Conceptual framework
Compare possible networks on given n cities.

Optimize trade-off between
e cost to build/operate network
e benefit (to operator, or cost to users).

Usually studied as algorithmic question. This
talk focusses on theoretical understanding of
properties of optimal networks in the n — oo
limit.



Spatial networks arise in many disciplines
Telephone (landline; cell)

Transportation (road, rail)

Distribution (electricity grid; Walmart)
Regional (spatial) economics

Biological (e.g. blood circulation to cells)

But what does this have to do with probability?



Analogy: the Galton-Watson branching pro-
cess provides a mathematically simple “toy model”
for broad notion of “branching process’.

Goal: find a collection of mathematically sim-
ple “toy models” for spatial networks. Ran-
domness can be introduced to model disor-
der (inhomogeneity) in space. One well known
model is

Model 1: the geometric random graph (e.qg.
Penrose (2003) monograph).

Poisson point process; link two points if they
are at distance < ¢ apart.

Ingredient in models for cell phone (*“ad hoc")
networks; much EE work over last 10 years,
e.g.

P Gupta, PR Kumar (2000): The capacity of
wireless networks. [Cited by 1496].



I'll show three snapshots of different models,
involving

optimal design of networks (A, B)
optimal flow through a random network (C).

We study n — oo asymptotics (n = number of
“cities” ), which is a different (and less realis-
tic?) methodology from what's done in other
“spatial networks” disciplines.

Use a “density 1" convention: n cities in square
of area n.



(A): Hub-and-spoke networks
(passenger air travel; package delivery)

Seek to model the situation where the time
to travel a route depends on route length and
number of hops/transfers. Introduce a weight-
ing parameter A and define (for a network G,
linking n cities x,, in square of area n)

time to traverse a given route from z; to z;
= n_l/Q( route length)4+A( number of transfers ).

time(i,7) = min. time, over all routes

time(Gn) = ave; jtime(s,j)
> n~Y2ave; ;d(i,7) := dist(xn).

This set-up leads to a 2-parameter question.
What network G,, over cities x,, minimizes time(G,,)
for a given value of total length and A7

Some numerical solutions from Gastner - M.
Newman (2006).



Let's think about designing a network where
routes involve 3 hops (2 transfers). Here's one
scheme.

Divide area-n square into subsquares of side L.
Put a hub in center of each subsquare.

Link each pair of hubs.

Link each city to the hub in its subsquare (a
spoke).

Cute freshman calculus exercise: what total
network length do we get by optimizing over
L7

[length of short edges]: order nL

[length of long edges]: order (n/L2)2n/2

Sum is minimized by L = order n3/10 and total
length is order n13/10



This construction gives a network such that
(even for worst-case configuration xy)

(2) time(G,) — dist(x,) — 2A
len(G,) = O(n13/10).

Theorem 1 For “really 2-dimensional” x,, no
networks satisfying (i) can satisfy

len(Gyn) = o(n13/lo).

Idea of 2-page hack proof: the only way to
improve the construction would be to have
shorter “short edges’, implying more hubs and
hence more ‘long edges”.

Can you find a 1/2-page proof?



Schematic: length of network required for a
given average number of hops and given weight
parameter A.
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Our analysis is too crude to reveal how (for
fixed large n) optimal network changes as we
vary A.



(B): Optimal design of road/rail networks

Given n ‘cities” in square of area n. Want
to create a network by adding edges. Study
trade-off between cost and benefit of net-
work. Take

cost = total length of network

and benefit (later) is some notion of “shortness
of routes”. First consider extreme case where
we just minimize total length. The minimum-
length connected network on cities x, is by
definition the Steiner tree, which has some
length ST (x,). But ST is clearly inefficient as
a transportation network: routes are long.



For a network on {x1,...,zn} write
d(i,j) = straight-line distance from z; to z;
£(i,j) = route length from z; to z;.

First statistic to measure “benefit”:

L(3,7)
7 d(i, §)
First guess at cost-benefit trade-off:

R = ave; — 1.

