
Lecture 2 described an example “Maximum

Partial Matchings on Random Trees” and gave

Theorem n−1EM(Tn)→ c = E[ξ 1(ξ > Y +Z)]

where Y and Z are solutions of

Y
d
= max(0, ξi − Yi, 1 ≤ i ≤ Pois(1))

Z
d
= max(ξ − Z′, Y ).

Each equality comes out of a simple picture.

Amazingly, there is a large class of problems

– combinatorial optimization over locally tree-

like random structures – where one can just

write down the (non-rigorous) solution in the

same format; 2 or 3 equalities from simple pic-

tures. This can be viewed as an aspect of the

cavity method.
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Most studied example is the “random assign-

ment problem”, though this can now be ana-

lyzed combinatorially exploiting special struc-

ture. I will describe 2 examples in the “mean-

field model of distance”. Recall this means:

Take the complete graph on n vertices. To

each of the
(
n
2

)
edges e assign i.i.d. lengths

`e with Exponential(mean n) distribution. Call

this network Gn. Recall

Gn →LWC PWIT.

Write TSP (Gn) for the shortest cycle through

all n vertices of Gn. Mézard - Parisi (1986,

non-rigorous) and Wästlund (2006, rigorous)

gave limit behavior, equivalent to the follow-

ing.

lim
n
n−1E len(TSP (Gn)) = c = 2.04...

where c is specified by
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c = 1
2

∫ ∞
0

xP (X1 +X2 > x) dx

where X1, X2 are independent with the distri-

bution determined as the solution of the RDE

(recursive distributional equation)

X
d
= min [2]

i (ξi −Xi)

where 0 < ξ1 < ξ2 < . . . are the points of a

Poisson(rate 1) process, and min[2] denotes

second-minimum.

[show Java of solution]

Jump into heuristics [not easy to formalize];

consider optimal solution to TSP on the PWIT,

without enquiring what this means precisely

. . . . Note feasible solutions are collections of

infinite paths.
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Distinguished edge e∗ of PWIT specifies two rooted sub-
trees Tright,Tleft.
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e∗ Tright

Tleft

Optimal solution either uses/doesn’t use e∗; in restric-
tion of solution to Tright the root has either degree 1 or
degree 2. So on Tright define heuristically

Xright = total length opt. solution, rootdegree = 2
− total length opt. solution, rootdegree = 1.

Optimal solution on T will use e∗ iff

len(e∗) ≤ Xright +X left. [inclusion criterion].

At a given vertex, the mean density of edges with lengths
∈ [x, x + dx] equals dx; so contribution to mean length
of TSP equals

1
2

∫ ∞
0

x P (x ≤ Xright +X left) dx.
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Natural recursive structure of Tright leads to

the RDE for distribution of X.

[blackboard]
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Outline of general rigorous proof technique

Start with a combinatorial optimization prob-
lem over some size-n random structure.

• Find the n → ∞ limit in the sense of local weak
convergence; the “size-∞” random structure,

• Formulate a corresponding combinatorial optimiza-
tion problem on the size-∞ structure – that is, spec-
ify “feasible solution” and “cost per vertex”, requir-
ing “stationarity”.

• [start heuristics] Define relevant quantities on the
size-∞ structure via additive renormalization.

• If the size-∞ structure is tree-like (the only case
where one expects exact asymptotic solutions), ob-
serve that the relevant quantities satisfy a problem-
dependent RDE.

• Solve the RDE. Use the unique solution and in ”in-
clusion criterion” to calculate the value of the op-
timization problem on the size-∞ structure. [end
heuristics].
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• Check that the recursive tree process associated
with the solution on the size-∞ structure, and the
inclusion criterion, define a feasible solution. This
has some cost c∞, which we want to show is the
limit.

• Show that the recursive tree process is endoge-
nous, that is the root value is is a measurable
function of the data. Since a measurable function
is almost continuous, we can pull back to define
almost-feasible solutions of the size-n problem with
almost the same cost.

• Show that in the size-n problem one can patch an
almost-feasible solution into a feasible solution for
asymptotically negligible cost (⇒ upper bound).

• A weak limit of optimal solutions to the finite-n
problems is a “stationary” feasible solution E∗ on
the size-∞ structure; endogeny couples this to the
claimed optimal solution E. Recycle the heuristic
argument to show E∗ cannot have lower cost than
E (⇒ lower bound).
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The 2 examples [Maximum Partial Matchings

on Random Trees; TSP in mean-field model

of distance] have a simplifying feature; there

are only 2 options for a vertex at a cut edge,

so the cost difference between the two opti-

mal solutions is a single random variable X.

