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As you know . . . . . .

Since 2000 there has been a huge literature on quantitative aspects
of networks in general.

In the more specific setting of spatial networks, the definitive
reference has been the 2011 survey by Marc Barthélemy – cited by
2773 on Google Scholar. Expanded to a 2022 book Spatial
Networks: A complete introduction – 400 pages of mathematics
without theorems. (Like this talk!)

But only 61 citations (with Spatial Networks in title) within
MathSciNet, which covers most of theorem-proof mathematics.

In fact, theorem-proof literature contains deep study of a few
specific models/topics related to spatial networks.
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Relevant well-studied topics in theorem-proof literature:

Random planar graphs (up to isomorphism) = random mappings.

The random geometric graph model.

First passage percolation on a lattice.

Stochastic geometry (random triangulations etc).

Also

KPZ relation (statistical physics).

Geometric spanner networks (CS computational geometry).

I take road networks as prototype examples, for two reasons

readily accessible data

none of above theory is very relevant to road networks (except
geometric spanner networks)

which makes “road networks” appropriate for undergraduate projects.
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3 reasons why there is little theory relevant to road networks.

A key issue that no-one discusses: saying a network is spatial is
saying that position matters: but population density varies hugely
over a typical country. If we want a toy model representing
infrastructure in a typical country then we should use some generic
model of density variation. But no-one does. In the context of road
networks, people use different models for urban or rural or inter-city
networks.

Within our toy models, orders of magnitude are usually rather
obvious, but anything sharper seems impossibly difficult. For
instance, for the length of TSP on n uniform random points in an
area-n square, mean length ∼ cn but no way to calculate c . Also,
unlike most of combinatorial optimization, average-case is same
order of magnitude as worst-case.
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Freeways may (and do) intersect outside cities. So to model
inter-city road networks we need Steiner networks, for which there is
essentially no quantitative theory.

So what can we hope to say about road networks?

Instead of deep mathematics, I am seeking to study different toy
models for different properties. So this is exploratory math.

Toy models: What would be an optimal network of a given type
under some toy model? How similar are actual networks to such
optima?

I will mostly just talk about some of my older work and “neglected”
topics that interest me: not intended to be comprehensive.
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Topic 1: Elementary scaling and optimality issues.

Radio Shack had a peak of 7,300 stores in the United States in 1999.
Were they located as theory suggests?

Toy model: minimize average distance to nearest store.

If we used a constant store density ρ:

mean distance to closest store ∝ ρ−1/2 .
With variable population density µ(z) we should choose store density of
the form ρ(z) = g(µ(z)) for some g(·).

Math problem:
Minimize

∫
µ(z)ρ−1/2(z) dz subject to

∫
ρ(z)dz = 7300.

Solution: Take ρ(z) ∝ (µ(z))2/3.

This idea is classical – see e.g. Gastner-Newman (2006) for variants. And
roughly fits data.

Is there anything similar for networks?
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Suppose we use the same “minimize average distance to network’
criterion to define an optimal network in a country.

Take population density µ(z). Write d(L) for the mean
distance-to-network in the optimal connected network of length L.

Theorem (The right answer to the wrong question.)

d(L) ∼ 1

4L

(∫

R2

µ1/2(z) dz

)2

as L→∞.

What the argument actually shows is that a sequence of networks is
asymptotically optimal as L→∞ if and only if the rescaled local pattern
around a typical position z consists of asymptotically parallel lines with
spacing proportional to ρ−1/2(z), but the orientations can depend
arbitrarily on z . Visualize a fingerprint.
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Near-optimal network for uniform density on square.
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Near-optimal network for uniform density on square.

Note that the argument above show that, in this extreme model,

d
dLopt(L) � 1

4 ↵̄(L).

Note also that the proofs of both parts of Proposition 1 require S = 1: in part (a) because
the original route may use the removed segment, in part (b) because the original route
might be go via A�.

The large L setting. A next observation is that, for the uniform density on a square
and for large L, it seems intuitively clear that a network as in Figure 1 will be near-optimal.
We want the network to come close to all points in the square; for a curve of length L the
region within distance � of the curve can have at most area L� (plus a small area near
the endpoints) and so is maximized by straight lines, and decreased by both curves and
junctions which cause “overlap” of adjacent regions. This intuition leads to a theorem in
the asymptotic regime. We state and prove the result for dist(L), the mean distance from
a �-random point to the closest point in the network, and then re-interpret for the extreme
model.

Figure 1: A near-optimal network for the uniform distribution on a square.

Theorem 2 (a) In the extreme model, for any density �,

lim
L��

L · dist(L) = 1
4

✓Z
f1/2(z)dz

◆2

. (1)

(iv) If � is radially symmetric (rotationally invariant) then certain spiral networks are
asymptotically optimal.

