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David Aldous received his Ph.D. at Cambridge in 1977, and joined the faculty at the University of California Berkeley in 1979. His many
awards and honours include: the Rollo Davidson Prize in 1980, the Loéve Prize in 1993, a Fellow of the Royal Society in 1994, a Fellow of
the American Academy of Arts and Sciences in 2004, a Fellow of the American Mathematical Society in 2012. He was a plenary speaker at

the International Congress of Mathematicians in Hyderabad in 2010.

David Aldous is well
known for his research
on mathematical prob-
ability theory and its
applications, in partic-
ular on topics such as
exchangeability, weak
convergence, Markov
chain mixing times, the
continuum random tree

David 7. Aldous
and stochastic coalescence. Among many other areas, his work
helped develop important stochastic tools for the quantitative
analysis of population genetics and evolutionary biology. He held
an Aisenstadt Chair in August 2013 during the thematic semester
on Biodiversity and Evolution (in the context of the year of Math-
ematics of Planet Earth 2013).

While his contributions have fundamentally broadened the scope
of probability theory, his work was frequently inspired by its use
and interpretation in a diverse range of applications. In addition,
he continues to write reviews (around 100 so far) of non-technical
books involving probability, contributes essays for the Bernoulli
News and teaches exploratory project-based “lab courses” to un-
dergraduates. Accordingly, in his first lecture (aimed at a broad
public audience) he critically discussed instances involving prob-
ability in everyday life:

What does mathematical probability tell us
about the real world?

Two different approaches were presented:

L. Fiction: one can consider what mathematical probability pur-
ports to be relevant. Most probability models in undergraduate
textbooks are made up in the sense that they make a set of as-
sumptions, which lead to exact formulas, and which have some
aspect that a non-mathematician might care about. These models
are easy to teach. However, in teaching them one does not com-
monly attempt to analyze the realism of the model.

Fact: one can also consider theoretical predictions involving ran-
domness in the real world that are verifiable or falsifiable by an
undergraduate student (not an experimental scientist) as a course
project [7]. Here are some concrete examples:

(1) The Birthday paradox says that in a room of 23 people there
is &~ 50% chance that some two people have the same birthday —
look up a sample of baseball teams of approximately this size.

(2) The regression effect says that if a variable is extreme on its
first measurement then it will tend to be closer to its average on
its second measurement — look up performance of the top few
best and the bottom few worst teams sports teams in the course
of two seasons.

(3) The three arcsine laws for a random walk or Brownian mo-
tion say that the following quantities all have the distribution
P(X < x) = (2/n)arcsin(v/z), € (0,1): (i) the proportion
of time in a unit time interval that the process is positive, (ii) the
last time within a unit time interval when the process changes
sign, and (iii) the time at which the process achieves its maximum
in a unit time interval — consider non-overlapping time blocks
of short periods of closing values of intra-day stock prices (relies
on the usual random walk or Brownian motion models for stock
market prices).

(4) The optional sampling theorem for martingales says that if the
initial value of a martingale is z, then the probability of reach-
ing or exceeding 100 before it hits 0 is equal to 2:/100 +— look at
prediction betting markets for political elections, where the max-
imum betting price for each candidate is 100, choose a value x
that is larger than all of the candidates’ initial prices and count
the number of candidates for whom the betting price ever reaches
or exceeds = [2].

(5) The Kelly criterion for the borderline between aggressive and
insane investing says that given a range of possible portfolios con-
taining risky and safe investments, where a portfolio with allo-
cation strategy « will produce a random return X, the optimal
long term growth rate is insured by choosing « that maximizes

Elog(1+ X,).

One can imagine taking a number of other topics and trying to
find concrete probabilistic statements that can be examined vis-a-
vis real data, but evidently this is not as easy as it seems [1].

