Optimal flows through the disordered lat-
tice

Consider lattice Z2 with i.i.d.r.v.’s (C.) on edges
e. [ his structure can be used in many settings

e first passage percolation

e RWIRE

e disordered Ising model

e disordered variants of many interacting
particle systems.

wWe'll use it for *“traffic flow'" models.

Big Picture. Instead of studying only graph
structure of networks, think “what does the
network do?”’ One answer:. “move stuff from
place to place”. Envisage road traffic.



Complete info about routes is the path-flow,
a measure p on (directed, loop-free) paths

source = vg, v1,v9,...,destination.

Associated with a path-flow is its induced flow-
volume f = (f(e)),

f(e) = volume of flow across edge e

(both directions combined) and its induced trans-
portation measure on (source,destination).

Optimal routing problem: Given
e Network
e transportation measure
e cost function depending on (f(e))
e capacity constraints (cap(e))
we ask

does there exists a feasible path-flow?

if so, what is minimum-cost feasible flow?
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Deterministic algorithmic problems like this are
studied as part of network algorithms; as
multicommodity flow problems they are NP-
hard in general. We take statistical physics
viewpoint of modeling the network (topology,
costs, constraints) as random and studying prop-
erties of optimal solution. We take transporta-
tion measure uniform on all (source,destination)
pairs, so there’'s one parameter

p = normalized traffic demand.

Seek to study (in different models on n-vertex
networks) the n — oo limit curves giving some
quantitative measure of network performance
VS p.

In many random-graph like networks we hope
to exploit the “locally tree-like” structure to
do explicit calculations. But what about dis-
ordered Z27



Order-of-magnitude calculation on N x N grid. Send
volume ppn between each (source,destination)
pair. Then average flow volume f across edges
has

N2><N2)>< ><sz_><N2
PN
We take

pn = pN 3

so that flow-volumes f(e) will be order 1.

Open Problem. Takei.i.d. capacities (cap(e))
with 0 < c_ < cap(e) < cp < oo. Then a fea-
sible flow with normalized demand p exists for
p < p— and doesn't exist for p > p,. Prove
there is a constant p« depending on distribu-
tion of cap(e) such that as N — oo

P(3 feasible flow, norm. demand p) — 1 , p < p«



Instead of focussing on capacities, let's focus
on congestion. In a network without conges-
tion, the cost (to system; all users combined)
of a flow of volume f(e) scales linearly with
f(e). With congestion, an extra user imposes
extra costs on other users as well as on them-
self. So cost scales super-linearly with f(e).




Model: The cost of a flow f = (f(e)) in an
environment ¢ = (c(e)) is

cost yy (£, ) =D c(e) f2(e).

e

Theorem 1. N x N torus (for simplicity)
Large constant bound B on edge-capacity (for
simplicity)

i.i.d. cost-factors c(e) with

0<c_<ele) <ct < oo,

Let 'y be minimum cost of flow with normal-
ized intensity p = 1. Then

N~2El 5y — constant(B, dist(c(e))).

Note: Easy concentration-of-measure lemma
then implies

N2 5y — constant(B, dist(c(e)))

in probability.



Idea of proof. Consider optimal flow in a
randomly positioned M x M window; consider
N — oo weak limits.

Note: As N — oo the volume of flow with
source or destination at a vertex v becomes
negligible compared to the flow through v.



Weak limit flows across the M x M square.

e i.i.d. environment (c(e))

e a path-flow across the square

e With a transportation measure Q on the
boundary Bou,; x Bou,,

e () is dependent on (c(e))

e given (c(e)) and @, the path-flow inside
the square minimizes the local cost

costyr(f,c) =3 cle) f2(e).

e



Consider Q non-random. So there’'s an expec-
tation (over random environment)

costy (Q) := Einf{cost,,(f,c) : f has t.m. Q}.

Note

e () — costy (Q) is convex

e An easy concentration inequality (C.I.)
shows that the r.v.

inf{cost;;(f,c): f has t.m. Q}

IS close to its expectation.

These ingredients suggest the following con-
ceptually standard (but technically hard to im-
plement here) argument. Take a large finite
set O which is é-dense in space of @’s.



N — oo weak limit involves

costy/(f,c) : f has random t.m. Q

Use )-dense to say

~ costy,;(f,c) : f has random t.m. Q € Q
[by C.I.] ® weighted ave of cost,,;(Q) over Q € Q
[convexity] > cost ) (EQ)
Of course we don’'t know EQ but we'll write

some constraints soon. This argument gives a
lower bound for Theorem 1

liminf N"2ElMy > —eyy

+M 2 inf{cost;(Q°) : QP satisfy constraints}.
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What are constraints on Q° = EQ arising from
(@ being t.m. across random M x M window in
a uniform source-destination flow on the N x N
torus?

Recall Q is a measure on pairs (vgnt,Vexi) €
R? x R?. Has marginals Qant and Qayi.

Constraint 1. The push-forward of Q9_. un-

exi
der the reflection map equals ant'

Constraint 2. Write
drift(Q) = M2 / (Ve — Vent) Q.
Then QO has a mixture representation

Q° = [ Q v(aQ)

where 1 is a p.m. whose pushforward under
the map

Q — drift(Q) mod (1,1)

is uniform on the continuous torus [0, 1)2.
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Ultimately we prove

im N 2ElMNy =

Ii]\r}\ M~2inf{cost;(Q°) : QO satisfy constraints}.

What do we need to do, to prove the upper
bound? Fix some Q9 satisfying constraints.
We need to construct a flow on the N x N
torus such that

limsup N~ 2Ecost  (f, ¢)
N (N)

< M~2cost;(QY).

Rather magically, our previous abstract [non-
constructive] arguments provides clues for the
construction. A transportation measure (t.m.)
() can be normalized to a transition matrix
(t.m.). So we can use any given @Q to de-
fine a Markov chain on the ‘skeleton” of the
partition.
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Take N/M steps of this chain starting from
some vertex v1. We finish at some random
vertex vo with

Vo — V1 = Ndl’ift(Q)

using Markov chain LLN. So we construct flows
this way. Given source vg and destination vy,
we want to use a Q with drift(Q) = (vp—wv1)/N.
We get ) from the disintegration

Q° = / Q $(dQ)
where 9 is a p.m. whose pushforward under the map
Q — drift(Q) mod (1,1)

is uniform on the continuous torus [0, 1)2.

Putting together all source-destination pairs,
we have flows on the skeleton graph which are
independent of the realization of environment
and for which the expectation of transporta-
tion measure across a M x M square equals
Q°.
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Within each M x M square we simply use the
flow f attaining

inf{cost,;(f,c) : f has t.m. QO}
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Discussion

1. Much of the outline seems robust to model
details. Plausible that method works quite
generally to prove existence of limit constant
for cost of optimal flows in N x N square with
some kind of random environment. Essential
requirement is

e Global cost function equals sum of order-
N2 |local cost functions.

2. Assumed edge-capacity = B (large); helps
in some places, hinders in other places. Prob-
ably not hard to remove assumption.

3. In our open problem (maximum flow volume
subject to i.i.d. edge-capacities) the C.I. fails.
Because maximum flow volume across M x M
square is order M but depends on order M?2

random variables.
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4. The global optimal flow satisfies a certain

condition by virtue of being a local minimum
of

f — cost(N)(f,c).

But I don't know how to exploit this.
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