Outline proof of Theorem 2. The argument follows a style of analysis used in many “spatial
optimization” settings (for instance, the Euclidean TSP) for studying this “denser and

6
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Topic 2: A slightly less silly model for inter-city networks.

Consider an inter-city road network: specifically, the network linking the
N largest cities in a country of area A.

Simple heuristics say the total length will be ∝
√
NA.

To make an analogy with the Radio Shack setting, for a toy model we
take cities as N uniform random points in area A and ask for the optimal
(?) network of given length c

√
NA, which will depend on c .

But what exactly should we optimize?
David Aldous Some topics in spatial networks
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We want short routes!

Scale distance so that cities have density 1: that is, N cities in area N.

Let’s consider route-lengths on all scales. That is, consider

ρ(d) =
E( route-length between city-pairs at distance ≈ d)

d
− 1

Observation: In both simple math models and real-world data, we see a
characteristic shape for the function ρ(d).
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This prompts us to use (for optimization criterion) the statistic

R := max
0<d<∞

ρ(d).

In words, R = 0.2 means that on every scale of distance, route-lengths
are on average at most 20% longer than straight line distance.

Relate R to normalized length L := average road length per unit area.

Next figure compares values of R and L for different networks over a
Poisson point process.

This material is from Aldous - Shun (2010). Julian Shun, then an
undergrad, now Associate Prof in EECS at MIT.

David Aldous Some topics in spatial networks



Introduction
Scaling

Inter-city networks
Subway networks

KPZ relation
Scale-invariant networks

c
G

cccccc
c

RN c

c c c c c cs4
1 2 3

0.1

0.2

0.3

0.4

♦s

Normalized network length L

R

s�

David Aldous Some topics in spatial networks



Introduction
Scaling

Inter-city networks
Subway networks

KPZ relation
Scale-invariant networks

The smooth curve is from the β-skeleton family of proximity graphs,
which are defined by a simple “local” rule and look like

Open Problem: We conjecture that this family is almost optimal in our
R versus L sense, but have no theorems.

Comment: Intuitively, this family of models should behave similarly for
varying city density, because the network is defined by relative distances.
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No interesting actual theorem within the preceding material . . . . . .
If you insist on a theorem then we need a cleaner set-up. Instead of
measuring shortness of routes by

ρ(d) =
E( route length between cities at distance ≈ d)

d
− 1

R := max
0<d<∞

ρ(d)

we can use the worst-case over city pairs (x , y):

σ := max
x,y

route-length(x , y)

||y − x || .

This σ is called stretch and studied in computational geometry, but
along with other statistics and emphasizing orders of magnitude for
worst-case data. Instead, let’s be a mathematician and consider the most
basic question we can think of . . .
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Consider a configuration of n cities at arbitrary positions xn = (x1, . . . , xn) in a
square of area n. For a network N connecting these cities, write S(N ) for the
stretch and write

L(N ) = 1
n
× (network length of N )

for normalized network length. We then define

ψn(xn, s) := inf{L(N ) : S(N ) ≤ s}
the infimum over all networks N connecting the cities xn. So this
quantifies the optimal trade-off between length and stretch for the given
configuration. We can now consider in parallel the worst-case, that is
supxn ψn(xn, s), and the average case Eψn(Xn, s), where Xn consists of n
independent uniform random positions in the area-n square. The purpose
of this set-up is that it is intuitively obvious (and true) that there exist
limit functions

Ψworst(s) = lim
n→∞

sup
xn

ψn(xn, s)

Ψave(s) = lim
n→∞

Eψn(Xn, s)

where 0 < Ψave(s) ≤ Ψworst(s) ≤ ∞ for 0 < s <∞.
David Aldous Some topics in spatial networks
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Aldous-Lando (2015) derive crude but explicit bounds for all 4 cases, via
4 different arguments.

Derive upper bounds on Ψworst(s) from elementary constructions
where one first lays down a regular network of roads without paying
attention to city positions, and then adds local links from cities to
the network.

Derive upper bounds on Ψave(s) from constructions (similar to the
Θ-graphs in geometric spanner networks) in which from every city
and every cone of given angle there exists a road leaving the city
within the cone.

Derive lower bounds on Ψave(s) for small s, based on the stochastic
geometry relationship between network length and rate of
intersections with a typical line.

Derive lower bounds on Ψworst(s) based on a notion of “local
optimality” for specific networks on specific configurations.
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There is much scope for improving these explicit bounds!