II. Perception: one can alternatively consider in what aspects of
life one perceives that chance plays a role, and then examine
whether mathematical probability has anything to say that is use-
ful. The more standard directions of academic study deal with
philosophy, logic and basic mathematics of probability (“how one
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should evaluate probabilities”), and with psychology of chance
(“how humans, often irrationally, think about chance”). However,
these do not quite illustrate how ‘ordinary people’ think about
chance in everyday life. After examining various kinds of data for
references to chance (queries to search engines, appearances in
blogs and other written material) one can compile an annotated
list of contexts in which people, who are not professionally (or
in other serious ways) prompted to think about chance, perceive
instances of chance. The entries on this list generally fall under
events from the past and in the present that one deems unlikely,
speculations about the future, and phenomena that we don’t usu-
ally pay attention to but that can be explained by chance. What
is interesting, and emphasized in the lecture, is the disconnect be-
tween examples from a typical textbook or other academic inquiry
and the examples of chance gathered from everyday life contexts.
Aldous’ quotes here Nassim Taleb from his book The Black Swan:
“the sterilized randomness of games does not resemble randomness
in real life”

Many examples of collected real world data, a list of topics that
can be used (and have previously been used) in a project-based
course at UC Berkeley, the annotated list of a 100 contexts (with
illustrative examples) in which we perceive chance, a draft of a
book on the subject [4], and other relevant links are available on
Aldous’ website [5].

In recent years Aldous’ theoretical research focused on finite
Markov information exchange processes, discrete spatial net-
works and flows through random networks. His second lecture
presented a new take on an area of applied probability that has an
extremely broad-ranging use in other scientific fields [3, 6].

Interacting particle systems as stochastic social
dynamics

Models of individual interactions subject to randomness have been
used in physics, computer science and electrical engineering, eco-
nomics and finance, psychology and sociology, epidemiology and
ecology. They are toy models of the ways in which individual
‘agents’ affect each other, and their goal is to assess the collec-
tive result of these interactions on the behaviour of the system
as a whole. In mathematics these models are called ‘interacting
particle systems’; in computer simulations they are referred to
as ‘stochastic agent-based models’ All of these models are spec-
ified by: (i) a graph (or contact network) whose vertices repre-
sent agents (or particles, or individuals) and whose edges define
the possible pairwise relations between them; (ii) rates (or fre-
quencies) at which information is exchanged between each pair
of (neighbouring) agents; (iii) the type of information exchange
(or the rule for the state change) that is a result of each interac-
tion. Stochasticity in the model emerges from occurrences of the
pairwise interactions: times of all interactions are random and fol-
low a set of Poisson processes with rates prescribed by (i) and (ii);
the information exchange at each interaction is also potentially
random as specified by (iii). The graph in (i) is often referred to
as the underlying geometry of the system, while the rule in (iii)
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is referred to as the dynamics of the process. The rates in (ii) are
often subsumed in the description of the dynamics.

A new technical framework for such models can be formalized
as follows: consider a set of agents A and a nonnegative array
N = (v;;,i # j € A x A) of unordered pairs (v;; = v;;) which
is irreducible (the graph of edges on A corresponding to v;; > 0
entries is connected); assume that each unordered pair i # j of
agents meets at times given by a rate v;; Poisson process, inde-
pendent over different pairs. Let & denote a set of possible states
for each agent, and X (t) = (Xi(t))iGA be a stochastic process

taking values in &#, in which X (#) records the state of agent i at
time ¢. The value of X;(¢) changes only at times ¢ at which agent
i interacts with some other agent j with v;; > 0, and is specified
by a (deterministic or random) function F': & X & +— & in such
a way that if (Xi(t’),Xj(t’)) = (8,5;) then (Xi(t),Xj(t)) =
(F(si,s;),F(s;,s;)). The times at which pairs of agents inter-
act are fully defined by the set of Poisson processes and are called
the ‘Meeting’ process, while the whole process of state changes
is referred to as the ‘Finite Markov Information Exchange’ (FMIE)
process.

