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Talk is rather off-topic.

I have some “big picture” projects about networks.

One rather fringe result has an SI epidemic interpretation.

This suggests conjecture for (very general) SIR epidemics.

Key thought; Can we say anything at all about SIR epidemics on
networks without assuming some specific network model (configuration
model, etc)?
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We all believe some version of the following:

Given some probability model with a bunch of parameters for an epidemic
in a (large) size-n population:

for some subset of parameter space, the epidemic process is
subcritical: number infected is o(n) with high probability

for another subset of parameter space, the epidemic process is
supercritical: number infected is not o(n), with probability not too
close to zero

the remaining “ critical” subset of parameters is small.

Why do we believe this?

R0 is some function of the parameters.

In what generality can we prove it?
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Big picture background

A math model of a real-world network typically starts as a graph. This is
weird, because almost all real networks are better represented as
edge-weighted graphs. The reason this isn’t the default (I guess) is that
there are several conceptually different interpretations of edge-weight:

flow capacity (road network, water network)

distance or cost (TSP)

strength of association (close friend or acquaintance or Facebook
friend).

I’ll consider the last class and think of social networks – collaboration
networks, corporate directorships, Senators’ voting record, etc (note many
biological networks are also in this class). Even within this class of social
networks there are different interpretations of strength of association ,
but (envisaging friends) I abstract this as frequency of interaction.
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Introduce randomness by saying:

for each edge e = (vy), individuals v and y interact at the times of a
rate-we Poisson process.

So this is the meaning of the edge-weights we ≥ 0.

As discussed in my 2013 paper Interacting Particle Systems (IPS) as
Stochastic Social Dynamics this setup underlies what probabilists call
IPS: each individual is in some “state” and some update rule changes the
states when individuals interact. This covers numerous models like the
voter model or SIR/SIS epidemic – a line of research going back to
statistical physics study of the Ising model on Zd .

Within this huge field, to get explicit results one needs an explicit model
for the network. But mathematically tractable models are usually
unrealistic. Is there any hope to say something about a given IPS rule
over an arbitrary finite network? I will describe a theorem, not itself so
relevant to epidemics, but suggestive of a very general result for
epidemics.
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Bond percolation and giant components.

Take our background setting of an arbitrary edge-weighted n-vertex graph
(G ,w). To the edges e ∈ E attach independent Exponential(rate we)
random variables ξe . In the language of percolation theory, say that edge
e becomes open at time ξe . The set of open edges at time t determines
a random partition of vertices into connected components; write C (t) for
the largest number of vertices in any such connected component.

Next result from arXiv preprint The Incipient Giant Component in Bond
Percolation on General Finite Weighted Graphs.
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Now consider a sequence of such weighted graphs with n→∞, where
both the graph topologies and the edge-weights are arbitrary subject only
to the conditions that for some 0 < t1 < t2 <∞

lim
n

ECn(t1)/n = 0; lim
n

ECn(t2)/n > 0. (1)

In the language of random graphs, this condition says a giant component
emerges (with non-vanishing probability) sometime between t1 and t2.

Proposition

Given a sequence of graphs satisfying (1), there exists a deterministic
sequence τn ∈ [t1, t2] such that, for every sequence εn ↓ 0 sufficiently
slowly, the random times

Tn := inf{t : Cn(t) ≥ εnn}

satisfy
Tn − τn →p 0.

Proposition 1 asserts, informally, that the “incipient” time at which the
giant component starts to emerge is deterministic to first order.
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Even though the most natural formulation is via the dynamic random
graph – a generalization of the Erdos-Renyi process over time 0 < t <∞
- -we can reformulate the result in terms of SI epidemics. Regard t as a
fixed parameter. Model

Infection will spread across an undirected edge vy with probability
1− exp(−twvy ).

Then the ultimately infected set, for an SI epidemic started at v0, is just
the component of the random graph process at t containing v0. We can
reformulate the Proposition as a subcritical/supercritical dichotomy for
this SI epidemic, as follows.
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Infection will spread across an undirected edge vy with probability
1− exp(−twvy ).

Take a number ωn ↑ ∞ arbitrarily slowly of random initial infectous, and
let C ′n(t) be the total size of the SI epidemic. Take arbitrary networks,
subject to

lim
n

EC ′n(t1)/n = 0; lim
n

EC ′n(t2)/n > 0. (2)

for some 0 < t1 < t2 <∞.

Proposition

Then there exist deterministic τn ∈ [t1, t2] such that, with probability
→ 1,

C ′n(t) = o(n) for t ≤ τn − ε

C ′n(t) 6= o(n) for t ≥ τn + ε

So behavior is same for most realizations, depending on parameter t.
My proof leans on having Exponential distributions but (intuitively) must
hold much more generally.
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Wild vague conjecture

Define a set H of distribution functions, for some family of distributions
“not wildly different from Exponential” (or zero function).

Introduce a virulence parameter θ.

Model an SIR epidemic: for population size n assume

infectous duration for v has distribution function ιv (θ) in H, and is
stochastically increasing in θ.

Infection will spread across an undirected edge vy with probability
pvw (θ), where function θ → pvw (θ) is in H.

