large d.

The model setting is Y = X + €. Let X be the k:th component of X;. We take
Xk, iid with common density g(-), and take the components of € = [ey, ..., e4]7 iid
with common density f(-). Then, with ¢ (-) = log f(-), given Y = [y1,...,ya]*, we
can write the weights from (1) as

cap( Y5y ¥(y; — Xij))
Sy eap( X5 vy — Xiy))
Define Vi; = ¢(y; — Xi5), and let u(y;) = E(Vijly;) and 0*(y;) = E(V3|y;) —
u?(y;j), where the expectations are evaluated under f(-). With these quantities, let
351 (Vs — )
(Sioio2w)””

P =
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fori=1,...,n. Again, let S(;) <--- <5, be the ordered sequence of 51,5, ..,

Sp. Now, in analogy to Proposition 3.2: if 1‘;%,," — 0, and

(i) the sequence {Vi; — p(y;)}9_, satisfies the conditions of Theorem 2.5 of [23];
and

(i) § 35— 0%(y;) = 0? >0,

then the maximum weight w,) converges in probability to 1.

To verify the normality approximation in (2) for S;, it is easy to check that
0% = Eo?(y1) < oo, and max; [¢(y; — Xi;)| = 0,(d"/?) uniformly in . The next
proposition gives checkable, albeit strong conditions, leading to weight collapse.
Proposition 3.3. Let the components of Xo = [Xo1, ..., Xoa|® be iid with density
g(+), and let the components of € = [e1,...,e4)T be iid with density f(-). Set Y =
Xo+¢€. Let Xq,...,X, be itd vectors, each with iid components X;, with common
density g(-). Assume that f,g are such that

E[fY(Y; — X1 )] < o0,
for |t| < & with § > 0. Then, with Ty, g = Y ), e~oVdSwy=Sm) if % — 0 for
0<n<1/6, we have,
P
E(Tn.alS)) = 0.
The result follows from Lemma 3.1 and Lemma A.1. Note that most common

f, 9, e.g. the Gaussian and Cauchy, satisfy the conditions of Proposition 3.3.

If H is not the identity, our conclusion may still hold for 155? — 0. For general

H, set U; = HX; and let Uy, be the k-th component of U;. With this quantity,
provided the regularity conditions are satisfied, we may apply Theorem 3.23 of [23]

to the terms .,
> j=1 ¥y — Uss) — pu(yy)
ovd ’

Sy, =

where p(y;) and o are suitable constants.
Next we turn our attention to the case when the observation noise vector follows
the multivariate Cauchy distribution.

3.3. Multivariate Cauchy case

Our developments so far have considered settings where p(Y|X) is of multiplica-
tive form; in particular, model settings with #id likelihood kernels (or #id blocks
of observations). We now discuss extensions of our results to include multivariate
likelihood functions. Except for the multivariate Gaussian case, however, which can
be addressed by rotation (see Section 3.1), we note that no general result exists
that addresses a wide range of multivariate likelihood functions. Here, we focus on
the multivariate Cauchy distribution, which, in the context of oceanographic data
assimilation, was proposed by [27] to avoid weight collapse.

We still entertain the data model Y = HX + ¢ and, as in the previous section,
restrict H = I;. Here, we let p(X) = N(0, I4) and take the noise vector ¢ to follow
the multivariate Cauchy distribution. We note that the multivariate Cauchy distri-
bution is equivalent to the multivariate t-distribution with 1df (e.g. [2], page 55).
Then, given data Y and a sample X; ~ N(0,1;), i = 1,...,n, the multivariate
Cauchy weights are given by

A+Y - X,|]2)~ %
_df1”
S Y - XG2)7

P =
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Now, with [|Y —X[yj]| < ... < [|[Y —X|,|| the order statistics, we express the weights
in familiar form, i.e.