If network-length is constrained to be (say) 1.5
times ST (xn) then we can always make R less
than (say) 0.2.

It turns out that we can do much better than
that. Recall that typically d(i, j) is order nl/2,
so the first guess puts the “excess length”
0(i,§) — d(i,§) as order nl/2. Recall typically
len(ST'(x™)) is order n.
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Theorem 2 (with Wilf Kendall) In worst case
we can design networks G(xn) such that

(i) 1en(G(xn)) — len(ST(xn)) = o(n)

(¢) ave; j(£(s,5) —d(i,7)) = o(wnlogn)

for wy, — oo arbitrarily slowly.
(Preprint on Arxiv).

T his rests upon a construction we'll show. There
IS a lower bound: under technical assumptions
that the points are “truly 2-dimensional”, if
(i) holds then the average (ii) is at least order
logl/2n.
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The construction is simple: take the Steiner
tree and superimpose a Poisson line process
of small density n > O.

Why does this network have short routes? Key
IS @ cute calculation.

Lemma 3 Take a PLP of rate 1. Erase the
lines separating (0,0) from (x,0). Now these
two points lie in a convex region R(x) bounded
by PLP lines.

3
E(boundary length of R(x)) — 2x ~ 3 log .

So there is a route using PLP lines from near
(0,0) to near (x,0) of length around x—l—% log .

Comment. The math is basically 100-year-old
integral geometry.

The lower bound result is: under an “equidis-
tribution” assumption on xy,
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For any network G(x,) whose length is O(n),

ave; ;(£(i, ) — d(i, 5)) > exlog/? n.
7-page proof involves tension between two facts.

1. If there is a short route between z; and z;
then a random orthogonal line (rooted where
it crosses :Uia:j) must cross a network line at
some distance < y, from the root and at same
angle 5 & én.

2. For any length Ln network in the square
of area n, the positions and angles of intersec-
tions of a random line with the network have
a mean intensity which just depends on L.

To relate these facts, need to know that the
process

pick random z;,z; from xp, take random line

orthogonal to z;z;

IS approximately the same as ‘“take a random
line” . Here we need the “equidistribution” as-
sumption on xn,.
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(C) Optimal flows through the disordered
lattice. (Preprint on Arxiv). Here cities/roads
correspond to vertices/edges of the two-dimensional
grid.

Order-of-magnitude calculation on Nx N grid. Send
flow volume pp between each (source,destination)
pair. Average flow volume f across edges is

(N2 x N?) x py Xx N =~ F x N?
To make f be order 1 we take

oy = pN~3  where p is normalized demand.

Open Problem. Take i.i.d. random capaci-
ties (cap(e)) with 0 < c— < cap(e) < cy < 0.
Obvious: a feasible flow with normalized de-
mand p exists for p < p_— and doesn’t exist for
p > p4. Prove there is a constant p« depending
on distribution of cap(e) such that as N — ¢

P(3 feasible flow, norm. demand p) — 1 , p < p«
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Instead of focussing on capacities, let's focus
on congestion. In a network without conges-
tion, the cost (to system; all users combined)
of a flow of volume f(e) scales linearly with
f(e). With congestion, extra users impose ex-
tra costs on other users as well as on them-
selves. So cost scales super-linearly with f(e).
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Model: The cost of a flow f = (f(e)) in an
environment ¢ = (c(e)) is

cost yy(£,¢) =D e(e) f(e).

e

Theorem 1. N x N torus (for simplicity)
Large constant bound B on edge-capacity (for
simplicity)

i.i.d. cost-factors c(e) with

0<c_<ele) <ct < oco.

Let Iy be minimum cost of flow with normal-
ized intensity p = 1. Then

N~2El 5 — constant(B, dist(c(e))).

Comments. Methodology is to compare with
flows across (boundary-to-boundary) M x M
squares. Should work to prove existence of
limits in other “optimal flows on N x N grid”
models. But details are surprisingly hard to
prove. Theorem 1 has 36 page proof!
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