Many models that have been rigorously analyzed are contained in
this description. One of the earliest ones is the classical epidemic
model of susceptible, infected and recovered states (SIR) with ex-
ponentially distributed waiting times. Of the well known ones
from statistical physics the voter model and the contact process
(after the usual graph is enriched with one special agent) can be
framed as a FMIE. For models in which the population is homo-
geneously mixing, the underlying graph is the complete graph on
the number of agents n with v;; = 1/(n — 1), Vi # j € A
For models with Euclidean spatial structure, the finite graph is
the discrete d-dimensional torus of strip size m = /n with
= 1/(2d), Vi ~ j adjacent in (Z/mZ)%. In the last two
decades more general geometries have been used for the graph of
agents, particularly instances of different types of random graphs
(Erd6s—Rényi, small world, preferential attachment, configuration
model with prescribed degree distribution, etc). Graphs with an
infinite number of agents can been considered as well (the infi-
nite d-dimensional lattice, or the infinite d-regular tree, etc.), but
the focus of this talk was on results that can be made about an
FMIE on a finite graph as the number of agents n grows to infin-
ity. The emphasis of the FMIE framework is to view these models
as ‘stochastic information flow through a network, and to uncover
quantitative aspects of the behaviour of an FMIE model in finite
time (rather than in the limit as ¢ — o0) and specifically their
dependence on the geometry of the underlying network.

V'I]

The following general principles can be useful in applying Markov
chain theory to FMIE models: (1) if agents have only a finite num-
ber of states it is easy to see what happens in the limit as time goes
to infinity; (2) notions of duality and time-reversal are a useful tool
in studying the dynamics; (3) bottleneck statistics give crude gen-
eral bounds; (4) it is often useful to consider some natural coupling
of two FMIE processes; (5) certain special families of geometries
have local weak limits which are infinite rooted random networks.
Here are a couple of examples presented in the talk that illustrate



the type of results that can be obtained for FMIE processes, and
the power of these general principles.

The ‘Pothead’ (or the ‘Voter’) model: the state of each agent is one
‘opinion’ from the set A = {1,...,n}. Initially each agent ¢ has
his own opinion i, when agent 7 meets agent j we choose uni-
formly one of the two directions ¢ — j, j — 4 and if the direction
is ¢ +—> j then agent j adopts whatever opinion agent ¢ holds at
that time. Let V;() be the set of agents C A who hold the opinion
i at time ¢, then V(t) = (Vi(t))ie ,, forms a random partition of
A. Principle (1) tells us that in the long time limit V(¢) will ab-
sorb in one of the n possible configurations, in which for some i
Vi(t) = A, V;(t) = @ Vj # i. On can then examine this time to
absorption, called the ‘consensus time. Principle (2) can be used to
consider the following ‘Coalescing’ Markov chain model: initially
each agent has one token labelled with his location {1,...,n};
when agent ¢ meets agent j in the direction ¢ — j then agent ¢
gives all the tokens he holds to agent j. If we let C;(¢) be the set
of labelled tokens agent 4 holds at time ¢, then C(t) = (Ci(t))ieA
is also a random partition of A, and at any fixed time ¢ the law of
V(t) is equal to that of C(t). In particular the law of the consensus
time is equal to that of coalescence time, which is the first time at
which all the tokens in A are held by a single agent. One can easily
show that on the complete graph for agents, the expected coales-
cence time is approximately 2n. Principle (3) can then be used
to estimate the expected consensus time on a graph with general
geometry using bottleneck statistics on weighted graphs (such as
the isoperimetric constant).