There’s one more interesting example with this

feature [later: a challenge to make rigorous

proof] but let me first indicate how heuristics

apply in many cases where there are more than

two options. In the next example we get a

RDE for the distribution of a infinite sequence

(Xk,−∞ < k <∞).
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A new variant. Continue within the same

framework of Gn →LWC PWIT . Note that dis-

tance d(v, w) in Gn is shortest path length; for

random V,W we have d(V,W ) ≈ logn.

Fix 0 < q < 1/2. In Gn take bqnc random ver-

tices to be sources and another bqnc to be

destinations. For any matching of sources v

and destinations w there is a total transporta-

tion cost ∑
(v,w) in matching

d(v, w)

and we study the minimum cost, say Mn,q, over

all matchings of sources and destinations. As

usual we expect a limit constant

n−1EMn,q → c(q).
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We first think a little about structure of opti-
mal matching – view as a set of paths – in Gn.
A given edge e might be in 0 or 1 or several
paths. Orient paths from source to destina-
tion. If there are several paths through e they
must all be oriented the same way through e

[blackboard].

So, giving each edge e of Gn an arbitrary direc-
tion, associated with the optimal matching is a
collection −∞ < K(e) <∞ of random integers
counting how many paths go through e.

Now consider the analogous optimization prob-
lem on the PWIT – random sources and sinks
at density q. Consider the optimal solution, rel-
ative to an edge of length s at the root. There
are some random number −∞ < K(s) < ∞ of
paths through the edge, and the limit constant
is

c(q) = 1
2

∫ ∞
0

E|K(s)| s ds.
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Take a realization of the PWIT and the source
and destination vertices, consider for each k
the solution of the optimization problem mod-
ified by requiring k paths into the root from
external sources (or −k out from the root to
external destinations); write

Xk = optimal cost of k-modified problem

− optimal cost of un-modified problem.
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s Tright

Tleft

K(s) = arg min
k

(s|k|+X ′k +X ′′−k)

where (X ′k) and (X ′′k) are independent copies
of (Xk).

So heuristics give formula for optimal cost in
terms of dist of (Xk).
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To write out the RDE, there are several cases.

In case root is not source or destination

[blackboard]

Xk = min
(ki):

∑
i ki=k

∑
i

(Xi
ki

+ ξi|ki|)

Any volunteers to write code to simulate solu-

tion?
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Example: flow through a disordered net-

work. A challenge to make rigorous . . . . . .

Consider a network with

• M layers

• N vertices per layer

• directed edges upwards from one layer to next

• edges between successive layers are placed

randomly subject to each vertex having

in-degree = out-degree = 2.
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Special problem. Suppose
• edges have capacity = 1.
• retain each edge with probability p, delete with prob-
ability 1− p.
Study maximum flow from bottom to top layers; same
as maximum number of edge-disjoint paths from bot-
tom to top layers. Clearly for p = 1 the maximum flow
= 2N , so for general p we consider the relative flow

FN,M(p) = 1
2N
× (max flow through network).

We anticipate a limit function

EFN,N(p)→ v∗(p) as n→∞.

Cavity method tells you how to write down an equation

whose solution determines v∗(p).
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Lecture 3 part 2 moves away from CO to

A Tractable Stochastic “Complex Network”

Model

short paper: AMS Electronic Research An-

nouncements, 2003.

longer paper: arXiv:cond-mat/0304701 published

in Springer Lect. Notes Physics 650.

Slides only minimally updated since 2003, though

much subsequent work.
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1. Recent literature.

Three popular science books, a dozen articles
in Science and Nature, and 154 preprints at
xxx.arXiv.org/cond-mat deal with complex net-
works, which in this context means the em-
pirical and theoretical study of large graphs,
focusing in particular on those possessing the
following three qualitative properties, asserted
to hold in many interesting real-world exam-
ples.

• the degree distribution has power-law tail

• local clustering of edges: graph is not lo-
cally tree-like

• small diameter – O(log (number of vertices)).

The nature of that subject – typically not pre-
sented as rigorous mathematics – is most easily
seen from the long survey papers
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R. Albert and A.-L. Barabási, Statistical me-

chanics of complex networks, Rev. Mod. Phys.