W(n)
-1

. d+1
- 1+Zemp<—T(log(1+||Y—X[j]|) log(1+ [V — X7 )))
=2

To argue w,) ~ 1 for large d, we note first that the scenario considered here is

closely related to the Gaussian prior-Gaussian likelihood case.
Proposition 3.4. Let X be zero-mean Gaussian with cov(X) = Iy and take € to
follow the multivariate Cauchy distribution. Then, with Y = X + ¢, as d — oo, we
get
on(y a4 > .
PXIY) 8 (¥ (= )l

The convergence in Proposition 3.4 is in the sense that the finite dimensional
distributions on both sides converge to the same limit. Thus, we reach the somewhat
surprising conclusion that the posterior distribution of X given Y is Gaussian, but
with parameters depending on the data. The result is proved in the Appendix.

In the Appendix we also detail the heuristic argument that, as in the Gaussian-
Gaussian case, the non-central x2(c?d) distribution behaves sufficiently like N ((0%+
1)d, 2(1 + 202)d) to permit exact replacement in our developments. We then reach
the conclusion of slower weight collapse for large n and d, as substantiated by
our simulations. Specifically, we argue that the average rate needed for collapse is

\/@Ho \/@}—N)

For the Gaussian setting, the next section shows that weight collapse can be
avoided for sufficiently large ensembles

4. Consistency of Gaussian particle filter

As a complement to the developments in the previous section, we provide a con-
sistency argument for the type of estimators of E(h(X)|Y) that are under consid-
eration here. The developments are made in a Gaussian context and we consider
settings where both d and n are large. Specifically, if logn/d — oo, we show con-
sistency of D" ; w;h(X;) as an estimator of E(h(X)|Y).

Suppose we have a random sample {Xg, X1,..., X, }, where X; ~ N(0, ). As in
the simulation section, let the data Y, be collected through the model Yy = X + ¢,
where € ~ N (0, I) is independent of X;. With p(Y|X) = N(0, I5), let {wy,...,wy,}
be the weights obtained by (1).

Now, choose X from {Xi,...,X,} with probabilities proportional to {wy,...,
wy,}. Then, with §(-) representing the delta function and p(X|[Yp) = Y27_; wid(X;),
we have X' ~ p(X|Yp). Further, the expectation of h(X™*) (under the empirical
measure) is given by E*(h(X )|Y0) Zj 1 wih(X;). With this setup, the following
result establishes consistency of Y. | w;h(X;) as an estimator of E(h(X)]Y).
Proposition 4.1. Let h(-) be a bounded function from R to R. Define E*h(X*) =
Z?:l w;h(X;), the expectation under the (previously defined) empirical measure
p(X|Y0), and let Eq(-) denote expectation evaluated under the (true) posterior
p(X|Yo). Then, if logn/d — oo,

|E*h(X*) — E1h(X)| - 0.
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The result is proved in the Appendix. We note that Proposition 4.1 is valid for fi-

nite dimensional measures. The next corollary follows as an immediate consequence
of the established convergence.
Corollary 4.2. Let {X5,...,X*} be a random sample from p*(X|Yy). Further,
with k fized, let v(zy,...,z}) be any random variable depending on the first k
coordinates of X}. Then, with §,(-) representing the delta function for v(-), as
logn/d — oo,

1 * T 1
Ezay(f‘cla"'vxk) - N(§[y01a--'ay0k]T7 ilk)

The results extend to include Y = HX + ¢, where rank(H) = d < oco. Of
course, p(Y|X) and p(Y') have to be changed in the developments to accommodate
arbitrary H, but we again have no collapse provided logn/d' — oo.

5. Discussion

The collapse of the weights to a point mass (with maz(w;) = 1) leads to disastrous
behavior of the particle filter. One intuition about such weight-collapses is well
known, but here made precise in terms of d and n: Monte Carlo does not work if
we wish to compute d-dimensional integrals with respect to product measures. The
reason is that we are in a situation where the proposal distribution p(X) and the
desired sampling distribution are approximately mutually singular and (essentially)
have disjoint support. As a consequence, the density of the desired distribution at
all points of the proposed ensemble is small, but a vanishing fraction of density
values predominate in relation to the others.