As a maybe do-able theory question, analogous to the earlier
Theorem, the “large network” limit is the s ↓ 1 limit, and one expects
scaling exponents

Ψ(s) � (s − 1)−α as s ↓ 1

where the value of α does not depend on any detailed assumptions in the
model (worst-case or average-case; whether or not Steiner points are
allowed) but instead depends only on the fact the we are studying the
length-stretch trade-off in two-dimensional space. Our results imply
crude bounds on α:
an upper bound of 3

4 for Ψave and 5
4 for Ψworst

a lower bound of 3
8 for Ψave and hence for Ψworst also.
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Conclusions from Topic 2: inter-city networks.

1. Graphic is plausible as qualitative trade-off between length and “short
routes” in such networks. Indeed it leads to a prediction that in an
efficient network designed to link N cities in a region of area A, the total
length should be roughly 2

√
NA.

2. But these networks are visually wrong. Real world networks have long
freeways (or main railway lines) running roughly straight; cannot
reproduce this by local rules, even if we vary city sizes.
3. Real-world road networks have a hierarchy of “size” or “importance”
of road, measured by number of lanes or traffic volume or numbering
system.

Open Problem. Find a model (e.g. with speeds) in which this hierarchy
is an emergent property of optimal networks.

Major practical issue: I don’t have an algorithm to optimize over all
possible networks on N points. Ad hoc attempts to tweak the networks
above have shown little improvement.
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Topic 3: subway networks.

Background. Wikipedia – rapid transit shows typical topologies (shapes)
for small subway-type networks.

This is another context where variation of population density
(source/destination) is important. What do we expect to see in a large
network?
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We typically see a well-connected core, often delineated by a circular line,
from which branching lines spread away.

Can we reproduce these qualitative features as an optimal network within
some toy model?
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Model:
Gaussian or power-law density of source/destination.
Travel fast on subway network, slow off network.
Seek to minimize mean journey time.

One parameter S =fast/slow ratio.
What are the optimal networks for different total lengths L?
[Previous theorem was the S =∞ case.]

In next figure, dashed circle is 1 s.d. of Gaussian, contains 40% of
population. (Similar results for power-law density).
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L star [branches] hashtag 3x3 grid
15 [8] 0.75 (0.72) (0.73)
18 [12] 0.79 . (0.78)
21 [12] (0.81) . 0.83

Table 3: General model, S = 4 and W = 0: Optimal and (near optimal) benefits for the
Gaussian density.

L = 8 L = 10 L = 12

Figure 10: General model, S = 8 and W = 0.05, Gaussian population density; for L around
12 the star and hashtag shapes are almost equally good.

L = 18 L = 21

Figure 11: General model, S = 4 and W = 0: for L = 18 the star is optimal but for L =
21 the 3x3 grid is optimal for the Gaussian density,

14
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Figure from unfinished project with Marc.

Open problem. Write some efficient code to study large L for different
networks.

Published paper Aldous - Barthélemy (2019) discussed tree-networks.
Not exciting.
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Topic 4: The KPZ relation.

Consider some translation-invariant model for routes in the infinite plane.
For the route between two typical points at Euclidean distance r , consider

T (r) = route length

D(r) = max deviation from straight line.

One expects

E[T (r)] ∼ cr , var[T (r)] � r2χ, E[D(r)] � rξ

where exponents χ, ξ are model-dependent but should satisfy the KPZ
relation

χ = 2ξ − 1.

Extensive study of this relation in statistical physics. Some aspects are
rigorously proved in the lattice setting, e.g. Sourav Chatterjee (2013),
but hard Open Problem to adapt to models based on Poisson points.
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E[T (r)] ∼ cr , var[T (r)] � r2χ, E[D(r)] � rξ

χ = 2ξ − 1.

Kartun-Giles – Barthelemy – Dettmann (2019) do a simulation study of a
variety of proximity graphs in which it appears that χ = 1/5 or 2/5 in
each model studied. Proving this would be very impressive!

[OK, not actually relevant to real road networks].

Here’s one back-of-envelope indication of the relation.
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This is my attempt at sophisticated math theory, albeit non-realistic.

(Final) Topic 5: Scale-invariant random spatial networks

I will show a simulation of the following type of process.

Start with an arbitrary network on the infinite plane (see a window).

New vertices arrive as “Poisson rain” in space-time.

Each arriving vertex is then linked to the existing network by new
edges defined by some rule that is “scale invariant” in the sense of
depending only on relative distances. For instance “link to the 2
closest vertices”.

Now “zoom in”, that is continually expand the plane, to maintain a
constant mean number of vertices within the window.

https:

//www.stat.berkeley.edu/~aldous/Research/SInetwork-4.mp4

David Aldous Some topics in spatial networks
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Claim: under minimal assumptions on the “rule” and the initial network,
this process converges in distribution to a random network on the plane
which is invariant under this “zoom in, and add new vertices” procedure.