74 (2002), 47–97.

S.N. Dorogovtsev and J.F.F. Mendes, Evo-

lution of networks, Adv. Phys. 51 (2002),

1079–1187.

M.E.J. Newman, The structure and function

of complex networks, SIAM Review 45 (2003),

167–256.

A shorter survey emphasizes rigorous mathe-

matical results

B. Bollobás and O. Riordan, Mathematical re-

sults on scale-free random graphs, Handbook

of Graphs and Networks (S. Bornholdt and

H.G. Schuster, eds.), Wiley, 2002.

See also Durrett lecture notes (Fall 2004).

17



Almost all this literature concerns variants of

two modelling ideas.

Small worlds.

• Take n-vertex lattice-neighborhood graph

• Add long edges in some random way.

Proportional attachment.

• Vertices arrive sequentially (n = 1,2,3, . . .);

• each vertex attaches to k existing vertices v

chosen with probabilities proportional to

c+ degree(v).
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Some natural summary statistics for a complex

network.

• ∂̄ = average vertex-degree

• an exponent γ indicating power-law tail be-

havior of degree distribution

• a “clustering coefficient” κ measuring rela-

tive density of triangles

• the average distance ¯̀ between vertex-pairs.

Desiderata for a stochastic model

• mathematical tractability: one can find reasonably ex-

plicit formulas for a variety of quantities of interest

• fitting flexibility: by varying model parameters one can

vary summary statistics (like the 4 listed above) broadly

through their possible ranges

• naturalness: the qualitative properties emerge from

some simple underlying mathematical structure rather

than being forced by fiat.
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No ideal model known. I will describe a specific

two-parameter model, and implicitly a class of

models, which satisfy many of these desider-

ata.

Comment: we are accustomed to models (per-

colation, interacting particle systems) which

are simple to state but complicated to analyze.

In contrast, this model is conceptually sophis-

ticated to state but easy (in some respects) to

analyze and get explicit formulas.
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Platform for model: directed graphs

(i) Vertices v, w, x, . . . arrive sequentially; some

intrinsic “geometry” given by distances d(v, w).

(ii) Given 1 ≥ p(r) ↓ 0 fast as r ↑ ∞.

(iii) When vertex v arrives, for each existing

vertex w and each existing edge (w, x), new

edges (v, w) and (v, x) appear independently

with probability p(d(v, w)).

We will build this over a version of our “mean-

field model of distance”. Loosely, the model

is between the extremes of

(a) lattice-based small world models

(b) proportional attachment/copying models.

In (iii) we somewhat arbitrarily take

p(r) = min(1, αλe−λr)

with two parameters α, λ > 0.
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Geometry of n points as n→∞.

In d dimensions, pictured for d = 2. Could take
the points ordered or random, in region of area
n. In either case there is a n → ∞ limit: the
infinite lattice, or the Poisson point process.

r
r
r
r
r
r
r

r
r
r
r
r
r
r

r
r
r
r
r
r
r

r
r
r
r
r
r
r

r
r
r
r
r
r
r

r
r
r
r
r
r
r

r
r
r
r
r
r
r

r

r
r

r
r

rr rr

r

r
r

r

r
r

r

r

r

r

r

r

r r

r

r

rr

r

r

r

r

r
r

r
r

r

Draw attention to one feature of each.
• On lattice, point has 2d “near neighbors”.
• Poisson process is time-equilibrium of a cer-
tain space-time process, in which points move
to infinity as deterministic exponentials x(t2) =
x(t1)e(t2−t1)/d and new random points arrive
at space-time rate 1. “Enterprise under warp
drive”, or Hoyle’s 1950s steady-state model of
Universe.
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Conceptually new ingredient : we can also

regard the PWIT as the equilibrium spatial dis-

tribution of a space-time process. Existing

edge-lengths `(t) increase as determinstic ex-

ponentials

`(t2) = `(t1)et2−t1.

New vertices appear and by fiat are at Pois-

son(rate 1) distances 0 < ξ1 < ξ2 < . . . from ex-

isting points (changing the geometry, cf. “worm-

holes”).

We will do calculations within this space-time

PWIT model. So we are “cheating” in first

devising a limit model; here’s how we “reverse

engineer” to represent it as a limit of finite

models.
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The finite model.