Our developments demonstrate that brute-force-only implementations of the par-
ticle filter to describe high-dimensional posterior probability distributions will fail.
Our work makes explicit the rates at which sample sizes must grow (with respect
to system dimension) to avoid singularities and degeneracies. In particular, we give
necessary bounds on n to avoid convergence to unity of the maximum importance
weight; and, naturally, accurate estimation will require even larger sample sizes than
those implied by our results. Not surprisingly, weight degeneracies have been ob-
served in geophysical systems of moderate dimension ([1, 3]; also, C.Snyder/NCAR
& T. Hamill/NOAA, personal communication, 2001). The usual manifestation of
this degeneracy are Monte Carlo samples that are too “close” to the data, quickly
producing singular probability measures, in particular as the filter is cycled over
time.

The obvious remedy to this phenomenon is to achieve some form of dimension-
ality reduction, and the high-dimensional form in which the data are presented is
typically open to such reduction with subsequent effective analysis. For instance,
in the case of the ensemble Kalman filter, by imposing sparsity constraints through
spatial localization ([15, 17]; see also, [12]). Be that as it may, as shown in this
work, for fully Bayesian filter analyses of high-dimensional systems, such reduc-
tion becomes essential lest spurious sample variability is to dominate the posterior
distribution.

In the context of numerical weather prediction, one approach to dimension re-
duction may be to condition sample draws on a larger information set. One idea is
given by [4], who constructs proposal distributions by incorporating dynamic infor-
mation in a low-order model. Other examples of geophysically constrained sampling



Curse-of-dimensionality revisited 327

schemes are given by Bayesian Hierarchical Models (e.g. [16, 28]), but require com-
putationally heavy, chain-based sampling and thus do not extend in any obvious
manner to real-time applications. A more viable possibility for real-time applica-
tions in a large scale system is to break the system into lower-dimensional sets,
and then sequentially perform the sampling as in [3]. Another approach may be
to condition the draws on lower-dimensional sufficient statistics ([5, 24]). A novel
idea to improving convergence in the Baysian filter context is considered by [29]
in the context of image matching and retrieval. For the purpose of validating the
exclusion of parts of the sample space which appear uninteresting given the data,
and to speed up the algorithm, they use information theory to restrict the sample
space by explicitly incorporating (drawing) samples of low probability.

Appendix

We first introduce two lemmas that pertain to uniform normal approximations of
the distribution of independent sums. Such sums appear in the formulation of the
filter weights throughout our work. Valid for moderately large deviations, the first
result (Lemma A.1) is a combination of Theorem 2.5 and Theorem 1.31 in [23] and
is stated here without proof. The next result (Lemma A.2) is given for the purpose
of verifying the Lyapunov quotients conditions appearing in Lemma A.1.

Lemma A.l1. Let &,...,&q be independent random variables with E&; = 0 and
0F =Var(&3). Set

Saq = Bi(§1+"'+§d)7

where B3 = 4

=10 , and define the Lyapunov quotients

Lig= BkZE‘fj , k=1,2....

d_yl

If By = 0d"?(1 + o(1)), 74 = ¢Bq (some a,c > 0), and Lyq < k)75, k =
3,4,..., then the cdf of Sq, denoted G4(-), satisfies (some C' >0)

Ga(z)
®(x)
and the survival function, G4(-) = 1 — G4(-), satisfies
Ga(z) _
@ (z)
Thus, under the outlined conditions, the uniform normal approximations

Ga(s) = (1+0(1))®(s), and Gq(s) = (14 0(1))®(s)

—1’§C|x3d1/2, —d"<zx <0, n<1/6

1’ < ClzfPdt?, 0<z<d", n<1/6.

hold, respectively, over the intervals [—7,,0] and [0,7,]] for n < 1/3.