The ‘Pandemic’ (and the ‘First Passage Percolation’) model: the
state of each agent is {0, 1} recording whether the agent is in-
fected or not; initially only one agent is infected, when an infected
agent meets another the other becomes infected as well. The in-
verse of the rates of meetings define a notion of distance on the
underlying graphs, and in the special case when all the strictly
positive v;; are equal to 1 this is equivalent to the dynamical ver-
sion of the ‘First Passage Percolation’ process with Exponentially
distributed passage weights. The pandemic model has been stud-
ied on many geometries, and exhibits the fastest possible spread
of information on any FMIE model. On the complete graph for n
agents one can obtain the following limit result for the proportion
of infected agents X,,(¢): there exists a sequence of random vari-
ables G, such that sup, | X, (t) — F'(t—logn—G),)| — 0in proba-
bility, where F'(t) is the logistic function, log n is the length of the
initial phase of the infection, and G,, converges in law to a Gum-
bel distribution. Principle (4) allows one to apply these results to
a number of other models that can be built upon the Pandemic
model. Principle (5) can be used to get estimates for the expected
spread of the epidemic, or the expected time until the infection
spreads from agent i to a prespecified agent j, on a d-dimensional
torus from known shape theorems for First Passage Percolation on
the infinite d-dimensional lattice. Analogous estimates for general
geometries remain unsolved.

In his third lecture Aldous described a specific Finite Markov In-
formation Exchange process he recently proposed whose analysis
gives rise to some interesting new mathematical objects.
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The Compulsive Gambler process and the Metric
Coalescent

Consider the following FMIE model called The ‘Compulsive Gam-
bler’ process: the state of each agent is the amount of money he
has, initially all agents have an equal amount of money, when
two agents meet they play a fair winner-takes-all gamble (that is,
the chance for each agent to win is proportional to the amount of
money he brings to the gamble), and whichever agent wins takes
all of the money from the agent that lost. Notice that once an
agent loses a single gamble, he will have no chance of winning
any other gamble in the future. Let X;(¢) denote the amount of
money agent ¢ has at time ¢. In a model with finitely many agents,
n, the total amount of money all the agents have is constant in
time.

This process is interesting from a methodological point of view.
The following techniques were useful in analyzing its behaviour:
(1) martingales; (2) comparison with the Kingman coalescent
chain; (3) ordered version of the model; (4) exchangeability.

(1) One can immediately observe that the number of agents which
hold non-zero amounts at time ¢ can only decrease in time, and
the system will absorb as soon as one of the agents has all the
wealth, when X;(t) = 1 for some i. In case the geometry of
the weighted graph of agents satisfies v, = min; ;v;; > 0,
then a simple martingale argument shows that in the long time
limit the chance for each agent to accumulate all the money is
proportional to his initial wealth. The collection of martingales
M(t) = (1/n) 3=, f(i)X;(t) for any function f on agents, whose
second moment is bounded by v*¢, can be used to show weak con-
vergence of the empirical measure of the money allocation pro-
cess.

(2) If the underlying network is a complete graph v;; = 1, Vi # j
then the number of agents with non-zero amounts is distributed
as a Kingman coalescent chain. Using v, = min, ; v;; and v* =
max; ; v;;, one can estimate the time of wealth concentration 7" in
a general graph by simple comparisons with the coalescence time

of the Kingman chain, 2(1 — 1/n)/v* < ET <2(1 —1/n)/v,.

(3) An ordered version of the model is as follows: suppose each
unit of money is initially assigned an i.i.d. random label, and con-
sider the ordered version of the gamble in which when two agents
meet, the winner is determined as the owner of the unit with the
lowest serial number. Notice that the owner of the unit that has
the lowest serial number of all will eventually accrue all of the
money. This process has the same distribution as the Compulsive
Gambler process.

(4) The exchangeability property of this model refers to the con-
ditional law of the money allocation process: given the amount
of money each agent has, the ownership of serial numbers among
agents is uniformly distributed on the set of all compatible par-
titions of A. As an immediate consequence, the agent who ulti-
mately acquires all of the money is uniform random on A.

A new process, called the ‘Metric Coalescent, was inspired by con-
sidering an abstract extension of this process: assume the total ini-
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tial wealth is 1 and consider it as an arbitrary probability measure
on A; instead of placing agents on the vertices of a graph consider
them as points ay, . . ., a,, in a metric space (A, d); define meeting
rates as functions of their distance v;; = ¢(d(a;, a;)); construct
an empirical measure p(t) = . X;(t)d,, where §; are i.i.d. loca-
tions of agents distributed as ;.. The Compulsive Gambler process
is equivalent to the evolution of this empirical measure in time. It
is very likely that one can show that for each p on A there exists
a unique probability measure valued process p(t) which evolves
as the Compulsive Gambler from any time ¢, > 0 onwards and
whose a.s. limit as ¢ | 0 is equal to ;. The methodologies outlined
above can be particularly useful in proving this result.