• vertex n arrives at time logn

• the link lengths `(·) from n to previous n− 1

vertices are independent Exp (mean n) r.v.’s

• lengths increase deterministically with time,

at exponential rate 1.

Over this model of geometry we build our com-

plex network model as described earlier (but us-

ing link lengths rather than shortest-path distances).

• When vertex v arrives, for each existing w

and each existing edge (w, x), new edges (v, w)

and (v, x) appear independently with probabil-

ity p(`(v, w)). Note: only the “near neighbors” w

with small `(v, w) matter.
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Next 9 slides provide a low-tech simulation –

volunteers to write a high-tech simulation?
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The space-time geometry process, conditioned

on a particular vertex ∅ arriving at a particular

time 0. By PASTA, the spatial geometry is the

PWIT.
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What just happened at time 0− was that ∅
arrived, was assigned random link-lengths and

random neighbors.
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∅

This causes previously disconnected (in the PWIT;

far apart in the finite model) components to

become connected via ∅.
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Here are two of the previously disconnected

components at an earlier time; edges were shorter.
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So far we’re just showing the geometry of our

“steady-state expanding universe”. Now we

superimpose the random directed graph struc-

ture.
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The random graph structure on the two pre-

viously disconnected components at an earlier

time.

t
t

t
�
�
�
���

�

6

t

?

�
�
�
�
�
�
� B

B
B
B
B
B
BM

-

���
���

��:

�
�
�
�
�
�
�
�3

t
6

t�

t
�
�	

�

�������) @
@
@

@@I

�
�
�
���t

t���
tBB

BM

�
�
�+

�
�
�
�
�
��

@
@
@

@
@
@
@I

t
H

HH
HHY

t ��	
�

?HH
H

HHY

-

�
�
�

��	

t
��

�����a

b
c

29



. . . . . . these edges have expanded at time 0−
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and more vertices have joined these compo-

nents by time 0−
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Now ∅ arrived and is assigned random link-
lengths and random neighbors.
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∅

For each neighbor w there are separate random
choices; whether or not to put an edge of our
random graph from ∅ to w, and whether or
not to copy existing edges (w, y) to new edges
(∅, y) . . .
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. . . and here are the choices made.
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So here is the state of the random graph after

∅ arrives.
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This may seem insanely complicated, but as

said before:

We are accustomed to models which are simple

to state but complicated to analyze. In con-

trast, this model is conceptually sophisticated

to state but easy (in some respects) to analyze

and get explicit formulas. That is, explicit for-

mulas in the PWIT model, representing n→∞
asymptotics in the finite model.

Tractable because

• everything is time-invariant, so can immedi-

ately write down various equations, e.g. for

out-degree D

D
d
=

∞∑
i=1

Bin(1 +Di, αλe
−λξi) [low]

• the process “1 + in-degree(v) at time t” is

precisely a Yule process.
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End talk with

GALLERY OF EXPLICIT FORMULAS
exact in n→∞ limit.

Recall the two parameters enter via the func-
tion

p(r) = min(1, αλe−λr), 0 ≤ r <∞.

We will need to distinguish between a low clus-
tering region with parameter ranges

0 < α < 1, 0 < λ ≤ 1/α [low].

and the complementary high clustering region
where αλ > 1. In the latter case
p(r) = 1, r ≤ η := λ−1 log(αλ)
and it is convenient to reparametrize using η

in place of α, making the parameter range

0 < η < 1, η + 1/λ < 1. [high].

Greek letters denote quantities computable from
parameters.
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The two parameters control mean degree
and clustering.

First consider Din and Dout, the random in-
degree and out-degree of a typical vertex. Then

EDin = EDout = ∂̄ =


α

1−α [low]
η+1/λ

1−η−1/λ [high]
(1)

Second, define a normalized clustering coeffi-
cient κcluster as

The proportion of directed 2-paths v1 →
v2 → v3 for which v1 → v3 is also an
edge.