David Aldous A general SI epidemic and a framework for imperfectly observed networks



Take a number ωn ↑ ∞ arbitrarily slowly of random initial invectives, and
let C ′n(θ) be the final size of the SIR epidemic. Take arbitrary networks
and parameters, subject to distributional assumptions above and

lim
n

EC ′n(θ1)/n = 0; lim
n

EC ′n(θ2)/n > 0. (3)

for some 0 < θ1 < θ2 <∞.

Conjecture. Then there exist deterministic θ∗n ∈ [θ1, θ2] such that, with
probability → 1,

C ′n(θ) = o(n) for θ ≤ θ∗n − ε

C ′n(θ) 6= o(n) for θ ≥ θ∗n + ε.
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How was the original Proposition proved?

I’m not telling you here! (read the arXiv preprint).

Does not use any notion of R0.
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The background project

Suppose we are interested in some quantitative feature of a network
which we could calculate if we knew exactly what the network is.
But suppose we don’t know it . . . . . . . . . . . . then what can we do?

I’ll call this the imperfectly-observed network problem. I will talk
about one particular formalization – not claimed to be useful for
real-world data but (I do claim) interesting as math theory.
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A network is a finite edge-weighted graph. We are concerned with some
“statistic” Γ, a functional G → Γ(G ) on finite edge-weighted graphs G .
There is a network G true with known vertices but unknown edges and
edge-weights we . What we observe is the interaction process described at
the start of this talk. That is, what we observe over time [0, t] is the
Poisson(twe) number of interactions Ne(t) over edges e. We can
represent our observations in two equivalent ways: either as the random
multigraph with Ne(t) copies of edge e, or as the random weighted graph
G obs(t) in which edge e has weight t−1Ne(t).

How do we use these observations to estimate Γ(G true), and how
accurate is the estimate?
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Some general comments.

For any problem about networks where you assumed the network is
known, you could ask this “imperfectly-observed” variation.

There are many other ways to think about “imperfectly-observed
networks” [one popular way will be shown later].

We always have the naive frequentist estimator Γ(G obs(t)). It’s
natural to study, but there is no reason to think it is optimal.

We always have the naive Bayes estimator (flat prior on each we)
but . . . . . .

“Computation is free” – not concerned with computational
complexity – instead we regard observation time as the “cost”.

Any estimator like Γ(G obs(t)) for fixed t will have error depending on the
unknown G true. The “elegant” formulation of a mathematical problem is:

Program

Given a statistic Γ, define a (“universal”) stopping rule T and an estimator
such that the relative error of the estimator, say Γ(Gobs(T ))/Γ(G true) − 1, is
w.h.p. small uniformly over all networks G true.
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Program

Given a statistic Γ, define a (“universal”) stopping rule T and an
estimator such that the relative error of the estimator, say
Γ(G obs(T ))/Γ(G true)− 1, is small uniformly over all networks G true.

The bottom line of this project. We have no idea how to do this for
most interesting/natural statistics, but we can do this for a few statistics
which are less interesting/natural.

This is ongoing joint work with grad student Lisha Li.
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Given (G ,w), write n for the number of vertices and wv =
∑

y wvy for
the total interaction rate of vertex v . We are thinking of results for large
networks, formalized as n→∞ limits. For discussion purposes here
(not as assumptions in theorems) assume wv ≡ 1, so in time t we have
seen on average t interactions involving each vertex, that is our observed
multigraph has on average t edges at each vertex.

Qualitatively there are 3 time regimes.

For t = o(1) can only estimate statistics like (weighted) degree
distributions (cf. birthday problem).

To make the observed graph connected we typically need
t = Θ(log n) (cf. coupon collector problem) at which time we see
Θ(log n) edges per vertex and (intuitively) “we can estimate
anything well”.

The interesting/challenging regime is where t is a (large-ish)
constant; what can we infer when we have seen an average of 24
interactions per individual?

David Aldous A general SI epidemic and a framework for imperfectly observed networks



On the positive side, here is a “sideways” approach to our program.
Consider

T tria
k = inf{t : observed multigraph contains k edge-disjoint triangles}.

T span
k = inf{t : observed multigraph contains k edge-disjoint spanning trees}.

Proposition

s.d.(T tria
k )

ET tria
k

≤
(

e

e − 1

)1/2

k−1/6, k ≥ 1.

s.d.(T span
k )

ET span
k

≤ k−1/2, k ≥ 1.

So here the bounds are independent of w, meaning that we can estimate
the statistics ETk without assumptions on w.

So the “sideways” approach is to seek some observable quantity which is
concentrated around its mean, independent of w, which therefore
provides an estimator of the statistic defined by the expectation.
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Observed and true community structure.

For a subset A of vertices write A∗ for the set of edges with both
end-vertices in A. Write

wtrue
m = m−2 max

{∑
e∈A∗

we : |A| = m

}

– essentially the maximum edge-density in a size-m community. Ignoring
computational complexity, suppose we can compute the analogous
observable quantity

W
obs

m (t) = m−2 max

{∑
e∈A∗

Ne(t)/t : |A| = m

}
.

To make inferences from the observed G obs(t) to G true we need
m ∼ γ log n. Then (as in previous example, just using large deviations and
counting) we can be confident that wtrue

m is in a certain interval, roughly[
W

obs

m (t)−
√

2W
obs
m (t)
γt ,W

obs

m (t)

]
.
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