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Research strategy (for old guys like me):
if a problem seems . ..

do-able = give to Ph.D. student
maybe do-able = give to post-doc
clearly not do-able = think about it myself.

I'm thinking about a topic in a very classical way (Shannon):
e |ossless data compression
e ignoring computational complexity of coding



What is a network?

o A graph is a well-defined mathematical object — vertices and edges
etc

@ A network is a graph with context-dependent extra structure.

| want to consider a certain simple-but-interesting notion of “extra
structure”, which is the notion

vertices have names.



Consider a graph with
o N vertices
@ O(1) average degree

@ vertices have distinct “names”, strings of length O(log N) from a
fixed finite alphabet.

Envisage some association between vertex names and graph structure, as
in
@ phylogenetic trees on species

@ road networks.

| claim [key point of this set-up] this is the “interesting as theory"
setting for data compression of sparse graphs, because the “entropy” of
both the graph structure and of the names has the same order, Nlog N.
And we want to exploit the association.



Formal setup.
Define a finite set S = S(N, A, 8, «); an element of S is a network with
o N vertices
@ ave degree < « (at most alN/2 edges)
o finite alphabet A of size A
@ vertices have distinct names — strings from A of length < Blog, N.

Here A>2, 0<a< oo, 1< < oo are fixed and we study as N — oo.

Easy to see how big S is:
log |S(N, A, B,a)| ~ (8 —14 5)Nlog N.
For some given model of random network Gy we expect
ent(Gy) ~ cNlog N

for some model-dependent entropy rate 0 < ¢ < (8 — 1+ %).

[cute observation: value of ¢ doesn’t depend on base of log.]



In this setting there are two “extreme” lines of research you might try.

Clearly do-able: Invent probability models and calculate their entropy
rate.

With Nathan Ross we have a little paper doing this (search on "arxiv
aldous entropy”). Will show 3 slides about this, soon.

Clearly not do-able: Design an algorithm which, given a realization
from a probability model, compresses optimally (according to the entropy
of the probability model) without knowing what the model is
(“universal”, like Lempel-Ziv for sequences).

So my goal is to find a project laying between these extremes.

[Pedagogical aside: this “Nlog N world could provide projects for a first
course in [T ]



What is in the existing literature?

A: “More mathematical”. Topic called “graph entropy” studies the
number of automorphisms of a N-vertex unlabelled graph. See the 2012
survey by Szpankowski - Choi Compression of graphical structures:
Fundamental limits, algorithms, and experiments.

B: “More applied”. Seeking to exploit the specific structure of
particular types of network.

Boldi - Vigna (2003). The webgraph framework I: Compression
techniques.

Chierichetti - Kumar - Lattanzi - Mitzenmacher - Panconesi - Raghavan
(2009). On compressing social networks.



Clearly do-able project: Invent probability models and calculate their
entropy rate.

Many hundreds of papers in “complex networks” study probability models
for random N-vertex graphs, implicitly with vertices labeled 1,... N.
Two simplest ways to adapt to our setting:

(i) write integer labels in binary.

(i) assign completely random distinct names.

For the best-known models — Erd6s-Rényi, small worlds, preferential
attachment, random subject to prescribed degree distribution, ...— it is
almost trivial to calculate the entropy rate.

But none of these models has a very “interesting” association between
graph structure and names. Here is our best attempt at a model that
does, and that requires a non-trivial calculation for entropy rate.



Model: Grow sparse Erd8s-Rényi G(N, «/N) sequentially; an arriving
vertex is linked to a previous vertex with chance a/N.

Vertex 1 is given a uniform random length-Ly A-ary name, where (as in
other models) Ly ~ Slog, N.

A subsequent vertex arrives with a tentative name a%; gets linked to

Q > 0 previous vertices with names a®, ..., a%; assign the name
obtained by picking the letter in each coordinate 1 < u < Ly uniformly
from the 1 + Q letters a2, a% ... a%.

This gives a family (Gn) parametrized by (A, 8, a). One can calculate its
Entropy rate:

0ka )
13 +6Z k'logA
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where 4
Ji(a@) ::/ xke=xdx
0

and the constants ha(k) are defined as follows:.



ha(k) == A% Y~ ent(plr2), (1)

(a1,...,ak) EAK

and where pl?2 is the probability distribution p on A defined by

1+Ax|{i:a = a}
a) = .
(1+Kk)A

Question: Can you be more creative than us in inventing such models?



[repeat earlier slide]
In this setting there are two “extreme” lines of research you might try.

Clearly do-able: Invent probability models and calculate their entropy
rate.

Clearly not do-able: Design an algorithm which, given a realization
from a probability model, compresses optimally (according to the entropy
of the probability model) without knowing what the model is
(“universal”, like Lempel-Ziv for sequences).

In the rest of the talk | will outline a “maybe do-able” project laying
between these extremes.



Background: Shannon without stationarity

Finite alphabet A. For each N we will be given an A-valued sequence
XM = (x™ 1 < i< N). No further assumptions.

Question: How well can a “universal” data compression algorithm do?
Answer: Can guarantee that

lim sup N~!(compressed length of X(V)) < ¢*
N

where c* is the “local entropy rate” defined as follows.



First suppose we have “local weak convergence”, meaning:
o take UM uniformon 1,..., N;

@ there is a process X* which is the limit in the sense: for each k,

Then X* is stationary and has some entropy rate c. Define ¢* = c.

In general (*) may not hold but we have compactness; different
stationary processes may arise as different subsequential limits; define c*
as [essentially] the sup of their entropy rates.

Not a particularly useful idea for sequences, because stationarity is a
plausible assumption and gives stronger results. But | claim it is a natural
way to start thinking about data compression in our setting of sparse
graphs with vertex-names.



Given rooted unlabeled graphs gy and g., where g is locally finite,
there is a natural notion of local convergence

8N —local 8co

meaning convergence of restrictions to within fixed distance from root.
This induces a notion of convergence in distribution for random such
graphs

GN —1ocal Goo in distribution. (2)
Now given unrooted unlabeled random graphs Gy and a

rooted unlabeled random graph G, we have a notion called local weak
convergence or Benjamini-Schramm convergence

Gn —we Goo

defined by:
@ first assign a uniform random root to Gy

@ then require (2).



Some background for LWC

@ Random N-vertex 3-regular graph converges to the infinite 3-regular
tree.

@ The rooted binary tree of height h converges to a different tree.

@ The limit random rooted graph G, always has a property
(unimodular) analogous to stationarity for sequences.

@ In contrast (to stationarity) it is not obvious that every unimodular
Goo is a local weak limit of some sequence of finite random graphs
(Aldous-Lyons conjecture).

@ Presumably one could develop a theory of entropy/coding for sparse
graphs where vertices have marks from a fixed finite alphabet, in
terms of an entropy rate for the limit infinite marked graph.



Program: | want to make correct version of following conjecture about
sparse random graphs-with-vertex-names Gy.

Write Gy« for the restriction of Gy to a k-vertex neighborhod of a
uniform random vertex. For fixed k we expect

ent(Gy k) ~ cklog N as N — oo
and then we expect a limit
k~lc, — c* as k — oo.

Conjecture. As with sequences, this “local entropy rate” is an upper
bound for global entropy:

ent
lim M <c*
N Nlog N
with equality under a suitable “no long range dependence” condition
analogous to “ergodic” for sequences.

Such a "theory” result would give a target for “somewhat universal”
compression algorithms.