Then

κcluster =


α(1−α)λ
2−α2λ

[low]

(η+ 1
2λ)(1−η−1

λ)

(η+1
λ)(1−η− 1

2λ)
[high]

(2)
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By solving (1,2) we find that every pair of val-

ues of ∂̄, κcluster in the complete range

0 < ∂̄ <∞, 0 < κcluster < 1

occurs for a unique parameter pair (α, λ) or

(η, λ). Moreover the two regions can be spec-

ified as

0 < ∂̄ <∞, 0 < κcluster ≤ 1
∂̄+2

[low]

0 < ∂̄ <∞, 1
∂̄+2

< κcluster < 1. [high]

So the two model parameters α, λ have fairly

direct interpretations in terms of mean degree

and clustering; of course we could re-parametrize

the model in terms of ∂̄ and κcluster, but the

internal mathematical structure is more conve-

niently expressed using the given parameters.
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Distribution of in-degree

The distribution of Din is specified as

1 +Din
d
= Geo(e−βT ) where T

d
= Exp(1)

and where

β =

{
α [low]

η + 1/λ [high]

This works out explicitly as

P (Din = d) =
Γ(d+ 1)Γ(1/β)

β2Γ(d+ 2 + 1
β)
, d ≥ 0 (3)

with asymptotics

P (Din = d) ∼ β−2Γ(1/β) d
−1−1

β .

Formula (3) appears in recent proportional at-

tachment models, but in fact is a famous 80-

year old calculation.
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Distribution of out-degree

Distribution of Dout determined by the identity

D
d
=

∞∑
i=1

Bin(1 +Di, αλe
−λξi) [low]

where D, Di, i ≥ 1 are independent with the

distribution of Dout and where 0 < ξ1 < ξ2 < . . .

are the points of a rate-1 Poisson point process

on (0,∞).

We do not know how to extract a useful ex-

plicit formula from the identity, but we can

compute moments. For instance

var Dout =


α(1−α+α2λ/2)

(1−α)2(1−1
2α

2λ)
[low]

(η+ 1
2λ)(2−η−1

λ)

(1−η− 1
2λ)(1−η−1

λ)2 [high]

Note also

Din and Dout are independent.
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Densities of induced subgraphs

Let G be a finite directed acyclic graph. We
expect a limit

χ(G) = lim
n

#subgraphs of Gn isomorphic to G

n
.

For the complete directed acyclic graph Kr on
r ≥ 2 vertices,

χ(Kr) =
r−1∏
u=1

βu

1− βu
.

βu :=

{
u−1αuλu−1 [low]
η + 1

uλ [high]

For the complete bipartite directed graph K2,2,
for β2 <

1
2 (which always holds in the low den-

sity case), the corresponding limit for “sub-
graphs including K2,2” is

1
2χ̄(K2,2) =

∂̄β2(β2 + 1
2∂̄β)

(1− 2β2)(1− β2)
.
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Triangle density as a function of degree

The parameter κcluster gives an overall measure

of triangle density. A more detailed description

is provided by statistics C(k), k ≥ 2 defined by

C(k) =
E(# triangles contain. random degree-k vertex)(

k
2

) .

In principle could obtain exact formula for C(k),

but easier to get the tail property

C(k) ∼
2β2

β − β2
×

1

k
as k →∞.

Relates to suggestion that property C(k) ∼ c/k
indicates “hierarchical structure” in complex

networks.
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Edge-lengths

Our model has a “metric structure”, meaning
that there is a distance dmetric(v, w) between
any two vertices which does not involve the
realization of edges in the random graph. So
each edge (v, w) of the graph has a real-valued
length dmetric(v, w), and so a typical edge has
a random length L. The probability density
function for L is given by the formula

1− α
α

∞∑
i=0

(i+ 1)Γ(α+ 3) (−λx)i

Γ(i+ α+ 3)
, 0 < x <∞ [low].

and f(x) ≈ exp(−(λ ± o(1))x) as x → ∞. In
the underlying metric space, the number of
vertices within distance k of a typical vertex
grows as ek. So one can give a rough reinter-
pretation of the tail behavior of f(x) as

the chance that a vertex has an edge to its
k’th nearest neighbor should scale as k−λ−1.

Note this property appears without being ex-
plicitly built into the model.
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Advantages/disadvantages of the model:

• it has the three qualitative features desired in
a complex networks model (power-law degree
distribution, clustering, small diameter)
• it fits the complete possible range of mean
degree (or scaling exponent) and clustering pa-
rameters
• it permits a broad range of explicit calcula-
tions.

****************************************

• Gn is not connected (for large n).
• There is no power law for distribution of out-
degree.
• in-degree and out-degree are independent.
• The scaling exponent for in-degree is deter-
mined by the mean degree; one might prefer
a model where these could be specified sepa-
rately.
• In the n → ∞ limit not every finite graph is
possible as an induced subgraph.
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