The lemma is the basis for the normality conditions of Lemma 3.1. We note that
the condition on Ly 4 is satisfied in the did case if Ee'® < oo, for [t| < 6,5 > 0.
Lemma A.2. Let Z;,j =1,...,d, be iid N(0,1). Let 0 < § < Ay < --- < A\g < 5
and py, ..., g be such that

d
2
(8) 0<m<o§:EZ (1+2u3) < M < oo,
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or some constants m, M. Then, with o2 as defined in (8),
d

d
_k k _ (k=2
(9) o PN NEB(Z; + ) — (1L )| < CFRld T

Jj=1

for all k = 3,4, ... and a universal constant C' = C(6,m, M).

The remainder of the Appendix is devoted to the proofs of the presented lemmas
and propositions. The proofs are given in the order in which the results appear in
the text.

Proof of Lemma 3.1

Let S; (j =1,...,n) be as defined in the lemma. Before proceeding, we note some
important results/facts. First, it is well known that

loglogn + log(4m)\ L
(10) \/2logn(5(1) ++v/2logn — AT ) = U,

where U has a Gumbel distribution (see, e.g., [7], p. 475). Second, by assumption,

v 2dlf,)gn — 0 for 0 < n < 1/6, which allows us to use the normal approximation
defined in (3). Third, we make frequent use of Mill’s ratio: i.e., ®(z) ~ %x),
T — +00.

Now, note that

as

(n—1) f;i) ezp( — a\/a(z - S(l)))de(z)
Ga(Sw)) ’

(11) E(T.4lS0)) =

since, given S(1), the remaining (n — 1) observations are #d with cumulative density
function (cdf) equal to G4(2)/Ga(S(1)), z > S(1). By (10) and (3) we see that the
denominator of the right hand side converges to 1 in probability. To evaluate the
numerator of (11), we break the integral into two parts: the first part yields the
integral from S(1) to d”, and the second part yields the tail integral from d” to oc.
We now show that both integrals converge to 0 in probability.

For the first part, using integration by parts (twice) along with the approximation
in (3), we can write

dﬂ
/S exp( — oVd(z — 51)))dGa(z)

(1)
= Gy(d"exp(—oVd(d" — S1))) — Ga(Sq))

d”’?
—|—/ exp( — oVd(z — S4)))Ga(z)dz

Sy
= (Gq(d") = @(d")exp( — oVd(d" — S1))) — (Ga(S)) — ®(S(1)))
dT/
+ (14 0(1)) / exp( — oVd(z — Sy))o(z)dz.
Sy

Now, again by assumption,

(12) (n—1)Ga(d"exp(—oVd(d"—S(1))) < (n—1)Ga(d") ~ (n—1)®(d") = o(1).
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Analogously, (n — 1)®(d")exp( — ov/d(d" — S1))) = 0,(1). Hence, we have derived
that

(13) (n —1)(Ga(d") — ®(d"))exp( — oVd(d" — S(1))) = 0p(1).
Further, by (10) and (3),
(14) (n = 1)(Ga(Sw)) — ®(Sy)) = o(1)(n — )Ga(S))-

Let S be an iid copy of Sy. Then G4(S) is uniformly distributed on [0,1], and

1
n+1

(15)  E(Ga(S))) = E(P(S < S1,...,5 < 5,19)) = E(([Ga(9)]") =
Combining (14) and (15) yields
(16) (n—1)(Ga(Sy) — ®(S(1))) = 0,(1).

Moreover, by assumption ov/d + Sy ~ ovd — v/2logn — co. Thus, we get, again
in light of (10),

dn
(n— 1)/3 exp( — oVd(z — Sa)))o(2)dz

(1)

< (n—1) exp(ovVdSqy + 02d/2)B(S1) + oVd) + Vd(n — 1) (d")

N (n— 1)exp(cr\/ES(1) +02d/2)¢(Sq) + oV/d) V("
Say + ovd + DR

. (n_l) emp(_sgl)/2) N\ AT

T V2r(Sa) + o) + Vil - D2

= OP(1)7

The implication of the last inequality, in conjunction with (13) and (16), yields
dTI
(n — 1)/ exp( — oVd(z — S1y))dGa(z) = 0p(1).
S

By assumption, the second part of the integral in (11) is bounded by

oVd(n —1)Gy(d") = oVd(n — 1)®(d") ~ oVd(n ;nl)q’)(d”) = o(1).