Aldous’ lectures displayed an arsenal of classical tools in proba-
bility theory. The new FMIE framework he described proved the
power of these tools to create new paradigms, when used cre-
atively.
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Martin Nowak
(continued from page 4)

Kin selection occurs among genetically related individuals: “I will
Jjump into the river to save two brothers or eight cousins.” (J.B.S. Hal-
dane) The evolution of cooperation is then related to Hamilton’s
rule which states that it can occur if > ¢/b, where r is a proba-
bility of sharing a gene which measures relatedness.

Direct and indirect reciprocity are essential for understanding the
evolution of any pro-social behaviour in humans. Citing Martin
Nowak: “But ‘what made us human’ is indirect reciprocity, be-
cause it selected for social intelligence and human language”

Martin Novak ended his fascinating Grande Conférence publique
with an image of the Earth and the following sentence: “We must
learn global cooperation... and cooperation for future generations.”
This started a passionate period of questions, first in the lecture
room, and then around a glass of wine during the vin d’honneur.

In his previous talk opening the workshop, “Evolution of social-
ity”, Martin Nowak had compared two reproductive scenarios to
make simple and testable predictions: a solitary life style with
all offspring leaving to reproduce, and an eusocial life style with
some offspring staying and helping raise further offspring. He
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had also shown the limitations of an inclusive fitness maximiza-
tion approach that consists in making predictions in the presence
of interactions between individuals by transferring fitness effects
from recipients to actors weighted by coefficients of relatedness.

In his more technical talk delivered later on in the workshop, Mar-
tin Nowak presented an overview of stochastic models of “Evolu-
tionary dynamics” in well-mixed populations as well as structured
populations, including populations on graphs and on sets and ex-
tensions to n-strategy games.

Number Theory from Arithmetic Statistics to

Zeta Elements
(continued from page 2)

there isn’t a single lab member who isn’t involved in organizing at
least one workshop. The very first workshop is being organized by
Chantal David...

AG: together with an international committee [Par Kurlberg, Zeév

Rudnick]...

HD: and then the November workshop is organized by Andrew and
me...

AG: Iam organizing the second one in additive combinatorics [with
David Conlon, Ben Green, Laurent Habsieger, Alain Plagne], the
third one is the two of us [with Jordan Ellenberg], plus Dick Gross at
Harvard [co-organizer of the SMS Summer school], and then the
fourth one is this exciting thing for young people...

HD: organized by Addario-Berry, who is actually not a part of our
number theory group...

AG: and Dimitris Koukoulopoulos [from CICMA].

HD: The second semester will be taken up by more arithmetic ac-
tivities. The first workshop [Regulators, Mahler measures, and spe-
cial values of L-functions, February 16-20, 2015] is being run by
Matilde Lalin and me [with Wadim Zudilin]. Matilde is a math-
ematician whose expertise straddles both the analytic and the al-
gebraic aspects of the subject. Her interests have been broadening
towards the analytic direction recently, but a central focus is still
the special values of L-functions and their interpretation in terms
of the conjectures of Beilinson—Bloch, so we really think there is an
occasion there to share ideas across boundaries.

HD: The next workshop is the one on p-adic methods which I'm
organizing with Adrian Iovita, Matt Greenberg from Calgary, and
Payman Kassaei, who is one of our newest members. Finally, the
third workshop in the second semester is being organized by Eyal
Goren and me, and will focus on the Kudla program.

Bulletin: And there will be some courses too?

HD: Exactly. The graduate courses have not completely been deter-
mined for the second semester, but we certainly expect that at least
two of Eyal Goren, Adrian Iovita, Payman Kassaei and me will be
teaching a graduate course aimed at the beginning and intermediate
level graduate student.