Comment 1. I have not tried to write a general proof – looks similar to
standard methods for random geometric graphs – student project?

Comment 2. Can one do any quantitative study of this invariant
distribution (in terms of the rule)? For instance, distribution of
edge-lengths at a typical vertex?
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I want to make a model for inter-city road networks, in which roads have
different speeds.

Consider the time-invariant distribution as the time-0 configuration
of the dynamic process run over time −∞ < t ≤ 0.

On an edge (road) appearing at time t < 0, the speed is e−βt > 1.

Define the route between two vertices as the shortest-time route.
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Now imagine (sorry, no graphics) the simulated process, scaled to have
1,000,000 vertices in the unit square window.

Fix k positions in the square – say k = 7.
Choose k vertices close to these k positions and draw the

(
k
2

)
routes

between each pair.

If we didn’t have the hierarchy of different speeds, these routes would be
almost straight lines between each pair. But now our routes depend on
relative speeds along edges. From the time-invariance of the dynamic
construction, we get (heuristics now) a scale-invariance property in the ‘
density of vertices →∞ limit.
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q
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q

q

7 points in a window.
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Scale-invariance means: doing this within a randomly positioned
window, the statistics of the subnetwork observed don’t depend on the
scale, i.e. don’t depend on whether the side length is 10 km or 100 km.

David Aldous Random networks embedded in the plane
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As undergraduate project we have looked at real-world subnetwork
topologies (for k = 4 vertices, roughly at corners of a square).
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5/27/2019 Atlas of routed 4-networks

https://www.stat.berkeley.edu/~aldous/Research/all-types.html 3/7

23 24 25

26 27 28

29 30 31

(a)

(b+)

(b-)

and listed all topologies on 4 addresses – different conventions from usual
planar graph theory. Could compare distributions over these topologies in
real-world and models.
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The dynamic construction in the video is very artificial, but the heuristics
suggest existence of a large class SIRSN of processes satisfying certain
axioms. Our old papers contain (only) two rigorous explicit constructions
of SIRSN models, based on a rectangular grid or a Poisson line process
for the different speed edges.

(Aldous, David and Karthik Ganesan). True scale-invariant random
spatial networks. Proc. Natl. Acad. Sci. USA 110 (2013).

(Aldous, David). Scale-Invariant Random Spatial Networks.
Electronic J. Probability 19 (2014) article 15: 1–41.

(Kendall, Wilfrid S). From random lines to metric spaces. Ann.
Probab. 45 (2017), no. 1, 469–517.

Conceptual starting point:
Idea behind our mathematical set-up: start with routes between
addresses instead of roads, and work in the continuum plane.

David Aldous Some topics in spatial networks



Introduction
Scaling

Inter-city networks
Subway networks

KPZ relation
Scale-invariant networks

We abstract Google maps as an “oracle” that for any start/destination
pair (z1, z2) in the plane gives us a route r(z1, z2).

Analogous to ergodic theory regarding the Don Quixote text as one
realization from a stationary source, we regard Google maps as
containing one realization of a “continuum random spatial network” with
some distribution. We will define a class of such random networks by
axiomatizing properties of random routes R(z1, z2).

The key assumption is scale-invariance, described earlier.
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Axiomatic setup: 1

Details are pretty technical, but ......

Process is presented via FDDs of random routes R(z1, z2); in other words
we are given a distribution for the random subnetwork spanning each
finite set {z1, . . . , zk}, Kolmogorov-consistent.

Assume

Translation and rotation-invariant

Scale-invariant

So route-length Dr between points at (Euclidean) distance r apart must

scale as Dr
d
= rD1.

Assume E[D1] <∞ so not fractal.
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Axiomatic setup: 2

Envisage the route R(z1, z2) as the path that optimizes something (e.g.
travel time) but do not formalize that idea; instead

Assume a route-compatability property.

Technically convenient to study the process via the subnetwork S(λ)
spanning a Poisson point process (rate λ per unit area).

Define a statistic

` = length-per-unit-area of S(1).

Assume ` <∞.
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We have defined a class of processes we’ll call

SIRSN: Scale-invariant random spatial networks.

for which we have very many questions but very few answers.

Do a broad variety of SIRSNs actually exist?

Can we specific particular canonical ones?

Which SIRSNs optimize the trade-off between E[D1] and `, that is
“short routes” versus “cost”?

What are their mathematical properties? Similar or different from
first-passage percolation paths? Doubly-infinite geodesics?

Any realistic aspects?
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E[T (r)] ∼ cr , var[T (r)] � r2χ, E[D(r)] � rξ

χ = 2ξ − 1.

SIRSN models satisfy KPZ trivially because by scale-invariance
χ = ξ = 1.
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