We have shown that the numerator of the right hand side of (11) converges to 0
in probability. This completes the proof.
Remark. If the normal approximation is good enough to avoid the left boundary
term in the integration by parts, we believe the convergence rate to be dominated
by the quantity

/ exp( — oVd(z — S1))) do(z).
Sy
As can be seen in the proof, by (10),

o0 C(n—1)exp( — S%,/2 ogn
/ exp(— oVd(z — 5)) dP(z) ~ o _Deanl = 5/ :O”< : fl )
s

&) \/ﬂ(S(l) -I-U\/g)
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Proof of Proposition 3.4. Let Z; i N(0,1),s = 0,...,d, and define ¢ = [Z3,...,
Z4)¥' /| Zo|. That is, € follows the multivariate Cauchy distribution. Let the data be
defined by Y = X + €.

Conditional on (Y, Zj), the posterior distribution of X is Gaussian, i.e.

1 Zo 1 >
X|Y, Zy) = N Y, I).
X020 = (e

We approximate
Y 1% = X117 + 20X, ) + Jle]?
d+O(Vd)
20>
1+ 0(1/Vd)
Iz )

=d+O0(Wd)+20(Vd) +
= d(1+0(1/Vd) +

We have [[Y][2 = d(1+ =) (1+0(1)), and (14 2) = YIZ (140(1)). Substituting
in p(X|Y, Zy), we obtain

L d d
p(X|Y —>N(Y—,1——Id>. O
X1 Y2 ( ||Y||2)

Heuristic proof for multivariate Cauchy case

Assume flg/? — 0 and let [|[Y — Xpyj|| < -+ < ||V — X}yy|| be the order statistics.

_dtl
We have w; x (1 +|Y - XiH2) * , and can write, as usual, w( where

n) — 1+Tn,d7

A7) Tha= Zefcp L log(1 + Y = Xy512) = log(1 + I — Xpy[?))-

LZa]"

The noise vector follows the multivariate Cauchy distribution, i.e. e = Z1... e

where Zy, Z1,...,Zq are #d N(0,1). Note that

(U1X]1* — d) — 2(Y, X;)

1+Y =XP=0Q+||Y|?P+d)(1+ .
I = Xl = (LY + d)( )

Now, similarly to the developments in Proposition 3.4, given Zj,

)1+ 0y (),

0

L+ |Y P +d=d(2

by the central limit theorem. Moreover,

(18) log(1 + [V = Xi|*) —log(1 + [|Y — Xpyj||*) = log(1 + S;) — log(1 + S(1)),

where
o T3 -1 2w,
! 1+ |Y]]2+d
d
(xR —1) —2Y; X,
(19) Z]—l[( 1] ) J ]} (1 + Op(d_l/Q)).

d(2 + Zig)
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Some calculations show that, conditioning on Zj, the asymptotic variance of S;
4

Z2
is given by 229 where o%(Zy) = ﬁ Now, up to a scale factor, the S;’s are
the same (condltlonally independent) summands as in the Gaussian-Gaussian case.
So, we can hope for a uniform Gaussian approximation.

We proceed as if it were exactly Gaussian with mean 0 and variance given by

the asymptotic value az(dZO). We now expand the logarithm in (19) using S; =
O, (d=1/?). With Wy, ..., W, iid N(0,1) and with W1y the minimum, we obtain

emp( — L [log(1+S;) —log(1 + 5(1))])

1/2
(20) = emp{dT([U(Zo)Wi— 7 (Zo )Wf] [0(Z0)W) — 2651/2)W(1)]}

2d1/2
x (14 0p(1)).

Since [Wqy| = Op(v/logn), we heuristically neglect the cubic term in the expression
which is Op(|W(31)\/d1/2) = op(W(zl)).

We now proceed as in the Gaussian-Gaussian case neglecting the o, (1) term. We
have,

Ji2, aalw)é(w) du
(W) ’

(21) E(Tn,a|Way, Zo) = (n — 1)g; (W)

where gq(w) = exp( — #U(Z Jw + = (ZO) w?). Letting A = 02(220),3 = ”(50),

using the approximation @(W(l)) ~1 for the denominator along with Mill’s ratio,
we compute the integral in (21) to get

n—1
qa(Wpy)(1 — A)1/2

(22) E(Tn,d|W(1),Zo) = (i)[(l _A>1/2W(1)

+d'?B(1 - A)fl/ﬂ exp(%)
n—1 W(21)
(23) ~ mw‘p( -—)
x [(1— AWy +d'2B(1— A~V
N V2logn
T V2[(1 - A)y2logn + VB
(24) = -

\/ﬂ[(l - A)rn + B]
where r,, = 1/210% — 0.

We see that collapse occurs (given our approximations) for fixed Z;. We can
further calculate the average rate of collapse by taking expectation with respect to
Zy. It can be observed that the average rate is dominated by values of Z; which

/6+ 4
are near 0. In the case of small Zy, 0(Zp) = pra— ~ 27y and the normal density

is close to \/% Further A ~ 1 —2Z2 and B ~ ZO It then follows from (22) that
the order of the average rate needed for collapse is fo P

—dz ~ ry|logry|, where
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€ is a small positive number. This is distinctly slower than the Gaussian-Gaussian
r, rate.

These heuristics may be made rigorous if log n/dl/ 3 — 0. But since the inte-
gration by parts remainder terms again dominate, we cannot trace the effect of Z
precisely.

Proof of Proposition 4.1. With py (y) = %ewp(—”y””él), the marginal density
of Y, write

_ n expl —211Ye —X,;H2 )
~ n~t 21 MXi) p( 2dl/‘20 =
(25) Zwih(Xi) _ (12 ) PY(Z/O)
i=1 n-13% eap( =4 1Yo— Xk |3)
k=1 (2m)?/2py (Yo)

Then, the expectation of the numerator under p(X) ~ N(0, I),

exp( — 5l1X —Yo|?)

Jezp(= 31X — Vo[ — 11X ]?)
Eo | M) oy v5) / X @)y (Vo) >
exp( — X — Yo/2[?)
:/Xh(X) X
— By [h(X|Yo).

Specializing to h = 1, we obtain that the expectation of the denominator in (25) is
1. Now consider the variance of the denominator under p(X),

n _lyx. — 2 _ _ 2 _1 2
Varo(%zexp( 51X — Yol )) _ 1/ exp( — || X — Yo|[?)exp(—1 (|1 X| ) x
X

(2m)4/2py (Yo) T (2m)4/24-dexp(—3 || Yo|?)
1
< —M?(4v/3)4.
n
Thus, if logn/d — oo, we have Varo(% Yo %W) F.0. O

Proof of Lemma A.2. By assumption it is sufficient to prove the result for \; =
1, j=1,...,d. We get,
k k
E|(Zj + 15)* = (L + p5)|” = E[(Z] = 1) + 2u; 2]
(26) < 271827 - 1" + Xy BIZ, ).
Let [2] denote the smallest integer greater than or equal to x. It is well known
that

(27) 5|2, < 221271

Also, with Z7 an iid copy of Z;, then, by Jensen’s inequality and (27),

Zj+ Z; Z;— 7!
75 IS =2 1)y

k ’
E|z2 1" < B|7} - 27" = 2" E| 7
(28) <4k([=10°7
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Now, applying Jensen’s inequality again, and noting assumption (8), we have

d d
ko _E=2 M, &
(29) Dolult < QouHrdE < ()7
j=1 j=1
The lemma follows by combining (26) through (29). O
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